next up previous
Next: Actual vs. Estimated Potentials Up: Texture Analysis and Synthesis Previous: Conclusion


Approximate Potential Estimates

Recall Eq. (6.2.5). Given the neighbourhood $ \mathcal{N}$, the specific log-likelihood of the potential:

$\displaystyle \ell(\mathbf{V}\vert g^\circ) = \frac{1}{\vert\mathcal{R}\vert}\l...
...m\limits_{g\in\mathcal{G}} \exp\left( \mathbf{V}^\mathsf{T}\mathbf{F}(g)\right)$ (A.0.1)

has the following gradient ( $ \nabla\ell$) and the Hessian matrix ($ \nabla^2$):

\begin{displaymath}\begin{array}{lll} \nabla\ell(\mathbf{V}\vert g^\circ) & = & ...
... & = & -\mathbf{C}\{\mathbf{F}(g)\vert\mathbf{V}\} \end{array}\end{displaymath} (A.0.2)

where $ \E\{\ldots\vert\mathbf{V}\}$ denotes the math expectation under the GPD of Eq. (6.2.5) and $ \mathbf{C}\{\mathbf{F}(g)\vert\mathbf{V}\}$ is the covariance matrix of the scaled empirical probability vectors. Because the covariance matrix is non-negatively defined, the log-likelihood is unimodal in the potential space [2]. The vector $ \E\{\mathbf{F}(g)\vert\mathbf{V}\}$ of the scaled marginal co-occurrence probabilities in the vectorial equation $ \nabla\ell(\mathbf{V}\vert g^\circ) = \mathbf{F}(g^\circ)-
\E\{\mathbf{F}(g)\vert\mathbf{V}\} = 0 $ for the exact MLE of $ \mathbf{V}$ and the covariance matrix $ \mathbf{C}\{\mathbf{F}(g)\vert\mathbf{V}\}$ are typically unknown except in the cases when the MGRF of Eq. (6.2.5) is reduced to an independent random field (IRF).

Starting from a potential $ \mathbf{V}_0$ producing an IRF, the maximum likelihood estimate (MLE) of the potential is approximated by generalising the analytical approach proposed in [38].

PROPOSITION A.0.1   If the gradient and Hessian of Eq. (A.0.2) are known for an image $ g^\circ$ and potential $ \mathbf{V}_0$, the first approximation of the MLE:

$\displaystyle \mathbf{V}^\ast = \mathbf{V}_0 + \lambda^\ast\nabla \ell(\mathbf{...
...nabla^2 \ell(\mathbf{V}_0\vert g^\circ) \nabla \ell(\mathbf{V}_0\vert g^\circ)}$ (A.0.3)

maximises the second-order Taylor series expansion of the log-likelihood

$\displaystyle \ell(\mathbf{V}\vert g^\circ) \approx \ell(\mathbf{V}_0\vert g^\c...
...)^\mathsf{T} \nabla^2
\ell(\mathbf{V}_0\vert g^\circ)(\mathbf{V}-\mathbf{V}_0)
$

along the gradient from $ \mathbf{V}_0$.

It is easily proved by substituting $ \mathbf{V}=\mathbf{V}_0 + \lambda\nabla
\ell(\mathbf{V}_0\vert g^\circ)$ to the expansion and maximising the latter with respect to $ \lambda$.

The approximate solution in [38] presumes the simplest IRF (denoted below $ \mathrm{IRF}_0$) with zero potential $ \mathbf{V}=\mathbf{0}$. It results in equal marginal probabilities $ p(q) = \frac{1}{Q}$ of independent signals $ g_{x,y}=q$; $ q\in\mathcal;{Q}$, over $ \mathcal{R}$ and equiprobable images in Eq. (6.2.5): $ P_\mathbf{0}(g^\circ)=\frac{1}{Q^\vert\mathcal{R}\vert}$. In this case $ \ell\{\mathbf{0}\vert g^\circ\}=-\ln Q$ and all pairwise co-occurrence probabilities are equal: $ p_{\xi,\eta}(q,s)=\frac{1}{Q^2}$.

Let $ \mathbf{P}_{0}$ be the vector of the scaled marginal co-occurrence probabilities for the $ \mathrm{IRF}_0$: $ \mathbf{P}_{0}^\mathsf{T} = \frac{1}{Q^2}\left[
\rho_{\xi,\eta}\mathbf{u}: (\xi,\eta)\in\mathcal{N} \right] $ where $ \mathbf{u}^\mathsf{T}=[1,1,\ldots,1]$ is the $ Q^2$-vector of unit components. Let $ \mathbf{F}_\mathrm{cn}(g^\circ)$ be the vector of the centred scaled empirical co-occurrence probabilities $ f_{\mathrm{cn};\xi,\eta}(q,s)=f_{\xi,\eta}(q,s\vert g^\circ)-\frac{1}{Q^2}$ for the image $ g^\circ$, i.e. $ \mathbf{F}_\mathrm{cn}^\mathsf{T}(g^\circ) = \left[
\rho_{\xi,\eta}[f_{\mathrm...
...(q,s\vert g^\circ) : (q,s)\in\mathcal{Q}^2 ]:
(\xi,\eta)\in\mathcal{N}
\right]
$,

where $ \sum_{(q,s)\in\mathcal{Q}^2}f_{\mathrm{cn};\xi,\eta}(q,s\vert g^\circ)=0$ for all $ (\xi,\eta)\in\mathcal{N}$.

Then the log-likelihood gradient is $ \nabla\ell(\mathbf{0}\vert g^\circ)=\mathbf{F}_\mathrm{cn}(g^\circ)\equiv
\mathbf{F}(g^\circ)-\mathbf{P}_{0}$ and the covariance matrix $ \mathbf{C}\{\mathbf{F}(g)\vert\mathbf{0}\}$ is closely approximated by the scaled diagonal covariance matrix $ \mathbf{C}_\mathrm{ind}$ for the independent co-occurrence distributions: $ \mathbf{C}\{\mathbf{F}(g)\vert\mathbf{0}\}\approx\mathbf{C}_\mathrm{ind}$ where $ \mathbf{C}_\mathrm{ind} = \frac{1}{Q^2}\left(1 -
\frac{1}{Q^2}\right)\mathsf{Diag} \left[ \rho_{\xi,\eta} \mathbf{u}:
(\xi,\eta)\in\mathcal{N} \right] $.

PROPOSITION A.0.2   The first approximation of the potential MLE in the vicinity of zero point $ \mathbf{V}_0 = \mathbf{0}$ is

$\displaystyle \mathbf{V}^\ast=\frac{ \mathbf{F}_\mathrm{cn}^\mathsf{T}(g^\circ)...
...rc) }\mathbf{F}_\mathrm{cn}(g^\circ) \approx Q^2\mathbf{F}_\mathrm{cn}(g^\circ)$ (A.0.4)

Proof. In line with Eq. (A.0.3), the maximising factor $ \lambda^\ast $ is equal to

$\displaystyle \frac{ \mathbf{F}_\mathrm{cn}^\mathsf{T}(g^\circ)
\mathbf{F}_\mat...
...\in\mathcal{Q}^2}\left(f_{\xi,\eta}(q,s\vert g^\circ)-\frac{1}{Q^2}\right)^2
}
$

If $ Q\gg 1$ and the lattice $ \mathbf{R}$ is sufficiently large to assume that $ \rho_{\xi,\eta}\approx 1$ for all clique families, it is simplified to $ \lambda^\ast\approx
Q^2$. $ \qedsymbol$



Subsections
next up previous
Next: Actual vs. Estimated Potentials Up: Texture Analysis and Synthesis Previous: Conclusion
dzho002 2006-02-22