Go to the previous, next section.
For an introduction and a deeper description, see [Carreiro & Gelernter 89a] or [Carreiro & Gelernter 89b], respectively.
One process is running as a server and one or more processes are running as clients. The processes are communicating with sockets and supports networks.
The server is in principle a blackboard on which the clients can write
(out/1
), read (rd/1
) and remove (in/1
) data. If the
data is not present on the blackboard, the predicates suspend the process
until they are available.
There are some more predicates besides the basic out/1
, rd/1
and in/1
. The in_noblock/1
and rd_noblock/1
does not
suspend if the data is not available--they fail instead. A blocking fetch
of a conjunction of data can be done with in/2
or
rd/2
.
Example: A simple producer-consumer. In client 1:
producer :- produce(X), out(p(X)), producer. produce(X) :- .....
In client 2:
consumer :- in(p(A)), consume(A), consumer. consume(A) :- .....
Example: Synchronization
..., in(ready), %Waits here until someone does out(ready) ...,
Example: A critical region
..., in(region_free), % wait for region to be free critical_part, out(region_free), % let next one in ...,
Example: Reading global data
..., rd(data(Data)), ..., or, without blocking: ..., rd_noblock(data(Data)) -> do_something(Data) ; write('Data not available!'),nl ), ...,
Example: Waiting for one of several events
..., in([e(1),e(2),...,e(n)], E), % Here is E instantiated to the first tuple that became available ...,
To load the package, enter the query
| ?- use_module(library('linda/server')).
and start the server with linda/0
or linda/1
.
| ?- linda((Host:Port)-(my_module:mypred(Host,Port))).will call
mypred/2
in module my_module
when the server is
started. mypred/2
could start the client-processes, save the
address for the clients etc. Note that the module must be present in
Goal.
To load the package, enter the query
| ?- use_module(library('linda/client')).
Some of the following predicates fail if they don't receive an answer
from the Linda-server in a reasonable amount of time. That time is set
with the predicate linda_timeout/2
.
linda/0
and linda/1
.
It is not possible to be connected to two Linda-servers in the same time.
This predicate can fail due to a timeout.
off
or of the form Seconds:Milliseconds. The former
value indicates that the timeout mechanism is disabled, that is, eternal
waiting. The latter form is the timeout-time.
out/1
).
This predicate can fail due to a timeout.
in/1
but succeeds when either of the tuples in TupleList
is available. Tuple is unified with the fetched tuple. If that
unification fails, the tuple is NOT reinserted in the tuple-space.
in/1
: the tuple is NOT removed.
This predicate can fail due to a timeout.
in/2
but does not remove any tuples.
The behavior of variables in Tuple and Template is as in
bagof/3
. The variables could be existentially quantified with
^/2
as in bagof/3
.
The operation is performed as an atomic operation.
This predicate can fail due to a timeout.
Example: Assume that only one client is connected to the server and that the tuple-space initially is empty.
| ?- out(x(a,3)), out(x(a,4)), out(x(b,3)), out(x(c,3)). yes | ?- bagof_rd_noblock(C-N, x(C,N), L). C = _32, L = [a-3,a-4,b-3,c-3], N = _52 ? yes | ?- bagof_rd_noblock(C, N^x(C,N), L). C = _32, L = [a,a,b,c], N = _48 ? yes
Go to the previous, next section.