
Automotive Control Systems Security

Where am I going

and

Why am I in this handbasket?

Peter Gutmann

University of Auckland

“format your slides for 16:9 aspect ratio”

42 = 16, 32 = 9

⇒ 4:3 ≡ 16:9

⇒ This is 16:9. QED

1

2

Automotive (In)security

X

S
o
u
rc

e
:
W

ir
e
d

Automotive (In)security (ctd)

X

S
o
u
rc

e
:
W

ir
e
d

3

4

Automotive Control Systems

A vehicle in 2018 typically contains 100-300 microcontrollers or
processors, 50+ complex electronic control units, between 5 and
20 million lines of software code

— eeNews Automotive
S

o
u
rc

e
:
e
e
N

e
w

s
 A

u
to

m
o
ti
v
e

Automotive Control Systems (ctd)

Standard access path for attackers: Bluetooth (or similar) to

the head unit

Hands-free phoning, music streaming, navigation, …

5

6

Automotive Control Systems (ctd)

Head unit runs BT radio at high power

• Don’t want any interruptions

to the music streaming

• Also means your head unit is

remotely accessible from five

cars away

S
o
u
rc

e
:
R

C
D

ri
v
e
r

Automotive Control Systems (ctd)

S
o
u
rc

e
:
R

C
D

ri
v
e
r

7

8

Automotive Control Systems (ctd)

But wait, there’s more! Remember this icon?

MirrorLink turns the promise of the connected car into reality

— Car Connectivity Consortium

IP, USB, Bluetooth, WiFi, VNC, RTP, UPnP

• telnet, carrier pigeons, smoke signals…

Some of these aren’t even protocols, they’re security holes

with wire formats

Automotive Control Systems (ctd)

And it gets even worse…

• Increasing moves

to allow vehicle

control via cellphone

apps

• Either manufacturer-

installed remote

access to the head

unit or aftermarket

add-ons

Occasionally: OBD-II

dongle with Bluetooth interface

• Typically Chinese clones of ELM327 with buggy firmware

S
o
u
rc

e
:
A

u
to

B
lo

g

9

10

Automotive Control Systems (ctd)

And the underlying OS

• QNX

• Windows CE

• Android

• Custom RTOS

Windows CE running

UPnP

QNX running VNC

Android running RTP

• What could possibly go wrong?

S
o
u
rc

e
:
X

tr
o
n
s

At least one of these is right

Automotive Control Systems (ctd)

So that’s the head unit

The rest is very different…

11

12

AUTOSAR

Automotive Open System Architecture

• Sorry, AUTomotive Open System ARchitecture

Founded by BMW, Bosch, Continental, Daimler Chrysler,

Siemens, and VW

• Based on an earlier standard OSEK / ISO 17356 from much the

same players

• Later joined by others, Ford, GM, Honda, Hyundai, Nissan,

Peugot, Renault, Tata, Toyota, Volvo

Define a standard software architecture for ECUs and

related systems

• And, eventually, much, much more

AUTOSAR Goals

Created standards for both dependability and security

• Not so much an API as an architecture for automotive safety

instrumented systems

There are various others, but AUTOSAR is

• Comprehensive

• Involves a large number of manufacturers

• Covers both standard ECU goals and security

Understanding AUTOSAR or an equivalent is necessary to

help understand automotive security issues

13

14

AUTOSAR Goals (ctd)

Primary goal: Dependability

The trustworthiness of a system such that reliance can justifiably

be placed on the service it delivers – the delivered service being
the system’s behaviour as perceived by the user

— “Dependability: A Unifying Concept for Reliable,

Safe, Secure Computing”

• Shared with other safety instrumented/critical control systems,

e.g. avionics

Need to understand this goal in order to understand how it

interacts with security

AUTOSAR Goals (ctd)

The term “trustworthy” (and “trust”) in the context of

dependability is nothing like the “trust” of computer

security

• “The CA is a trusted third party”

• “The Intel Management Engine is a trusted component”

• ARM TrustZone

In all of these cases

“trust”really means

“is forced to rely

upon”

15

16

Dependability

Dependable systems can experience faults

• A fault doesn’t necessarily reduce the dependability of a

system

Fault must result in an error in order to cause a problem

If the error propagates beyond a system barrier so that it

becomes visible to the rest of the system, it becomes a

failure

A fault can manifest itself as an error […] and the error can
ultimately cause a failure

— ISO 26262, “Road Vehicles — Functional Safety”

Dependability (ctd)

Only the full progression fault → error → failure is a

visible problem

• Handled via fault detection, isolation, and recovery (FDIR)

Example from computer networking

• Fault: Electrical glitch induced onto Ethernet cable

• Error: Corrupted data packet

– Detection: Failed CRC/FCS check

– Isolation: Packet is dropped

– Recovery: Kicked upstairs, typically TCP-level

• Failure: None, fault mitigated

17

18

Dependability (ctd)

Fault mitigation in automotive systems

• Is the value within a range of plausible values?

– Engine temperature, vehicle speed, etc

– Unless the vehicle is powered by a Mr.Fusion, an engine

temperature of 3000°C is suspect

• Is the combination of values within a range of plausible values?

– Engine speed / vehicle speed / gear ratio

• Do multiple redundant sources agree?

– Angle-of-attack sensors on aircraft

• Exotic rigorous solutions

– Predictor/corrector models like Kalman filters

Dependability (ctd)

Signal metrics

• Signal quality, timestamps, sequence numbers, signal-changed

status

Timing protection

• Protecting from activities that take too long to complete

• Excessive runtime upsets response-time guarantees for other

components

19

20

Mitigations

Substitute values

• If a value is implausible, substitute an approximation to use in

subsequent calculations

• Malfunctioning sensor, use last known good value

Voting / redundancy

• 2oo3 or similar mechanisms

Liveness monitoring of subsystems

• Watchdogs, heartbeats

Diverse monitoring

• External monitor ensures the system remains within safety

bounds

Mitigations (ctd)

Execution sequence monitoring

• Check control flow graph (CFG)

• Monitor control flow through basic blocks

– As a convenient side-effect, severely hampers ROP

Reliability trumps everything

• “Limp home” mode as a design safe state

• Disable some subsystems, e.g. keep ABS (anti-lock braking)

but no ESC (electronic stability control)

• c.f. MEL in aircraft

– Minimum (functioning) equipment list for an aircraft to be

considered airworthy

21

22

Fault-Tolerance

Not just a fancy name, the system is literally tolerant of

faults

• A great deal of engineering effort goes into providing this

capability

Overreacting to faults can actually be harmful

In some situations taking recovery actions due to errors […] may
cause more damage than it does good. Reacting to such errors
may cause an over-reaction where the recovery actions may put
the system in a state where it is less safe than previously

— “Explanation of Error Handling on Application Level”,

AUTOSAR

Fault-tolerance is the diametric opposite of what crypto/

security does

Fault-Intolerance

In crypto/security, the goal is to find the single bit that’s

out of place

• One single bit out of place → fail

• “… and stop” means “fault and error and failure” all in one

a. If the length of L is greater than the input

limitation for the hash function (2^61 - 1 octets

for SHA-1), output "decryption error" and stop.

b. If the length of the ciphertext C is not k octets,

output "decryption error" and stop.

c. If k < 2hLen + 2, output "decryption error" and

stop.

— PKCS #1 v2.1

23

24

Fault-Intolerance (ctd)

Once you’ve found the discrepancy, you’ve won

No known standard covers how to continue after this point

• c.f. vast literature on fault tolerance and error recovery

S
o
u
rc

e
:
:L

A
 T

im
e
s

Fault Mitigation vs. Security

Plausibility checks: Binary yes/no

Execution sequence monitoring: No

Substitute values: No

Voting/redundancy: No (except in Type 1 crypto hardware)

Liveness checks/signal metrics: N/A

Timing protection: Public-key crypto operations are

variable-time

• Some operations like keygen only terminate probabilistically

25

26

Fault Mitigation vs. Security (ctd)

Continuing with degraded functionality

Fault Mitigation vs. Security (ctd)

Once you’ve found the discrepancy, you’ve won

• Why would you want to continue?

This makes automotive security… interesting

• Irresistible force, meet immovable object

See “Hard and Not-necessarily-hard Problems in

Cryptography”, https://www.cs.auckland.ac.nz/
~pgut001/pubs/problems.pdf

• Specifically, coverage of wicked problems and availability

issues

27

28

The AUTOSAR Environment

OSEK/VDK, rebranded AUTOSAR Classic, is a fairly

standard high-assurance RTOS

System configuration is defined statically at build time

If tasks are created dynamically then things are much more complex;

timing predictions may be filed under ‘fiction’

— “Real-Time Operating Systems”, Vol.1

• Makes reasoning about issues like deadlocks much easier

No dynamic allocation of any kind

The AUTOSAR Environment (ctd)

All tasks execute out of non-volatile memory

• No code in RAM

• Also makes IPL very quick

– ‘96 Toyota ECU can be restarted at 180 kph

– Only noticeable effect was a brief ignition ping

– Had gone into limp-home mode at Hampton Downs track

– That doesn’t mean you should do it…

• Fault mitigation via rejuvenation

29

30

The AUTOSAR Environment (ctd)

Scheduling is typically static, e.g. rate-monotonic or

heuristic scheduling

• OSEK is somewhat open-ended on this, but standard

scheduling strategies from conventional OSes don’t work in an

RTOS

No recursion, longjmp

• From MISRA / Motor Industry Software Reliability

Association, required by AUTOSAR

• Many embedded compilers have MISRA compliance checking

built in

• Also supported by third-party static analysers, Coverity/

cppcheck/Goanna/PC-Lint/Polyspace/PVS-Studio/etc

The AUTOSAR Environment (ctd)

More rules from JSF-AV and SEI CERT Coding Standard

Fixed stack size

Fixed task priorities

etc

31

32

The AUTOSAR Environment (ctd)

Certification requirements are onerous

• Make safety claims for the device, e.g. “meets all the

requirements of ISO 26262”

• Provide arguments to support the claim, e.g. via formal

notation

• Provide evidence to support the arguments

An argument without supporting evidence is unfounded, and
therefore unconvincing

— ISO 26262-10

Example tools: Fault tree analysis, discrete event

simulation, Petri nets (IEC 61508-3), formal methods

like Promela/SPIN (ISO 26262-6), etc

The AUTOSAR Environment (ctd)

In order to be road legal, a car must have a certificate of

conformity

• US self-certifies

U.S. automakers self-certify that they are meeting U.S.
vehicle standards

— “U.S. and EU Motor Vehicle Standards”

– Like Boeing with the 737 MAX

• Europe has Whole Vehicle Type Approval, WVTA

• Rest of the world is covered by similar UN rules

Outside the US, once type approved, systems can’t be

changed unless the change gets type approval

33

34

The AUTOSAR Environment (ctd)

But Tesla does updates all the time!

• Tesla are self-certifying (OK in the US)…

• … and self-insured if there’s a problem

Tesla’s famous OTA

brake system

update would be

illegal anywhere

but the US

• Even in the US it

was highly risky

legally

The AUTOSAR Environment (ctd)

So how does Tesla sell outside the US?

• Long story, they have WVTA on the models sold outside the

US

• Other vendors don’t want to rock the boat over OTA changes

made to WVTA vehicles because of their own OTA plans

• As soon as there’s a fatal accident, things will get interesting

because Tesla’s OTA will probably be found to be illegal

• Being discussed by the International Organization of Motor

Vehicle Manufacturers (OICA, Organisation Internationale des

Constructeurs d’Automobiles) of which Tesla isn’t a member

UN Task Force on Cyber Security and (OTA) software

updates (CS/OTA) has been working out how to deal

with OTA

35

36

The AUTOSAR Environment (ctd)

Typical target CPUs

• 68HC08, 68HC12

• MPC5xx, MAC7x00

• RH/V850x

• TDA2x, TDA3x

• TriCore

S
o
u
rc

e
:
O

B
D

2
E

xp
re

s
s

The AUTOSAR Environment (ctd)

• Value is the masses of

automotive capabilities,

not the CPU power

S
o
u
rc

e
:
N

X
P

37

38

The AUTOSAR Environment (ctd)

• Many safety-

oriented features,

e.g. lockstep cores,

extensive error

checking/

correction, ASIL-D

safety classification
• Caution:

Marketing, ASIL

inflation

• Note Milspec-

equivalent

temperature range
S

o
u
rc

e
:
In

fi
n
e
o
n

The AUTOSAR Environment (ctd)

Example: Bosch EDC17 ECU

• Used in many European cars, including VW diesels

• Yes, those

diesels

TriCore 1797

• 180 MHz

• 128kB RAM

• 2-4MB flash

(ROM)

• 64kB flash

(writeable)

S
o
u
rc

e
:
C

h
ip

T
u
n
e
rs

39

40

The AUTOSAR Environment (ctd)

To put that into terms people can understand…

• 0.2 GHz single-core CPU

• 0.0001 GB RAM

• 0.000002 TB hard drive

S
o
u
rc

e
:
H

P

The AUTOSAR Environment (ctd)

Again note the value proposition, it’s the I/O capabilities

(alongside the safety features)

S
o
u
rc

e
:
In

fi
n
e
o
n

41

42

Intermezzo

Tricky to distinguish reality from marketing

• Various products covered in presentations and glossy

brochures but probably not readily available

• Available real soon now, in the next revision, once you throw

out your existing hardware and redesign with new devices

This talk is an attempt to capture today’s reality, not future

dreams

Selection criterion: What would you find in Joe Sixpack’s

garage?

• With a little input from ECU tuners

The AUTOSAR Environment (ctd)

• BCC/ECC = basic/

extended conformance

class tasks (details

unimportant)

• 0 bytes RAM from

statically defined task,

ROM usage is the TCB

S
o
u
rc

e
:
E

T
A

S

43

44

Sample application configuration

The AUTOSAR Environment (ctd)

The AUTOSAR Environment (ctd)

Moore’s Law doesn’t apply

Emphasis is on reliability and safety, not bleeding-edge

performance

• Designed and certified for use in particularly harsh

environments

• If this stuff wasn’t

classed as

automotive, it’d

be export-

controlled

• Often more

functionality for

safety than primary

S
o
u
rc

e
:
T

I

45

46

The AUTOSAR Environment (ctd)

Distributed real-time control system, not a single computer

100-300 microcontrollers or processors, 50+ complex electronic

control units, between 5 and 20 million lines of software code

— eeNews Automotive

• Control system is the sum of the

individual parts, not a single

ECU somewhere

• Complex timing and

communications constraints

• For perimeter-security based

thinking, the entire system is

inside the perimeter — all buses are internal

S
o
u
rc

e
:
T

U
 B

ra
u
n
s
c
h
w

e
ig

Intermezzo

This is OSEK/VDK, rebranded AUTOSAR Classic

• AUTOSAR NG is different

Based on the well-known formally-verified realtime OS,

Linux

• Individual high-

assurance ECUs

become VMs on

a single Linux

system

• Note to self: Buy lifetime train travel pass

47

48

The AUTOSAR Environment (ctd)

Devices have a design life of ten to twenty years

• There is hardware deployed today that was designed when the

people now maintaining it were in kindergarten

Firmware is never updated, and frequently can never be

updated

• Storage isn’t writeable

• There’s no room

• It’s too risky to update due to bricking risk or decertification of

the system

Avoiding recertification is a huge motivator

• 737 MAX is a very visible example of how motivated

companies are to avoid it

The AUTOSAR Environment (ctd)

What about using $shiny_new_thing?

• This is very hard for geeks to resist

• “$corporation has just

announced $shiny_new_thing,

this will solve all of your

problems”

S
o
u
rc

e
:
P

C
P

e
rs

p
e
c
ti
v
e

49

50

The AUTOSAR Environment (ctd)

Translated: You need to redo your

• Product roadmap

• Supplier agreements

• Second-source/LTS

• Licensing

• Hardware design

• Software toolchain

• BSP

• Firmware

• Testing

• Certification

Thanks, but no thanks

The AUTOSAR Environment (ctd)

Examples

• Compile with optimisation

disabled since this destroys

the 1:1 mapping of source

→ object code

– IEC 61508-3 §7.4.4.4 /

ISO 26262-8 §11.4.4.2

warn against opt.compilers

– See “Software security in the presence of faults” talk

• Built on 1990s-vintage PCs scrounged from eBay because

that’s what was certified

Now that the scene is set, let’s look at crypto and

security…

S
o
u
rc

e
:
e
B

a
y

51

52

AUTOSAR Security

What crypto resources are available?

• AES, supported on higher-end SoCs

• Some form of RNG for keygen, reasonably common

– Or can use environmental sources

• SHA-1, DES occasionally

• RSA, ECDSA is practically non-existent

• Everything else is actually non-existent

Any crypto solution had better be based pretty exclusively

on AES

• As a convenient side-effect, won’t have to worry about which

PKC will be in fashion in ten years’ time or what keysize

they’re wearing in Paris that year

AUTOSAR Security (ctd)

Crypto is implemented as IP cores added to the SoC, not

inline instructions

This is a hypothetical “automotive HSM” from Bosch

• Few automotive SoCs actually have any crypto hardware

S
o
u
rc

e
:
E

T
A

S

53

54

AUTOSAR Security (ctd)

Some newer SoCs have crypto hardware support

But this is few and far between

• Note the 2001-vintage crypto

S
o
u
rc

e
:
In

fi
n
e
o
n

AUTOSAR Security (ctd)

The only CPUs that do have crypto support are standard

tablet/set-top-box style ones meant for head units

This is also the point of entry to the car for attackers

S
o
u
rc

e
:
R

e
n
e
s
a
s

55

56

AUTOSAR Security (ctd)

Programming interfaces to the crypto IP in the SoCs are all

vendor-specific

• Invariably hard to use

• Need to talk PIO or DMA

• The HAL or vendor firmware may not make it available

• Access is almost always slower than doing it natively in

software

We can solve all our problems (except the speed one) with

a standardised API layer!

Crypto HALs

PKCS #11

• Has been around for 25 years

• The standard interface to security hardware

• OO interface using C API

CK_ATTRIBUTE publicKeyTemplate[] = {

{ CKA_CLASS, CKO_PUBLIC_KEY, sizeof(CK_OBJECT_CLASS) },

{ CKA_KEY_TYPE, CKK_RSA, sizeof(CK_KEY_TYPE) },

{ CKA_VERIFY, CK_TRUE, sizeof(CK_BBOOL) },

{ CKA_ENCRYPT, CK_TRUE, sizeof(CK_BBOOL) },

{ CKA_MODULUS, modulus, modulusLength },

{ CKA_PUBLIC_EXPONENT, exponent, exponentLength },

};

C_CreateObject(hSession, publicKeyTemplate, 6, &hRsaKey);

C_EncryptInit(hSession, CKM_RSA_PKCS, hRsaKey);

C_Encrypt(hSession, inData, inLength, outData, &outLength);

57

58

Crypto HALs (ctd)

Core document (for v2.01) is ~150 pages, plus a 60-page

catalogue of crypto mechanisms

• Core API is a thin shim over the underlying hardware

capabilities

• Most of the work is marshalling and unmarshalling

Bloated up by optional PIN management, SSO/user

handling, etc

• This is all optional, can implement just the basic functionality

Crypto HALs (ctd)

This is way too…

• Complicated

• Heavyweight

• Unhip

Let’s design our own!

• We can do it better than those guys

59

60

Crypto HALs (ctd)

Common Data Security Architecture

• Relatively simple design and API in 1.0, from Intel

Architecture Labs

• Did exactly the same thing as PKCS #11, only differently

• Then the Open Group decided to standardise it

Crypto HALs (ctd)

Collapsed under its own weight

S
o
u
rc

e
:
O

p
e
n
 G

ro
u
p

61

62

Crypto HALs (ctd)

No-one ever managed to implement it, although Apple

tried very hard

• 3-4 years work by a full-time team

CDSA was “a classic late-1990s API”, “a bloated,

unmanageable mess” (CDSA developer)

AUTOSAR Crypto API

AUTOSAR approach

• Ongoing since 2010

• 486 pages of specification

(so far)

• It’s OK, I’ve read them for

you (ugh)

Attempt to reinvent CDSA

• Not explicitly, but this is what

the kitchen-sink abstract-

concept approach to design

naturally produces

S
o
u
rc

e
:
A

U
T

O
S

A
R

63

64

AUTOSAR Crypto API (ctd)

Or maybe an attempt to reinvent PKCS #11

This is a near-exact copy of PKCS #11 done twenty years

later

• Looks like they reinvented all the long-since-closed PKCS #11

security holes as well…

S
o
u
rc

e
:
A

U
T

O
S

A
R

S
o
u
rc

e
:
P

K
C

S
 #

1
1

AUTOSAR Crypto API (ctd)

AUTOSAR crypto diagrams look frighteningly similar to

diagrams from the CDSA spec

S
o
u
rc

e
:
A

U
T

O
S

A
R

65

66

AUTOSAR Crypto API (ctd)

In particular, every trendy hipster algorithm and every

mechanism anyone’s ever heard of

• None of which are supported by the system hardware

AUTOSAR Crypto API (ctd)

67

68

AUTOSAR Crypto API (ctd)

• Ah, that’s OK then

AUTOSAR Crypto API (ctd)

Oh, we forgot to add PKI to the mix

• Let’s fix that…

S
o
u
rc

e
:
A

U
T

O
S

A
R

69

70

AUTOSAR Crypto API (ctd)

Specifically:

S
o
u
rc

e
:
A

U
T

O
S

A
R

AUTOSAR Crypto Summary

Protocol Stack

71

72

AUTOSAR Crypto Summary (ctd)

Other problems

• PKCS #11: Spec follows implementation

• CDSA, AUTOSAR: Here’s a spec we dreamed up, someone

else can figure out how to implement it

Spec is unclear, convoluted, ambiguous, difficult to follow,

contradicts itself, requires reverse-engineering the

thought processes of the author(s), …

• Far more so than the usual problems with standards

AUTOSAR Crypto Summary (ctd)

Unintentional humour

• What is the sound of no hands clapping?

Gratuitous reinvention of data formats…

• ANSI X9.62 standardised ECC key formats twenty years ago!

• Everything (except AUTOSAR) uses the X9.62 format

S
o
u
rc

e
:
A

U
T

O
S

A
R

73

74

AUTOSAR Crypto Summary (ctd)

… that are the reverse of the standard way of representing

things

• That’s “big-endian” in math-ese

• That’s “the opposite of big-endian” in plain English

• Also, no handling of point compression

S
o
u
rc

e
:
A

U
T

O
S

A
R

AUTOSAR Crypto Summary (ctd)

More gratuitous reinvention of 20-year-old industry

standards

75

76

AUTOSAR Crypto Summary (ctd)

Left as an exercise for the reader

Extensive mind-reading skills required to reverse-engineer

the intent behind various requirements

S
o
u
rc

e
:
A

U
T

O
S

A
R

AUTOSAR Crypto Summary (ctd)

More mind reading

Zaphod felt he was teetering on the edge of madness and
wondered whether he shouldn't just jump over and have done
with it

— Douglas Adams

S
o
u
rc

e
:
A

U
T

O
S

A
R

77

78

AUTOSAR Crypto Summary (ctd)

Ambiguities in the spec

Does this sign a message, a hash of a message, or a

formatted hash of a message?

• Expected operation is to sign a formatted hash, not the raw

message or hash

• Key is associated with a job (= PKCS #11 handle), so it’s

probably signing a hash/formatted hash, not a message

S
o
u
rc

e
:
A

U
T

O
S

A
R

AUTOSAR Crypto Summary (ctd)

Further ambiguities abound

• Which parameters?

• Which derivation mechanism and parameters?

S
o
u
rc

e
:
A

U
T

O
S

A
R

79

80

AUTOSAR Crypto Summary (ctd)

What are these things?

• Aren’t these the same thing?

• SECG perhaps?

• Which one? DSA, RSA, or ECDSA?

• No idea…

S
o
u
rc

e
:
A

U
T

O
S

A
R

AUTOSAR Crypto Summary (ctd)

PKCS #11

C_Digest(hSession, data, dataLen, digest, digestLen);

AUTOSAR

S
o
u
rc

e
:
A

U
T

O
S

A
R

81

82

AUTOSAR Crypto Summary (ctd)

The PKI portion in particular still needs some years of

work

• Nine years so far for the rest of the spec

Algorithm inputs: Certificate, issuing certificate

S
o
u
rc

e
:
A

U
T

O
S

A
R

AUTOSAR Crypto Summary (ctd)

Algorithm inputs from PKIX PKI standard

S
o
u
rc

e
:
R

F
C

 5
2
8
0

83

84

AUTOSAR Crypto Summary (ctd)

Verification process in AUTOSAR is also missing a little

detail

S
o
u
rc

e
:
R

F
C

 5
2
8
0

S
o
u
rc

e
:
A

U
T

O
S

A
R

AUTOSAR Crypto Summary (ctd)

Required checks are as follows

PKIX’ 21 pages omitted

In particular, no checking of key usage, key IDs,

constraints, policies, CA status, …

• Brake controller manufacturer can issue a code-signing

certificate to allow firmware updates on the ECU(s)

• As long as something has signed something else somewhere,

it’s valid

S
o
u
rc

e
:
A

U
T

O
S

A
R

85

86

AUTOSAR Crypto Summary (ctd)

Cert status is determined statically

• What if it’s expired or been revoked in the meantime?

Uhhh… what?

What you said was so confused that one could not tell whether it
was nonsense or not

— Wolfgang Pauli

S
o
u
rc

e
:
A

U
T

O
S

A
R

AUTOSAR Crypto Summary (ctd)

Several sections can’t be implemented in an interoperable

manner, if at all

• Too vague or incomprehensible to implement unambiguously

No conformance profile(s)

• Which parts do you need to implement?

• Some = everyone does it differently

• All = see Apple, CDSA

87

88

AUTOSAR Crypto Summary (ctd)

How did things end up like this?

Reconsidering Automotive Security

What’s our threat model?

AUTOSAR

• Here is a pile of crypto, whatever it counters is the threat

• a.k.a. “The Inside-Out

Threat Model”

89

90

Reconsidering Automotive Security

Very popular in general, not just in automotive security

• A great many Internet security standards are based on the

Inside-Out Threat Model

Reconsidering Automotive Security (ctd)

We control the environment

Manufacturer controls what’s in the car

• The hardware

• The software

• The configuration

We don’t need external attestation, identity management,

certificates and CAs, etc

• Everything can be preconfigured at the factory

No need for public-key complexity, can use preconfigured

symmetric keys

• Removes 95% of the complexity, and 95% of AUTOSAR API

91

92

LoRaWAN Security

Designed to solve the specific problem of device security

in a practical manner

Any crypto solution had better be based pretty exclusively

on AES

— Earlier slide

Manufacturer controls what’s in the car device

• The hardware

• The software

• The configuration

We don’t need […]

LoRaWAN Security (ctd)

Secures connections from devices at both the network and

application level

• AES NwkSKey secures the network level

• AES AppSKey secures the application level

S
o
u
rc

e
:
G

e
m

a
lt
o

93

94

LoRaWAN Security (ctd)

Static activation: Device is provisioned at manufacture

with NwkSKey and AppSKey

• Activation by Personalisation (ABP)

Dynamic activation: Device is provisioned at manufacture

with EUIs and AppKey

• Over-the-Air Activation (OTAA) sends join command secured

using the AppKey

• Servers derive AppSKey (application server) and NwkSKey

(network server)

• All future traffic is encrypted and authenticated

Additional features to deal with replay attacks, ensure

message uniqueness, etc

LoRaWAN Security (ctd)

We don’t really need the NwkSKey vs. AppSKey

distinction, just one will do

• Actually it’s not clear what we need the AppSKey for either

(see following slides)

Serves more as an example of what you can do if you start

with a proper design

• Design follows threat model and functional requirements

• Create the most practical design that deals with as much of the

threat model as possible

95

96

Reconsidering Automotive Security++

This is what a car really is

To attack parts of the distributed control system, the

attacker has to have internal access to the vehicle

• At that point you’re owned, with or without crypto

Weakness is access points like the head unit

• If an attacker can get into that, they’re inside the device that

controls the crypto

• Crypto becomes irrelevant

Head Unit
Distributed

Control System
Driver

Controls

Reconsidering Automotive Security++

Difficult to identify a (non-artificial) situation where crypto

would help against an actual real-world attack

• We need access controls, not crypto

This may be the only time you’ll hear a crypto person tell

you that the solution to a problem isn’t to add more

crypto

97

98

Reconsidering Automotive Security++ (ctd)

Isolate externally-accessible systems from control systems

You’ll never make the head unit secure

• Attack surface is vast

• It needs to be a fully-functional media centre with everything

enabled

Assume the head unit is pre-compromised

• Allow access to the control systems only via a carefully-

controlled interface

Reconsidering Automotive Security++ (ctd)

Standard solution: Data diodes

• 1970s technology for dealing with classified government

information

• Went mainstream in the 1990s when others started needing the

capability

Low-tech hardware implementation

• 10mbps ethernet with transmit wire cut

S
o
u
rc

e
:
N

e
xo

r

99

100

Reconsidering Automotive Security++ (ctd)

Software implementations are widely used in SCADA

environments

S
o
u
rc

e
s
:
S

c
h
n
e
id

e
r/

G
I-

J
a
h
re

s
ta

g
u
n
g
/B

ru
c
o
n

Note diagrams drawn by EE

vs. CS majors

Reconsidering Automotive Security++ (ctd)

More generally, implement the minimal interface necessary

Head unit mostly needs to display read-only telemetry

• Alongside music streaming, satnav, hands-free chat, video, …

Small number of outgoing commands, e.g. A/C, mirror

control, are handled via carefully-checked interfaces

• There is no reason why your head unit should be able to

actuate the brakes, gun the engine, lock the horn on, …

• (The Hell’s Angels horn hack)

Some manufacturers already implement something like this

• VAG has a gateway from the high-speed control CAN bus to

the low-speed convenience CAN bus

101

102

Reconsidering Automotive Security += 2

It’s difficult to even identify a real-world situation where

any sort of attack makes sense

Cybercriminals attack where the money is: Fraud, phishing,

carding, ransomware, …

• No financial incentive to attack cars

• Ransom the playlist in your head unit?

Possible attack: Pay to allow your car to start

• Ransomware is a complex process typically involving BTC

payments and taking days if not weeks

• Easier/quicker to just get a breakdown service/repair

service/dealer to reflash your ECU

Reconsidering Automotive Security += 2 (ctd

Attacks on cars typically have to be local

• Fly a fast, powerful drone over the car at a matching speed

– Drone is controlled from another vehicle close to the target

• Attack the head unit via Bluetooth

• Seize control of the car

• A black helicopter swoops in

• Jason Statham drops onto the roof

• …

This isn’t really practical outside of movie plots

103

104

Reconsidering Automotive Security += 2 (ctd

Then what?

• Anything minor is mostly a nuisance attack, like keying the car

• Anything serious enough to get attention could be life-

threatening

Liability goes from “phishing someone on the other side of

the planet with low police interest” to “premeditated

murder in the same police jurisdiction as the victim”

Need to threat-model/game-model what actually makes

sense

• “Game theory” = modelling the actions of a rational player

• Maybe all we need is swift police action as a deterrent

But What About …?

V2V/V2I Communications

• That’s an entirely

different mess

• See IEEE 1609.2

• See also “IEEE 1609.2

and Connected Vehicle

Security: Standards

Making in a Pocket

Universe”,

William Whyte

S
o
u
rc

e
:
W

ill
ia

m
 W

h
y
te

105

106

But What About …? (ctd)

Firmware Updates

• Scenario: Travelling down the Autobahn at 200kmh…

• Even if you do it in the owner’s garage, what if the upgrade

bricks the car? Disables a safety-critical system?

Let’s make it a dealer-only option…

• Dealer performs post-update tests to verify that all is OK

But What About …? (ctd)

What if the car dealer is the attacker?

• You’re hosed, but this is a what-if scenario

Sign the firmware with a baked-in manufacturer key

• Standard practice in vast numbers of devices and systems

107

108

Conclusion

Automotive control systems security is a mess

• Security was never considered in the initial design because it

wasn’t needed

• Later, the Inside-Out Threat Model created non-solutions to

non-problems

Toxic combination

• Automotive engineers don’t know security

• Security geeks don’t know automotive electronics

The real threat mitigation is via access control

• Crypto is just a distraction

Don’t let crypto geeks work without adult supervision!

109

