next up previous
Next: More Accurate First Approximation Up: Approximate Potential Estimates Previous: Approximate Potential Estimates

Actual vs. Estimated Potentials for a General-case IRF.

In contrast to the $ \mathrm{IRF}_\mathrm{eq}$, a general-case IRF on $ \mathcal{R}$ has an arbitrary marginal probability distribution of signals $ \mathbf{P}_\mathrm{irf}=(p_\mathrm{pix}(q):
q\in\mathcal{Q})$. This IRF can be represented similarly to Eq. (6.2.5) by using the pixel-wise potential:

$\displaystyle P_\mathrm{irf}(g^\circ)= \frac{1}{Z_\mathrm{irf}}\exp \left(\sum\...
...\vert \mathbf{V}^\mathsf{T}_\mathrm{pix}\mathbf{F}_\mathrm{pix}(g^\circ)\right)$ (A.0.5)

where $ \mathbf{V}_\mathrm{pix}^\mathsf{T} = [V_\mathrm{pix}(q):
q\in\mathcal{Q}]$ is the potential $ Q$-vector, $ \mathbf{F}^\mathsf{T}_\mathrm{pix}(g^\circ) =
[f_\mathrm{pix}(q\vert g^\circ): q\in\mathcal{Q}]$ is the corresponding vector of empirical marginal probabilities of signals, and $ Z_\mathrm{irf}$ is the partition function. The latter has in this case the analytical form: $ Z_\mathrm{irf}=\left(
\sum_{q\in\mathcal{Q}}\exp V_\mathrm{pix}(q) \right
)^{\vert\mathcal{R}\vert} $.

Assuming the centred potential, $ \sum_{q\in\mathcal{Q}}V_\mathrm{pix}(q)=0$, it is easily shown that the actual potential MLE and its first approximation obtained for a training image $ g^\circ$ much as in Proposition A.0.2 but for the IRF in Eq. (A.0.5) are, respectively,

\begin{displaymath}\begin{array}{lll} V_\mathrm{pix}(q) & = & \ln f_\mathrm{pix}...
... f_\mathrm{pix}(q\vert g^\circ)-\frac{1}{Q} \right) \end{array}\end{displaymath} (A.0.6)

Table A.1 presents both the estimates in a special case when one intensity, $ q_\mathrm{sp}$, has the empirical probability $ f_\mathrm{pix}(q_\mathrm{sp}\vert g^\circ) = f$ and all remaining intensities are equiprobable, $ f_\mathrm{pix}(q\vert g^\circ) =\frac{1-
f}{Q-1}$; $ q\in\mathcal{Q}\backslash q_\mathrm{sp} $. The estimates are given in function of $ Q$ and the relative probability $ \beta=\frac{f(Q-1)}{1-f}$. For small $ Q$, both the estimates are close to each other except for $ f \approx 1$. But for larger $ Q$, the approximate MLE of Eq. (A.0.4) exceeds considerably the actual one so that the approximation may be intolerably inaccurate for the MGRFs, too.


Table: Approximate (``e"), $ V_\mathrm{pix}(q_\mathrm{sp})$, and actual (``a"), $ V^\ast_\mathrm{pix}(q_\mathrm{sp})$, MLE of the centred potentials specifying the generic IRFs for the relative probability $ \beta=\frac{f(Q-1)}{1-f}$ if $ f_\mathrm{pix}(q_\mathrm{sp}\vert g^\circ) = f$ and $ f_\mathrm{pix}(q\vert g^\circ) =\frac{1-
f}{Q-1}$ for $ q\in\mathcal{Q}\backslash q_\mathrm{sp} $.
Relative probabilities $ \beta$
$ Q$ 1.0 2.0 5.0 10 20 50 100 200 500 $ 10^3$ $ 10^4$ $ 10^5$ $ \infty$
2 e 0.00 0.67 1.33 1.64 1.81 1.92 1.96 1.98 1.99 2.00 2.00 2.00 2.00
a 0.00 0.35 0.80 1.15 1.50 1.96 2.30 2.65 3.11 3.45 4.61 5.76 $ \infty$
$ f$ 0.50 0.67 0.83 0.91 0.95 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00
$ 2^2$ e 0.00 0.80 2.00 2.77 3.30 3.70 3.84 3.92 3.97 3.98 4.00 4.00 4.00
a 0.00 0.52 1.21 1.73 2.25 2.93 3.45 3.97 4.66 5.18 6.91 8.63 $ \infty$
$ f$ 0.25 0.40 0.63 0.77 0.87 0.94 0.97 0.98 0.99 1.00 1.00 1.00 1.00
$ 2^3$ e 0.00 0.89 2.67 4.24 5.63 6.88 7.40 7.69 7.87 7.94 7.99 8.00 8.00
a 0.00 0.61 1.41 2.01 2.62 3.42 4.03 4.64 5.44 6.04 8.06 10.1 $ \infty$
$ f$ 0.13 0.22 0.42 0.59 0.74 0.88 0.93 0.97 0.99 0.99 1.00 1.00 1.00
$ 2^4$ e 0.00 0.94 3.20 5.76 8.69 12.1 13.8 14.8 15.5 15.8 16.0 16.0 16.0
a 0.00 0.65 1.51 2.16 2.81 3.67 4.32 4.97 5.83 6.48 8.63 10.8 $ \infty$
$ f$ 0.06 0.12 0.25 0.40 0.57 0.77 0.87 0.93 0.97 0.99 1.00 1.00 1.00
$ 2^5$ e 0.00 0.97 3.56 7.02 11.9 19.4 24.2 27.6 30.1 31.0 31.9 32.0 32.0
a 0.00 0.67 1.56 2.23 2.90 3.79 4.46 5.13 6.02 6.69 8.92 11.2 $ \infty$
$ f$ 0.03 0.06 0.14 0.24 0.39 0.62 0.76 0.87 0.94 0.97 1.00 1.00 1.00
$ 2^6$ e 0.00 0.98 3.76 7.89 14.7 27.8 38.9 48.4 56.7 60.2 63.6 64.0 64.0
a 0.00 0.68 1.58 2.27 2.95 3.85 4.53 5.22 6.12 6.80 9.07 11.3 $ \infty$
$ f$ 0.02 0.03 0.07 0.14 0.24 0.44 0.61 0.76 0.89 0.94 0.99 1.00 1.00
$ 2^7$ e 0.00 0.99 3.88 8.41 16.5 35.4 55.8 77.9 102. 113. 126. 128. 128.
a 0.00 0.69 1.60 2.28 2.97 3.88 4.57 5.26 6.17 6.85 9.14 11.4 $ \infty$
$ f$ 0.01 0.02 0.04 0.07 0.14 0.28 0.44 0.61 0.80 0.89 0.99 1.00 1.00
$ 2^8$ e 0.00 1.00 3.94 8.69 17.7 41.1 71.4 112. 169. 204. 250. 255. 256.
a 0.00 0.69 1.60 2.29 2.98 3.90 4.59 5.28 6.19 6.88 9.17 11.5 $ \infty$
$ f$ 0.00 0.01 0.02 0.04 0.07 0.16 0.28 0.44 0.66 0.80 0.98 1.00 1.00


next up previous
Next: More Accurate First Approximation Up: Approximate Potential Estimates Previous: Approximate Potential Estimates
dzho002 2006-02-22