References
[1] M. Agrawal, N. Kayal, N. Saxena. Primes is in P, http://www.cse.iitk.ac.in/news/primality.pdf.


[2] D. Z. Albert. On quantum-mechanical automata, Physical Letters, A 98 (1983), 249–252.


[3] I. Antoniou, C.S. Calude, M. J. Dinneen (eds.). Unconventional Models of Computation (UMC’2K), Springer Verlag, London, 2000.


[4] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margoluous, P. W. Schnor, T. Sleator, J. A. Smolin, H. Weinfurter. Elementary gates of quantum computation, Physical Review, A 52 (1995), 3457–3467.


[5] A. Barenco. Quantum Computation, PhD Thesis, Oxford University, 1996.


[6] J. Barrow. Impossibility–The Limits of Science and the Science of Limits, Oxford University Press, Oxford, 1998.


[7] D. Beckman, A. N. Shari, S. Devabhaktuni, J. Preskill. Efficient networks for quantum factoring, Physical Review A, 54 (1996), 1034–1063.


[8] J. S. Bell. On the Einstein Podolsky Rosen paradox, Physics, 1 (1964), 195–200. Reprinted in [138], 403–408, and in [9], 14–21.


[9] J. S. Bell. Speakable and Unspeakable in Quantum Mechanics, Cambridge University Press, Cambridge, 1987.

[10] P. Benioff. The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines, Journal of Statistical Physics, 22 (1980), 563–591.


[11] C. H. Bennett. Logical reversibility of computation, IBM J. Res. Dev., 17 (1973), 525–532.


[12] C. H. Bennett. The thermodynamics of computation, International Journal of Theoretical Physics, 21 (1982), 905–940.


[13] C. H. Bennett. Demons, engines and the second law, Scientific American, November (1987), 108–116.


[14] C. H. Bennett. Notes on the history of reversible computation, IBM J. Res. Dev., 32 (1988), 281–288.


[15] C. H. Bennett. Time/space trade-offs for reversible computation, SIAM J. on Computing, 18 (1989), 766–776.


[16] C. H. Bennett, E. Bernstein, G. Brassard, U. Vazirani. Strengths and weaknesses of quantum computing, quant-ph/9701001.
[17] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, W. K. Wootters. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett., 70 (1993), 1895–1898.


[18] C. H. Bennett, R. Landauer. The fundamental physical limits of computation, Scientific American, July (1985), 48–56.


[19] G. P. Berman, G. D. Doolen, R. Mainieri, V. I. Tsifrinovich. Introduction to Quantum Computers, World Scientific, Singapore, 1993.


[20] G. Birkhoff, J. von Neumann. The logic of quantum mechanics, Annals of Mathematics, 37(4) (1936), 823–843.

[21] D. Bouwmeester, J.-W. Pan, H. Weinfurter, A. Zeilinger. High-fidelity teleportation of independent qubits, quant-ph/9910043.


[22] G. Brassard. Searching a quantum phone book, Science, 31 January (1997), 627–628.


[23] W. Brauer, Automatentheorie, Teubner, Stuttgart, 1984.


[24] M. Brooks (ed.). Quantum Computing and Communications, Springer-Verlag, Berlin, 1999.


[25] V. Buzek, S. L. Braunstein, M. Hillery, D. Bru. Quantum copying: a network, Physical Review A, 56,5 (1997), 3446–3452.


[26] C. Calude. Theories of Computational Complexity, North-Holland, Amsterdam, 1988.


[27] C. Calude. Information and Randomness. An Algorithmic Perspective, 2nd Edition, Revised and Extended, Springer Verlag, Berlin, 2002.


[28] C. S. Calude, E. Calude, K. Svozil, S. Yu. Physical versus computational complementarity I, International Journal of Theoretical Physics, 36, 7 (1997), 1495–1523.


[29] C. S. Calude, E. Calude, K. Svozil. Quantum correlations conundrum: An automaton-theoretic approach, in G. Paun, ed., Recent Topics in Mathematical and Computational Linguistics, Romanian Academy Publishing Company, Bucharest, 2000, 55–67.


[30] C. S. Calude, J. L. Casti. Parallel thinking, Nature 392, 9 April (1998), 549–551.

[31] C. S. Calude, J. L. Casti. Silicon, molecules, or photons? Complexity, 4, 1 (1998), 13.


[32] C. S. Calude, J. L. Casti (eds.). Unconventional Models of Computation, Complexity, Vol. 4, 1, (1998), 13–42. (special issue)


[33] C. S. Calude, J. Casti, M. J. Dinneen (eds.). Unconventional Models of Computation, Springer-Verlag, Singapore, 1998.


[34] C. S. Calude, G. J. Chaitin. Randomness everywhere, Nature, 400, 22 July (1999), 319–320.

[35] C.S. Calude, M. J. Dinneen, F. Peper (eds.). Unconventional Models of Computation (UMC’02), Lecture Notes Comput. Sci. 2509, Springer Verlag, Heidelberg, 2002.


[36] C. S. Calude, M. J. Dinneen, K. Svozil. Reflections on quantum computing, Complexity, 6, 1 (2000), 35–37.

[37] C. S. Calude, P. H. Hertling, K. Svozil. Embedding quantum universes into classical ones, Foundations of Physics, 29, 3 (1999), 349–379.


[38] C. S. Calude, M. Lipponen. Computational complementarity and sofic shifts, in X. Lin, ed., Theory of Computing 98, Proceedings of the 4th Australasian Theory Symposium, CATS’98, Springer-Verlag, Singapore, 1998, 277–290.


[39] C. S. Calude, G. Paun. Computing with Cells and Atoms, Taylor & Francis Publishers, London, 2001.


[40] C. S. Calude, B. Pavlov. Coins, quantum measurements, and Turing’s barrier, Quantum Information Processing 1, 1–2 (2002), 107–127.


[41] E. Calude, Automata-Theoretic Models for Computational Complementarity, PhD Thesis, The Univ. of Auckland, 1998.


[42] G. J. Chaitin. Information, Randomness and Incompleteness, Papers on Algorithmic Information Theory, World Scientific, Singapore, 1987. (2nd ed., 1990).


[43] G. J. Chaitin. The Limits of Mathematics, Springer-Verlag, Singapore, 1997.


[44] J. F. Clauser, A. Shimony. Bell’s theorem: experimental tests and implications, Rep. Prog. Phys., 41 (1978), 1821–1927.


[45] D. W. Cohen. An Introduction to Hilbert Space and Quantum Logic, Springer-Verlag, New York, 1989.


[46] J. H. Conway. Regular Algebra and Finite Machines, Chapman and Hall, London, 1971.

[47] K. De Leeuw, E. F. Moore, C. E. Shannon, N. Shapiro. Computability by probabilistic machines, in C. E. Shannon, J. McCarthy (eds.), Automata Studies, Princeton University Press, Princeton, N.J., 1956, 183–212.


[48] D. Deutsch. Quantum theory, the Church-Turing principle and the universal quantum computer, Proceedings of the Royal Society London, A 400 (1985), 97–119.


[49] D. Deutsch. Quantum computation, Physics World, 5 (1992), 57–61.


[50] D. Deutsch. The Fabric of Reality, Allen Lane, Penguin Press, 1997.


[51] D. Deutsch, A. Barenco, A. Ekert. Universality in quantum computation, Proceedings of the Royal Society of London, A 449 (1995), 669–677.


[52] D. Deutsch, R. Josza. Rapid solution of problems by quantum computation, Proceedings of the Royal Society London, A 439 (1992), 553–558.


[53] D. Dieks. Communication by EPR devices, Physical Letters A, 92 (1982), 271–272.

[54] P. Dirac. The Principles of Quantum Mechanics, 4th ed., Oxford University Press, Oxford, 1958.


[55] A. Einstein, B. Podolsky, N. Rosen. Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47 (1935), 777–780. Reprinted in [138], 138–141.


[56] A. Ekert, R. Jozsa. Shor’s quantum algorithm for factoring numbers, Rev. Modern Physics 68 (3), (1996), 733–753.

[57] G. Etesi, I. Németi. Non-Turing computations via Malament-Hogarth space-times, International Journal of Theoretical Physics 41 (2002), 341–370. Los Alamos preprint archive http: //arXiv:gr-qc/0104023, v1, 9 April 2001.


[58] R. P. Feynman. Simulating physics with computers, International Journal of Theoretical Physics, 21 (1982), 467–488.


[59] R. P. Feynman. Quantum mechanical computers, Optics News 11 (1985), 11–20.


[60] R. P. Feynman, in D. H. Gilbert (eds.). Miniaturization, Reinhold, New York, 1961, 282–296.


[61] Feynman Lectures on Computation, J. G. Hey and R. W. Allen, eds., Addison-Wesley, Reading, Massachusetts, 1996.

[62] D. Finkelstein, S. R. Finkelstein. Computational complementarity, International Journal of Theoretical Physics, 22, 8 (1983), 753–779.


[63] E. Fredkin, T. Toffoli. Conservative logic, International Journal of Theoretical Physics, 21 (1982), 219–253.


[64] D. M. Greenberger, M. A. Horne, A. Zeilinger. Going beyond Bell’s theorem, in M. Kafatos (ed.). Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, Kluwer Academic Publishers, Dordrecht, 1989, 73–76.


[65] D. M. Greenberger, A. YaSin. “Haunted” measurements in quantum theory, Foundation of Physics, 19, 6 (1989), 679–704.


[66] L. K. Grover. A fast quantum mechanical algorithm for database search, Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, 1996, 212–219.


[67] J. Gruska. Quantum Computing, McGraw-Hill, London, 1999.


[68] G. H. Hardy, E. M. Wright. An Introduction to the Theory of Numbers, Oxford University Press, Oxford (4th edition), 1965.


[69] H. Havlicek, K. Svozil. Density conditions for quantum propositions, Journal of Mathematical Physics, 37(11) (1996), 5337–5341.


[70] T. J. Herzog, P. G. Kwiat, H. Weinfurter, A. Zeilinger. Complementarity and the quantum eraser, Physical Review Letters, 75, 17 (1995), 3034–3037.


[71] J. G. Hey (ed.). Feynman and Computation. Exploring the Limits of Computers, Perseus Books, Reading, Massachusetts, 1999.


[72] M. Hirvensalo. An introduction to quantum computing, Bulletin of the EATCS, 66 (1998), 100–121.


[73] M. Hogarth. Predicting the future in relativistic spacetimes, Studies in History and Philosophy of Science. Studies in History and Philosophy of Modern Physics 24, 5 (1993), 721–739.


[74] T. Hogg. Highly structured searches with quantum computers, Physical Review Letters, 80 (1998) 2473–2476.

[75] R. J. Hughes. Cryptography, quantum computation and trapped ions, Technical Report LA-UR-97-4986, Los Alamos National Laboratory, 1997.


[76] J. Jarett. On the physical significance of the locality condition in Bell argument, Noûs, 18 (1984), 569–589.


[77] E. Jurvanen, M. Lipponen. Distinguishability, simulation and universality of Moore tree automata, Fundamenta Informaticae, 34 (1999), 1–13.


[78] G. Kalmbach. Orthomodular Lattices, Academic Press, New York, 1983.

[79] T.D. Kieu. Quantum algorithm for the Hilbert’s tenth problem, Los Alamos preprint archive http://arXiv:quant-ph/0110136, v2, 9 November 2001.


[80] S. Kochen, E. P. Specker. The problem of hidden variables in quantum mechanics, Journal of Mathematics and Mechanics, 17(1) (1967), 59–87. Reprinted in [126], 235–263.


[81] R. Landauer. Irreversibility and heat generation in the computing process, IBM J. Res. Develop., 5 (1961), 183–191.


[82] R. Landauer. Computation, measurement, communication and energy dissipation, in S. Haykin (ed.). Selected Topics in Signal Processing, Prentice Hall, Englewood Cliffs, New Jersey, 1989, 18.


[83] R. Landauer. Information is physical, Physics Today, _44 (1991), 23–29.


[84] R. Landauer. Information is inevitably physical, in [71 ], 76–92.


[85] R. Landauer. Information is physical, but slippery, in [24 ], 59–62.


[86] H. S. Leff, A. F. Rex. Maxwell’s Demon: Entropy, Information, Computing, Princeton University Press, Princeton, 1990.


[87] A. Lenstra, H. Lenstra (eds.). The Development of the Number Field Sieve, Springer-Verlag, New York, 1993.


[88] S. Lloyd. Almost any quantum gate is universal. Phys. Rev. Letters, 75 (1995), 346–349.

[89] S. Lloyd. Quantum-mechanical Maxwell’s demon, Phys. Rev., A56 (1997), 3374–3382.


[90] H-K. Lo, H. F. Chau. Is quantum bit commitment really possible? Phys. Rev. Lett., 78 (1997), 3410–3413.


[91] H-K. Lo, T. Spiller, S. Popescu (eds.). Introduction to Quantum Computation and Information, World Scientific, Singapore, 1999.


[92] G. W. Mackey. Quantum mechanics and Hilbert space, Amer. Math. Monthly, Supplement, 64 (1957), 45–57.


[93] C. Macchiavello, G. M. Palma, A. Zeilinger (eds.). Quantum Computation and Quantum Information Theory, Collected Papers and Notes, World Scientific, Singapore, 1999.


[94] J. C. Maxwell. Theory of Heat, Longman’s, Green, & Co., London, 1985, 328–329.

[95] D. Mayers. Unconditionally secure quantum bit commitment is impossible, Phys. Rev. Lett., 78 (1997), 3414–3417.

[96] Z. Meglicki. Introduction to Quantum Computing (M743), Indiana University, April 2, 2002, 264 pp.


[97] N. D. Mermin. Bringing home the atomic world: Quantum mysteries for anybody, American Journal of Physics, 49 (1981), 940–943.


[98] N. D. Mermin. Quantum mysteries revisited, American Journal of Physics, 58 (1990), 731–734.


[99] N. D. Mermin. Hidden variables and the two theorems of John Bell, Reviews of Modern Physics, 65 (1993), 803–815.


[100] A. Messiah. Quantum Mechanics, Volume 1, North-Holland, Amsterdam, 1961.


[101] G. Milburn. Quantum optical Fredkin gate, Physical Review, 62 (1989), 2124–2127.


[102] G. Milburn. The Feynamn Processor. An Introduction to Quantum Computation, Allen & Unwin, St. Leonards, 1998.


[103] G. Mitchison, R. Josza. Counterfactual computation, quant-ph/9907007.


[104] E. F. Moore. Gedanken-experiments on sequential machines, in C. E. Shannon and J. McCarthy (eds.). Automata Studies, Princeton University Press, Princeton, 1956, 128–153.


[105] M. A. Nielsen, I. L. Chuang. Quantum Computation and Quantum Information, Cambridge University Press, 2002, 2nd printing.


[106] P. Odifreddi. Classical Recursion Theory, North-Holland, Amsterdam, New York, Vol. 1, 1989, Vol. 2, 1999.

[107] P. Odifreddi. Indiscrete applications of discrete mathematics, in D. S. Bridges, C. S. Calude, J. Gibbons, S. Reeves, I. Witten (eds.). Combinatorics, Complexity, Logic, Springer-Verlag, Singapore, 1996, 52–65.


[108] M. Ohya, I. V. Volovich. A new quantum algorithm for NP-complete problems, CDMTCS Research Report 194 (2002), 10 pp.


[109] A. Peres. Einstein, G ödel, Bohr, Foundations of Physics, 15 (1985), 201–205.


[110] A. Peres. Quantum Theory: Concepts and Methods, Kluwer Academic Publishers, Dordrecht, 1993.


[111] I. Prigogine. From Being to Becoming, W. H. Freeman, San Francisco, 1980.


[112] P. Pták, S. Pulmannová. Orthomodular Structures as Quantum Logics, Kluwer Academic Publishers, Dordrecht, 1991.

[113] M. O. Rabin. Probabilistic algorithms, in [135], 21–39.

[114] T. Rado. On non-computable functions, Bell System Technical Journal 41 (1962), 877–884.


[115] D. J. Foulis, C. H. Randall. Operational statistics. I. Basic concepts, Journal of Mathematical Physics, 13 (1972), 1667–1675.


[116] H. Reichenbach. The Direction of Time, University of California Press, LA, 1956.


[117] E. Rieffel, W. Polak. An introduction to quantum computing for non-physicists, quant-ph/9809016.


[118] R. Rivest, A. Shamir, L. Adleman. A method for obtaining digital signatures and public key cryptosystems, Communications of ACM, 21 (1978), 120–126.


[119] A. Salomaa. Public-Key Cryptography, Springer-Verlag, Berlin, 1996.


[120] B. Schumaker. Quantum coding, Physical Review A, 51, 4 (1995), 2738–2747.


[121] C. E. Shannon, Computers and automata, Proceedings of the I. R. E. 41 (1953), 1235–1241.


[122] P. W. Shor. Algorithms for quantum computation: discrete log and factoring, Proceedings of the 35th IEEE Annual Symposium on Foundations of Computer Science, 1994, 124–134.


[123] H. T. Siegelmann. Computation beyond the Turing limit, Science, 268 (April 1995), 545–548.


[124] H. T. Siegelmann. Neural Networks and Analog Computation: Beyond the Turing Limit, Birkhauser, Boston, MA, 1999.


[125] E. Specker. Die Logik nicht gleichzeitig entscheidbarer Aussagen, Dialectica, 14 (1960), 175–182. Reprinted in [126], 175–182.


[126] E. Specker. Selecta, Birkhäuser Verlag, Basel, 1990.

[127] A. Steane. Quantum computing, quant-ph/9708022.


[128] K. Svozil. Randomness & Undecidability in Physics, World Scientific, Singapore, 1993.


[129] K. Svozil. Quantum Logic, Springer-Verlag, Singapore, 1998.


[130] K. Svozil. The Church-Turing Thesis as a guiding principle for physics, in [33], 371–385.

[131] K Svozil. One-to-one, Complexity, 4 (1) (1998), 25–29.


[132] L. Szilard. On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings, Zeitschrift für Physics, 53 (1929), 840–856.


[133] M. Tegmark, J. A. Wheeler. 100 years of quantum mysteries, Scientific American February (2001), 68–75.

[134] T. Toffoli, N. Margolus. Cellular Automata Machines, MIT Press, Cambridge, MA, 1987.

[135] J. Traub. Algorithms and Complexity: New Directions and Results, Academic Press, London, 1976.


[136] A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem, Proc. London Math. Soc., Ser. 2, 42 (1936), 230–265; a correction, 43 (1936), 544–546.


[137] H. Weyl. Philosophy of Mathematics and Natural Science, Princeton University Press, Princeton, 1949.


[138] J. A. Wheeler, W. H. Zurek. Quantum Theory and Measurement, Princeton University Press, Princeton, 1983.


[139] U. Vazirani. Quantum computing, 1997, (http://www.cs.berkeley.edu/vazirani.)


[140] C. P. Williams, S. H. Clearwater. Explorations in Quantum Computing, Springer-Verlag, New York, 1997.

[141] C. P. Williams, S. H. Clearwater. Ultimate Zero and One: Computing at the Quantum Frontier, Springer-Verlag, Heidelberg, 2000.


[142] W. K. Wooters, W. H. Zurek. A single quantum cannot be cloned, Nature, 299 (1992), 802–803.


[143] A. Yao. Quantum circuit complexity, Proceedings of the 34th IEEE Symposium on Foundations of Computer Science (FOCS), IEEE Computer Science Press, Los Alamitos, 1993, 352–260.


[144] C. Zalka. Grover’s quantum searching algorithm is optimal, quant-ph/9711070.


[145] W. H. Zurek. Algorithmic randomness, physical entropy, measurements, and the Demon of choice, in [71], 393–410.