next up previous
Next: Auto-normal Models Up: Auto-models Previous: Auto-models

Auto-binomial Model

assumes the conditional probability $ Pr({g}_i \vert {g}^i)$ of a pixel is a binomial distribution. That is, a pixel $ {g}_i$, taking values from the set $ \mathbf{Q}$, is binomial distributed over $ Q$-times independent random trials, with the probability of success, $ q$, being,

$\displaystyle q=\frac{\exp\{\alpha_i+\sum_{j \in \mathcal{N}_i
}\beta_{ij}{{g}_j}\}}{1+\exp\{\alpha_i+\sum_{j \in \mathcal{N}_i
}\beta_{ij}{{g}_j}\}}$

.

Hence, the conditional distribution is given by,

$\displaystyle Pr({g}_i \mid {g}^i)=\mathcal{C}_{Q}^{{g}_i}q^{{g}_i}(1-q)^{Q-{g}_i}$ (5.2.17)

By Markov-Gibbs equivalence, the Gibbs distribution is specified by the energy function,

$\displaystyle E({g})=\sum_{i \in \mathbf{R}} \ln \left(\begin{array}{c}{{g}_i}\...
...\in \mathbf{R}} {\alpha}_i{{g}_i}+ \sum_{\{i,j\} \in C}\beta_{ij}{{g}_i}{{g}_j}$ (5.2.18)

In an auto-binomial model, model parameters are the sets $ \{\alpha_i\}$ and $ \{\beta_{ij}\}$. The set $ \{\alpha_i\}$ has a fixed size, but the size of the set $ \{\beta_{ij}\}$ is related to the order of the selected neighbourhood system. To simplify parameter estimation, one could reduce the number of parameters, for instance, by assuming a uniform value $ {\alpha}$ for all the sites and using only the simplest neighbourhood system, i.e  4- or 8-nearest neighbours.



dzho002 2006-02-22