libstdc++
|
00001 // Set implementation -*- C++ -*- 00002 00003 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 00004 // 2011 Free Software Foundation, Inc. 00005 // 00006 // This file is part of the GNU ISO C++ Library. This library is free 00007 // software; you can redistribute it and/or modify it under the 00008 // terms of the GNU General Public License as published by the 00009 // Free Software Foundation; either version 3, or (at your option) 00010 // any later version. 00011 00012 // This library is distributed in the hope that it will be useful, 00013 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00014 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00015 // GNU General Public License for more details. 00016 00017 // Under Section 7 of GPL version 3, you are granted additional 00018 // permissions described in the GCC Runtime Library Exception, version 00019 // 3.1, as published by the Free Software Foundation. 00020 00021 // You should have received a copy of the GNU General Public License and 00022 // a copy of the GCC Runtime Library Exception along with this program; 00023 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 00024 // <http://www.gnu.org/licenses/>. 00025 00026 /* 00027 * 00028 * Copyright (c) 1994 00029 * Hewlett-Packard Company 00030 * 00031 * Permission to use, copy, modify, distribute and sell this software 00032 * and its documentation for any purpose is hereby granted without fee, 00033 * provided that the above copyright notice appear in all copies and 00034 * that both that copyright notice and this permission notice appear 00035 * in supporting documentation. Hewlett-Packard Company makes no 00036 * representations about the suitability of this software for any 00037 * purpose. It is provided "as is" without express or implied warranty. 00038 * 00039 * 00040 * Copyright (c) 1996,1997 00041 * Silicon Graphics Computer Systems, Inc. 00042 * 00043 * Permission to use, copy, modify, distribute and sell this software 00044 * and its documentation for any purpose is hereby granted without fee, 00045 * provided that the above copyright notice appear in all copies and 00046 * that both that copyright notice and this permission notice appear 00047 * in supporting documentation. Silicon Graphics makes no 00048 * representations about the suitability of this software for any 00049 * purpose. It is provided "as is" without express or implied warranty. 00050 */ 00051 00052 /** @file bits/stl_set.h 00053 * This is an internal header file, included by other library headers. 00054 * Do not attempt to use it directly. @headername{set} 00055 */ 00056 00057 #ifndef _STL_SET_H 00058 #define _STL_SET_H 1 00059 00060 #include <bits/concept_check.h> 00061 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00062 #include <initializer_list> 00063 #endif 00064 00065 namespace std _GLIBCXX_VISIBILITY(default) 00066 { 00067 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER 00068 00069 /** 00070 * @brief A standard container made up of unique keys, which can be 00071 * retrieved in logarithmic time. 00072 * 00073 * @ingroup associative_containers 00074 * 00075 * Meets the requirements of a <a href="tables.html#65">container</a>, a 00076 * <a href="tables.html#66">reversible container</a>, and an 00077 * <a href="tables.html#69">associative container</a> (using unique keys). 00078 * 00079 * Sets support bidirectional iterators. 00080 * 00081 * @tparam _Key Type of key objects. 00082 * @tparam _Compare Comparison function object type, defaults to less<Key>. 00083 * @tparam _Alloc Allocator type, defaults to allocator<Key>. 00084 * 00085 * The private tree data is declared exactly the same way for set and 00086 * multiset; the distinction is made entirely in how the tree functions are 00087 * called (*_unique versus *_equal, same as the standard). 00088 */ 00089 template<typename _Key, typename _Compare = std::less<_Key>, 00090 typename _Alloc = std::allocator<_Key> > 00091 class set 00092 { 00093 // concept requirements 00094 typedef typename _Alloc::value_type _Alloc_value_type; 00095 __glibcxx_class_requires(_Key, _SGIAssignableConcept) 00096 __glibcxx_class_requires4(_Compare, bool, _Key, _Key, 00097 _BinaryFunctionConcept) 00098 __glibcxx_class_requires2(_Key, _Alloc_value_type, _SameTypeConcept) 00099 00100 public: 00101 // typedefs: 00102 //@{ 00103 /// Public typedefs. 00104 typedef _Key key_type; 00105 typedef _Key value_type; 00106 typedef _Compare key_compare; 00107 typedef _Compare value_compare; 00108 typedef _Alloc allocator_type; 00109 //@} 00110 00111 private: 00112 typedef typename _Alloc::template rebind<_Key>::other _Key_alloc_type; 00113 00114 typedef _Rb_tree<key_type, value_type, _Identity<value_type>, 00115 key_compare, _Key_alloc_type> _Rep_type; 00116 _Rep_type _M_t; // Red-black tree representing set. 00117 00118 public: 00119 //@{ 00120 /// Iterator-related typedefs. 00121 typedef typename _Key_alloc_type::pointer pointer; 00122 typedef typename _Key_alloc_type::const_pointer const_pointer; 00123 typedef typename _Key_alloc_type::reference reference; 00124 typedef typename _Key_alloc_type::const_reference const_reference; 00125 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00126 // DR 103. set::iterator is required to be modifiable, 00127 // but this allows modification of keys. 00128 typedef typename _Rep_type::const_iterator iterator; 00129 typedef typename _Rep_type::const_iterator const_iterator; 00130 typedef typename _Rep_type::const_reverse_iterator reverse_iterator; 00131 typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator; 00132 typedef typename _Rep_type::size_type size_type; 00133 typedef typename _Rep_type::difference_type difference_type; 00134 //@} 00135 00136 // allocation/deallocation 00137 /** 00138 * @brief Default constructor creates no elements. 00139 */ 00140 set() 00141 : _M_t() { } 00142 00143 /** 00144 * @brief Creates a %set with no elements. 00145 * @param __comp Comparator to use. 00146 * @param __a An allocator object. 00147 */ 00148 explicit 00149 set(const _Compare& __comp, 00150 const allocator_type& __a = allocator_type()) 00151 : _M_t(__comp, _Key_alloc_type(__a)) { } 00152 00153 /** 00154 * @brief Builds a %set from a range. 00155 * @param __first An input iterator. 00156 * @param __last An input iterator. 00157 * 00158 * Create a %set consisting of copies of the elements from 00159 * [__first,__last). This is linear in N if the range is 00160 * already sorted, and NlogN otherwise (where N is 00161 * distance(__first,__last)). 00162 */ 00163 template<typename _InputIterator> 00164 set(_InputIterator __first, _InputIterator __last) 00165 : _M_t() 00166 { _M_t._M_insert_unique(__first, __last); } 00167 00168 /** 00169 * @brief Builds a %set from a range. 00170 * @param __first An input iterator. 00171 * @param __last An input iterator. 00172 * @param __comp A comparison functor. 00173 * @param __a An allocator object. 00174 * 00175 * Create a %set consisting of copies of the elements from 00176 * [__first,__last). This is linear in N if the range is 00177 * already sorted, and NlogN otherwise (where N is 00178 * distance(__first,__last)). 00179 */ 00180 template<typename _InputIterator> 00181 set(_InputIterator __first, _InputIterator __last, 00182 const _Compare& __comp, 00183 const allocator_type& __a = allocator_type()) 00184 : _M_t(__comp, _Key_alloc_type(__a)) 00185 { _M_t._M_insert_unique(__first, __last); } 00186 00187 /** 00188 * @brief %Set copy constructor. 00189 * @param __x A %set of identical element and allocator types. 00190 * 00191 * The newly-created %set uses a copy of the allocation object used 00192 * by @a __x. 00193 */ 00194 set(const set& __x) 00195 : _M_t(__x._M_t) { } 00196 00197 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00198 /** 00199 * @brief %Set move constructor 00200 * @param __x A %set of identical element and allocator types. 00201 * 00202 * The newly-created %set contains the exact contents of @a x. 00203 * The contents of @a x are a valid, but unspecified %set. 00204 */ 00205 set(set&& __x) 00206 noexcept(is_nothrow_copy_constructible<_Compare>::value) 00207 : _M_t(std::move(__x._M_t)) { } 00208 00209 /** 00210 * @brief Builds a %set from an initializer_list. 00211 * @param __l An initializer_list. 00212 * @param __comp A comparison functor. 00213 * @param __a An allocator object. 00214 * 00215 * Create a %set consisting of copies of the elements in the list. 00216 * This is linear in N if the list is already sorted, and NlogN 00217 * otherwise (where N is @a __l.size()). 00218 */ 00219 set(initializer_list<value_type> __l, 00220 const _Compare& __comp = _Compare(), 00221 const allocator_type& __a = allocator_type()) 00222 : _M_t(__comp, _Key_alloc_type(__a)) 00223 { _M_t._M_insert_unique(__l.begin(), __l.end()); } 00224 #endif 00225 00226 /** 00227 * @brief %Set assignment operator. 00228 * @param __x A %set of identical element and allocator types. 00229 * 00230 * All the elements of @a __x are copied, but unlike the copy 00231 * constructor, the allocator object is not copied. 00232 */ 00233 set& 00234 operator=(const set& __x) 00235 { 00236 _M_t = __x._M_t; 00237 return *this; 00238 } 00239 00240 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00241 /** 00242 * @brief %Set move assignment operator. 00243 * @param __x A %set of identical element and allocator types. 00244 * 00245 * The contents of @a __x are moved into this %set (without copying). 00246 * @a __x is a valid, but unspecified %set. 00247 */ 00248 set& 00249 operator=(set&& __x) 00250 { 00251 // NB: DR 1204. 00252 // NB: DR 675. 00253 this->clear(); 00254 this->swap(__x); 00255 return *this; 00256 } 00257 00258 /** 00259 * @brief %Set list assignment operator. 00260 * @param __l An initializer_list. 00261 * 00262 * This function fills a %set with copies of the elements in the 00263 * initializer list @a __l. 00264 * 00265 * Note that the assignment completely changes the %set and 00266 * that the resulting %set's size is the same as the number 00267 * of elements assigned. Old data may be lost. 00268 */ 00269 set& 00270 operator=(initializer_list<value_type> __l) 00271 { 00272 this->clear(); 00273 this->insert(__l.begin(), __l.end()); 00274 return *this; 00275 } 00276 #endif 00277 00278 // accessors: 00279 00280 /// Returns the comparison object with which the %set was constructed. 00281 key_compare 00282 key_comp() const 00283 { return _M_t.key_comp(); } 00284 /// Returns the comparison object with which the %set was constructed. 00285 value_compare 00286 value_comp() const 00287 { return _M_t.key_comp(); } 00288 /// Returns the allocator object with which the %set was constructed. 00289 allocator_type 00290 get_allocator() const _GLIBCXX_NOEXCEPT 00291 { return allocator_type(_M_t.get_allocator()); } 00292 00293 /** 00294 * Returns a read-only (constant) iterator that points to the first 00295 * element in the %set. Iteration is done in ascending order according 00296 * to the keys. 00297 */ 00298 iterator 00299 begin() const _GLIBCXX_NOEXCEPT 00300 { return _M_t.begin(); } 00301 00302 /** 00303 * Returns a read-only (constant) iterator that points one past the last 00304 * element in the %set. Iteration is done in ascending order according 00305 * to the keys. 00306 */ 00307 iterator 00308 end() const _GLIBCXX_NOEXCEPT 00309 { return _M_t.end(); } 00310 00311 /** 00312 * Returns a read-only (constant) iterator that points to the last 00313 * element in the %set. Iteration is done in descending order according 00314 * to the keys. 00315 */ 00316 reverse_iterator 00317 rbegin() const _GLIBCXX_NOEXCEPT 00318 { return _M_t.rbegin(); } 00319 00320 /** 00321 * Returns a read-only (constant) reverse iterator that points to the 00322 * last pair in the %set. Iteration is done in descending order 00323 * according to the keys. 00324 */ 00325 reverse_iterator 00326 rend() const _GLIBCXX_NOEXCEPT 00327 { return _M_t.rend(); } 00328 00329 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00330 /** 00331 * Returns a read-only (constant) iterator that points to the first 00332 * element in the %set. Iteration is done in ascending order according 00333 * to the keys. 00334 */ 00335 iterator 00336 cbegin() const noexcept 00337 { return _M_t.begin(); } 00338 00339 /** 00340 * Returns a read-only (constant) iterator that points one past the last 00341 * element in the %set. Iteration is done in ascending order according 00342 * to the keys. 00343 */ 00344 iterator 00345 cend() const noexcept 00346 { return _M_t.end(); } 00347 00348 /** 00349 * Returns a read-only (constant) iterator that points to the last 00350 * element in the %set. Iteration is done in descending order according 00351 * to the keys. 00352 */ 00353 reverse_iterator 00354 crbegin() const noexcept 00355 { return _M_t.rbegin(); } 00356 00357 /** 00358 * Returns a read-only (constant) reverse iterator that points to the 00359 * last pair in the %set. Iteration is done in descending order 00360 * according to the keys. 00361 */ 00362 reverse_iterator 00363 crend() const noexcept 00364 { return _M_t.rend(); } 00365 #endif 00366 00367 /// Returns true if the %set is empty. 00368 bool 00369 empty() const _GLIBCXX_NOEXCEPT 00370 { return _M_t.empty(); } 00371 00372 /// Returns the size of the %set. 00373 size_type 00374 size() const _GLIBCXX_NOEXCEPT 00375 { return _M_t.size(); } 00376 00377 /// Returns the maximum size of the %set. 00378 size_type 00379 max_size() const _GLIBCXX_NOEXCEPT 00380 { return _M_t.max_size(); } 00381 00382 /** 00383 * @brief Swaps data with another %set. 00384 * @param __x A %set of the same element and allocator types. 00385 * 00386 * This exchanges the elements between two sets in constant 00387 * time. (It is only swapping a pointer, an integer, and an 00388 * instance of the @c Compare type (which itself is often 00389 * stateless and empty), so it should be quite fast.) Note 00390 * that the global std::swap() function is specialized such 00391 * that std::swap(s1,s2) will feed to this function. 00392 */ 00393 void 00394 swap(set& __x) 00395 { _M_t.swap(__x._M_t); } 00396 00397 // insert/erase 00398 /** 00399 * @brief Attempts to insert an element into the %set. 00400 * @param __x Element to be inserted. 00401 * @return A pair, of which the first element is an iterator that points 00402 * to the possibly inserted element, and the second is a bool 00403 * that is true if the element was actually inserted. 00404 * 00405 * This function attempts to insert an element into the %set. A %set 00406 * relies on unique keys and thus an element is only inserted if it is 00407 * not already present in the %set. 00408 * 00409 * Insertion requires logarithmic time. 00410 */ 00411 std::pair<iterator, bool> 00412 insert(const value_type& __x) 00413 { 00414 std::pair<typename _Rep_type::iterator, bool> __p = 00415 _M_t._M_insert_unique(__x); 00416 return std::pair<iterator, bool>(__p.first, __p.second); 00417 } 00418 00419 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00420 std::pair<iterator, bool> 00421 insert(value_type&& __x) 00422 { 00423 std::pair<typename _Rep_type::iterator, bool> __p = 00424 _M_t._M_insert_unique(std::move(__x)); 00425 return std::pair<iterator, bool>(__p.first, __p.second); 00426 } 00427 #endif 00428 00429 /** 00430 * @brief Attempts to insert an element into the %set. 00431 * @param __position An iterator that serves as a hint as to where the 00432 * element should be inserted. 00433 * @param __x Element to be inserted. 00434 * @return An iterator that points to the element with key of 00435 * @a __x (may or may not be the element passed in). 00436 * 00437 * This function is not concerned about whether the insertion took place, 00438 * and thus does not return a boolean like the single-argument insert() 00439 * does. Note that the first parameter is only a hint and can 00440 * potentially improve the performance of the insertion process. A bad 00441 * hint would cause no gains in efficiency. 00442 * 00443 * For more on @a hinting, see: 00444 * http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html 00445 * 00446 * Insertion requires logarithmic time (if the hint is not taken). 00447 */ 00448 iterator 00449 insert(const_iterator __position, const value_type& __x) 00450 { return _M_t._M_insert_unique_(__position, __x); } 00451 00452 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00453 iterator 00454 insert(const_iterator __position, value_type&& __x) 00455 { return _M_t._M_insert_unique_(__position, std::move(__x)); } 00456 #endif 00457 00458 /** 00459 * @brief A template function that attempts to insert a range 00460 * of elements. 00461 * @param __first Iterator pointing to the start of the range to be 00462 * inserted. 00463 * @param __last Iterator pointing to the end of the range. 00464 * 00465 * Complexity similar to that of the range constructor. 00466 */ 00467 template<typename _InputIterator> 00468 void 00469 insert(_InputIterator __first, _InputIterator __last) 00470 { _M_t._M_insert_unique(__first, __last); } 00471 00472 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00473 /** 00474 * @brief Attempts to insert a list of elements into the %set. 00475 * @param __l A std::initializer_list<value_type> of elements 00476 * to be inserted. 00477 * 00478 * Complexity similar to that of the range constructor. 00479 */ 00480 void 00481 insert(initializer_list<value_type> __l) 00482 { this->insert(__l.begin(), __l.end()); } 00483 #endif 00484 00485 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00486 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00487 // DR 130. Associative erase should return an iterator. 00488 /** 00489 * @brief Erases an element from a %set. 00490 * @param __position An iterator pointing to the element to be erased. 00491 * @return An iterator pointing to the element immediately following 00492 * @a __position prior to the element being erased. If no such 00493 * element exists, end() is returned. 00494 * 00495 * This function erases an element, pointed to by the given iterator, 00496 * from a %set. Note that this function only erases the element, and 00497 * that if the element is itself a pointer, the pointed-to memory is not 00498 * touched in any way. Managing the pointer is the user's 00499 * responsibility. 00500 */ 00501 iterator 00502 erase(const_iterator __position) 00503 { return _M_t.erase(__position); } 00504 #else 00505 /** 00506 * @brief Erases an element from a %set. 00507 * @param position An iterator pointing to the element to be erased. 00508 * 00509 * This function erases an element, pointed to by the given iterator, 00510 * from a %set. Note that this function only erases the element, and 00511 * that if the element is itself a pointer, the pointed-to memory is not 00512 * touched in any way. Managing the pointer is the user's 00513 * responsibility. 00514 */ 00515 void 00516 erase(iterator __position) 00517 { _M_t.erase(__position); } 00518 #endif 00519 00520 /** 00521 * @brief Erases elements according to the provided key. 00522 * @param __x Key of element to be erased. 00523 * @return The number of elements erased. 00524 * 00525 * This function erases all the elements located by the given key from 00526 * a %set. 00527 * Note that this function only erases the element, and that if 00528 * the element is itself a pointer, the pointed-to memory is not touched 00529 * in any way. Managing the pointer is the user's responsibility. 00530 */ 00531 size_type 00532 erase(const key_type& __x) 00533 { return _M_t.erase(__x); } 00534 00535 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00536 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00537 // DR 130. Associative erase should return an iterator. 00538 /** 00539 * @brief Erases a [__first,__last) range of elements from a %set. 00540 * @param __first Iterator pointing to the start of the range to be 00541 * erased. 00542 00543 * @param __last Iterator pointing to the end of the range to 00544 * be erased. 00545 * @return The iterator @a __last. 00546 * 00547 * This function erases a sequence of elements from a %set. 00548 * Note that this function only erases the element, and that if 00549 * the element is itself a pointer, the pointed-to memory is not touched 00550 * in any way. Managing the pointer is the user's responsibility. 00551 */ 00552 iterator 00553 erase(const_iterator __first, const_iterator __last) 00554 { return _M_t.erase(__first, __last); } 00555 #else 00556 /** 00557 * @brief Erases a [first,last) range of elements from a %set. 00558 * @param __first Iterator pointing to the start of the range to be 00559 * erased. 00560 * @param __last Iterator pointing to the end of the range to 00561 * be erased. 00562 * 00563 * This function erases a sequence of elements from a %set. 00564 * Note that this function only erases the element, and that if 00565 * the element is itself a pointer, the pointed-to memory is not touched 00566 * in any way. Managing the pointer is the user's responsibility. 00567 */ 00568 void 00569 erase(iterator __first, iterator __last) 00570 { _M_t.erase(__first, __last); } 00571 #endif 00572 00573 /** 00574 * Erases all elements in a %set. Note that this function only erases 00575 * the elements, and that if the elements themselves are pointers, the 00576 * pointed-to memory is not touched in any way. Managing the pointer is 00577 * the user's responsibility. 00578 */ 00579 void 00580 clear() _GLIBCXX_NOEXCEPT 00581 { _M_t.clear(); } 00582 00583 // set operations: 00584 00585 /** 00586 * @brief Finds the number of elements. 00587 * @param __x Element to located. 00588 * @return Number of elements with specified key. 00589 * 00590 * This function only makes sense for multisets; for set the result will 00591 * either be 0 (not present) or 1 (present). 00592 */ 00593 size_type 00594 count(const key_type& __x) const 00595 { return _M_t.find(__x) == _M_t.end() ? 0 : 1; } 00596 00597 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00598 // 214. set::find() missing const overload 00599 //@{ 00600 /** 00601 * @brief Tries to locate an element in a %set. 00602 * @param __x Element to be located. 00603 * @return Iterator pointing to sought-after element, or end() if not 00604 * found. 00605 * 00606 * This function takes a key and tries to locate the element with which 00607 * the key matches. If successful the function returns an iterator 00608 * pointing to the sought after element. If unsuccessful it returns the 00609 * past-the-end ( @c end() ) iterator. 00610 */ 00611 iterator 00612 find(const key_type& __x) 00613 { return _M_t.find(__x); } 00614 00615 const_iterator 00616 find(const key_type& __x) const 00617 { return _M_t.find(__x); } 00618 //@} 00619 00620 //@{ 00621 /** 00622 * @brief Finds the beginning of a subsequence matching given key. 00623 * @param __x Key to be located. 00624 * @return Iterator pointing to first element equal to or greater 00625 * than key, or end(). 00626 * 00627 * This function returns the first element of a subsequence of elements 00628 * that matches the given key. If unsuccessful it returns an iterator 00629 * pointing to the first element that has a greater value than given key 00630 * or end() if no such element exists. 00631 */ 00632 iterator 00633 lower_bound(const key_type& __x) 00634 { return _M_t.lower_bound(__x); } 00635 00636 const_iterator 00637 lower_bound(const key_type& __x) const 00638 { return _M_t.lower_bound(__x); } 00639 //@} 00640 00641 //@{ 00642 /** 00643 * @brief Finds the end of a subsequence matching given key. 00644 * @param __x Key to be located. 00645 * @return Iterator pointing to the first element 00646 * greater than key, or end(). 00647 */ 00648 iterator 00649 upper_bound(const key_type& __x) 00650 { return _M_t.upper_bound(__x); } 00651 00652 const_iterator 00653 upper_bound(const key_type& __x) const 00654 { return _M_t.upper_bound(__x); } 00655 //@} 00656 00657 //@{ 00658 /** 00659 * @brief Finds a subsequence matching given key. 00660 * @param __x Key to be located. 00661 * @return Pair of iterators that possibly points to the subsequence 00662 * matching given key. 00663 * 00664 * This function is equivalent to 00665 * @code 00666 * std::make_pair(c.lower_bound(val), 00667 * c.upper_bound(val)) 00668 * @endcode 00669 * (but is faster than making the calls separately). 00670 * 00671 * This function probably only makes sense for multisets. 00672 */ 00673 std::pair<iterator, iterator> 00674 equal_range(const key_type& __x) 00675 { return _M_t.equal_range(__x); } 00676 00677 std::pair<const_iterator, const_iterator> 00678 equal_range(const key_type& __x) const 00679 { return _M_t.equal_range(__x); } 00680 //@} 00681 00682 template<typename _K1, typename _C1, typename _A1> 00683 friend bool 00684 operator==(const set<_K1, _C1, _A1>&, const set<_K1, _C1, _A1>&); 00685 00686 template<typename _K1, typename _C1, typename _A1> 00687 friend bool 00688 operator<(const set<_K1, _C1, _A1>&, const set<_K1, _C1, _A1>&); 00689 }; 00690 00691 00692 /** 00693 * @brief Set equality comparison. 00694 * @param __x A %set. 00695 * @param __y A %set of the same type as @a x. 00696 * @return True iff the size and elements of the sets are equal. 00697 * 00698 * This is an equivalence relation. It is linear in the size of the sets. 00699 * Sets are considered equivalent if their sizes are equal, and if 00700 * corresponding elements compare equal. 00701 */ 00702 template<typename _Key, typename _Compare, typename _Alloc> 00703 inline bool 00704 operator==(const set<_Key, _Compare, _Alloc>& __x, 00705 const set<_Key, _Compare, _Alloc>& __y) 00706 { return __x._M_t == __y._M_t; } 00707 00708 /** 00709 * @brief Set ordering relation. 00710 * @param __x A %set. 00711 * @param __y A %set of the same type as @a x. 00712 * @return True iff @a __x is lexicographically less than @a __y. 00713 * 00714 * This is a total ordering relation. It is linear in the size of the 00715 * maps. The elements must be comparable with @c <. 00716 * 00717 * See std::lexicographical_compare() for how the determination is made. 00718 */ 00719 template<typename _Key, typename _Compare, typename _Alloc> 00720 inline bool 00721 operator<(const set<_Key, _Compare, _Alloc>& __x, 00722 const set<_Key, _Compare, _Alloc>& __y) 00723 { return __x._M_t < __y._M_t; } 00724 00725 /// Returns !(x == y). 00726 template<typename _Key, typename _Compare, typename _Alloc> 00727 inline bool 00728 operator!=(const set<_Key, _Compare, _Alloc>& __x, 00729 const set<_Key, _Compare, _Alloc>& __y) 00730 { return !(__x == __y); } 00731 00732 /// Returns y < x. 00733 template<typename _Key, typename _Compare, typename _Alloc> 00734 inline bool 00735 operator>(const set<_Key, _Compare, _Alloc>& __x, 00736 const set<_Key, _Compare, _Alloc>& __y) 00737 { return __y < __x; } 00738 00739 /// Returns !(y < x) 00740 template<typename _Key, typename _Compare, typename _Alloc> 00741 inline bool 00742 operator<=(const set<_Key, _Compare, _Alloc>& __x, 00743 const set<_Key, _Compare, _Alloc>& __y) 00744 { return !(__y < __x); } 00745 00746 /// Returns !(x < y) 00747 template<typename _Key, typename _Compare, typename _Alloc> 00748 inline bool 00749 operator>=(const set<_Key, _Compare, _Alloc>& __x, 00750 const set<_Key, _Compare, _Alloc>& __y) 00751 { return !(__x < __y); } 00752 00753 /// See std::set::swap(). 00754 template<typename _Key, typename _Compare, typename _Alloc> 00755 inline void 00756 swap(set<_Key, _Compare, _Alloc>& __x, set<_Key, _Compare, _Alloc>& __y) 00757 { __x.swap(__y); } 00758 00759 _GLIBCXX_END_NAMESPACE_CONTAINER 00760 } //namespace std 00761 #endif /* _STL_SET_H */