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My interactions with CT, the IMS, and maths at

NUS

IMS programmes and workshops, starting with

“Computational Prospects of Infinity” 2005.

Talks, and papers in the corresponding proceedings volumes.

Visits, about yearly

NUS logic seminar talks

2008 joint paper with CT and Liang on higher randomness
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Idea of randomness via definable tests

We study randomness of subsets of ω,

and of reals in [0, 1].

Intuitively, random should mean “typical”.

An object x is random if it is in no null set.

Γ-randomness
Choose a definability restriction Γ on null sets.

One says that x is Γ-random if it is in no Γ null set.

Null sets satisfying Γ are called Γ-tests. As there are only

countably many tests, random objects in this sense exist.
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1970-1975:

The dawn of

randomness via

effective descriptive set theory
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Two short papers of Per Martin-Löf : 1966/1970

[1966] The definition of random sequences.

Information and Control 9. (1666 citations on GS)

Defines tests as sequences of uniformly Σ0
1 sets with recursively

bounded measure going to 0.

Proves existence of universal test.

[1970] On the notion of randomness. In Proceedings of a 1968

conference on Intuitionism and Proof Theory. (88 citations on GS)

Defines tests as ∆1
1 null sets.

Shows the collection of ∆1
1 randoms is Σ1

1.

It is not Π1
1 by Sacks-Tanaka.

In particular, there is no universal test.
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1970: Solovay’s Theorem and random reals

Assuming there exists an inaccessible cardinal, Solovay built a

model of ZF+ DC in which every set of reals is Lebesgue

measurable.

From the paper:

Solovay used a forcing where the conditions are Borel sets of

positive measure coded in the ground model M .

An M -generic ultrafilter G corresponds to a random real xG
over M (Jech, Set theory, 2002 Lemma 26.2).

Random over M means: outside each null Borel set coded in M .
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1975: Kechris and Stern papers

Mycielski and Swierczkowski (1964):

Under projective determinacy (PD), each projective set of

reals is Lebesgue measurable.

Kechris (1975): There is a largest Π1
1 null set. Under PD, for

each n ≥ 1 there is a largest Π1
2n+1 and a largest Σ1

2n null set.

Stern (1975):

the largest Π1
1 null set equals the union all the ∆1

1 null sets

and {A : ωA
1 > ωCK

1 } (that is, some A-computable well-oder is

noncomputable; equivalently, O ≤h A).

If almost all reals are random over L, then the largest Σ1
2 null

set equals the set of non-random reals over L.

Similar results hold for category.

7 / 24



Towards understanding algorithmic randomess

Solovay worked with Chaitin in 1975 on the algorithmic theory

of randomness, leading to a now famous set of notes.

Until 2000, the development of algorithmic randomness

proceeded slowly but steadily, with work by researchers with

computability background such as Calude, Demuth, Kučera,

Muchnik, Shen, Terwijn, Zambella and others.
By the early 2000s it was generally accepted that randomness
helps to understand computational complexity.

Terwijn & Kučera(1999) constructed an r.e., non-computable

oracle that is low for ML-randomness: each MLR is MLR

relative to A.

N. (2002) showed that K-trivial = low for ML-randomness,

building on work with Downey, Hirschfeldt, and Stephan.

Textbooks leading to research level:
Computability and Randomness (N., 2009),

Algorithmic Randomness and Complexity (Downey and

Hirschfeldt, 2010)
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2007 - 2015

Rediscovery as “Higher randomness”

and development
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Π1
1 as an existential property

Recall that A ⊆ ω is Π1
1 iff it is of the form {n : ∀X R(X,n)}

where R is arithmetical.

Spector-Gandy

A ⊆ ω is Π1
1 ⇐⇒ there is a Σ1 formula ϕ(n) such that

A = {n ∈ ω : L(ωCK
1 ) |= ϕ(n)}.

S ⊆ P(ω) is Π1
1 ⇐⇒ there is a Σ1 formula ϕ(X) such that

S = {X ⊆ ω : L(ωX
1 )[X] |= ϕ(X)}.

We can think of the existential quantifier in the Σ1 formulas to be

over recursive ordinals (resp, over X-recursive ordinals).

So, a Π1
1 set can be thought of as enumerated along recursive

ordinal stages.
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Hjorth and N. paper

2007 Hjorth and N. published a J. London Math Soc. paper

“Randomness via effective descriptive set theory”.

Ted Slaman had suggested to me to study this.

Idea: develop higher randomness, based on ∆1
1 and Π1

1 tests, in

place of computable/r.e. tests. Use the idea of enumeration

along recursive ordinals in Spector-Gandy.

For instance, a Π1
1 ML-test is a uniformly Π1

1 sequence of open

sets (Un)n∈N such that λUn ≤ 2−n.

Π1
1 randomness has no analogue in the algorithmic setting.
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Strict implications

Π1
1 randomness ⇒ Π1

1 ML-randomness ⇒
∆1

1 randomness = ∆1
1 ML-randomness.

Hjorth and N. introduced a Π1
1 version of the theory of prefix

free machines, and thereby higher prefix-free Kolmogorov

complexity and higher Ω, denoted K and Ω.

They proved a version of Schnorr-Levin, showed Ω is Π1
1

ML-random, and Ω ≡T O. Thus Ω is not Π1
1 random.

For the second separation, they built a ∆1
1 random of slowly

growing initial segment complexity.

Recall Stern’s result: the largest Π1
1 null set equals the union of all ∆1

1

null sets and {A : ωA
1 > ωCK

1 }. Thus, the three randomness notions can

only differ for sets A such that ωA
1 > ωCK

1 .
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Lowness for Π1
1 ML-randomness

Allowing test defining a randomness notion R access to an

oracle A generally strengthens them: RA is a proper subset of

R.

An oracle A is low for R if NOT: RA = R.

Often this is an interesting class. E.g., low for ML= K-trivial.

Theorem (Hjorth and N., 2007)

If A is low for Π1
1 ML-randomness then A is hyperarithmetic.

The proof uses the methods of the algorithmic setting to show

A is higher K-trivial.

Also a higher K-trivial that is not hyperarithmetic is ≥H O.

This can’t be for our set A, so A is hyperarithmetic.

13 / 24



Chong, N., Yu 2008: Hyp-domination

Set theory: If x is M -random for a model M of ZF+DC, then

every function ω → ω in M [x] is dominated by a function in M .

Chong, N., Yu, IJM 2008: “Lowness of higher randomness

notions” called A ⊆ ω hyp-dominated if each function

hyperarithmetic in A is dominated by a hyperarithmetic

function.

They showed that each Π1
1 random A is hyp-dominated.

This contrasts with the case of algorithmic randomness:

each ML-random relative to the halting problem (or even, each

Demuth random) is of hyper-immune degree.
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Hyp-domination and characterising Π1
1 randomness

Recall that each Π1
1 random A is hyp-dominated: each function

hyperarithmetic in A is dominated by a hyperarithmetic function.

Kjos-Hanssen, N., Stephan and Yu, 2009

A is Π1
1 random ⇐⇒

A is hyp-dominated and in no closed Π1
1 null class.

Thus, inside the class of hyp-dominated sets, everything from

Π1
1 Kurtz to full Π1

1 randomness collapses.
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More on ∆1
1 randomness

Recall Z ⊆ ω is ∆1
1 random (Martin-Löf, Stern) if Z is in no

∆1
1 null set.

This is the higher analog of both computable randomness

(martingales) and Schnorr randomness (test components have

uniformly computable measures).

By the methods of Brattka, Miller and N. 2016,

a real r ∈ [0, 1] is ∆1
1 random if and only if each

hyperarithmetic monotonic function g : [0, 1] → R is

differentiable at r.

The same holds for hyperarithmetic functions of bounded

variation. This contrasts with the algorithmic case: the notion

corresponding to computable BV functions is Martin-Löf

randomness (Demuth).

16 / 24



Lowness for ∆1
1 randomness

A hyperarithmetic trace for f ∈ ωω is a hyperarithmetic

sequence of finite sets (Ln)n∈N such that ∀n[f(n) ∈ Ln].

The following is an analog of a result for Schnorr randomness

by Terwijn and Zambella.

Theorem (Chong, N., Yu, 2009)

A is low for ∆1
1 randomness ⇐⇒

there is a hyperarithmetic bound h ∈ ωω such that each

f ≤h A has a hyperarithmetic trace (Ln)n∈N with |Ln| ≤ h(n).
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Deeper understanding of Π1
1 randomness

Chong, Yu; Greenberg, Monin

until 2021
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So, what about Π1
1 randomness?

The definition of Π1
1 randomness is alluringly simple, because there

is a universal test. What do we know?

Chong and Yu: analog of Demuth’s theorem.

The h-degrees of Π1
1 randoms are closed downwards.

Benoit Monin’s 2014 thesis, with involvement of Greenberg/

Greenberg and Monin, 2017

Π1
1 randomness is Borel, in fact Π0

3, and this is optimal.

If an oracle low for Π1
1-randomness, it is hyperarithmetic.
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Genericity in (higher) computability

Ultrafilters G are oracles (subsets of ω)

Algorithmic/ definability restriction on dense sets.

Cohen forcing: P = 2<ω.

G is 1-generic if for each effective list [σn]n∈N of cones, either

G ∈
⋃

n[σn], or ∃[τ ] with [τ ] ∩
⋃

n[σn] = ∅ such that G ∈ [τ ].

Random forcing: P = Σ1
1 closed sets of positive measure with

inclusion.

G is Σ1
1-Solovay generic (Monin) if for each effective list (Fn)n∈N in

P, either G ∈
⋃

nFn, or ∃L ∈ P with L ∩
⋃

Fn = ∅ such that

G ∈ L.
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Characterise Π1
1 random by genericity

Recall :

P = Σ1
1 closed sets of positive measure.

G is Σ1
1-Solovay generic if for each effective list (Fn)n∈N in P,

either G ∈
⋃

nFn, or ∃L ∈ P with L ∩
⋃
Fn = ∅ such that G ∈ L.

Theorem (Monin, 2014)

Z is Π1
1 random ⇐⇒ Z is Σ1

1 Solovay generic.

Can check that being Σ1
1 Solovay generic is Π0

3.

The hard bit: if Z is Σ1
1 Solovay generic then ωZ

1 = ωCK
1 .
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Lowness for Π1
1 randomness

The characterisation in terms of Solovay genericity, together with

Hjorth/N. result, was used to show

A is non-hyperarithmetic ⇒ some Π1
1 random is not Π1

1(A) ML

random

In particular it is not Π1
1(A) random.

Simplified proofs in the final chapter of Chong & Yu’s book (2015).
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fin-h and higher Turing reducibilitiy

Because of the infinite computation time, an unrestricted

computation can look at the whole oracle.

To get results from the mother lode of algorithmic randomness into

the higher setting we need more restricted reductions.

fin-h (Hjorth and N.): functional given as Π1
1 set of conditions

σ, τ , which is consistent (monotonic)

Proved version of Kučera-Gacs.

hT (Bienvenu, Greenberg, Monin): discards consistency.

Convincing reasons that this is better.

See their papers: Continuous higher randomness (JML 1017),

Bad oracles (2021)

23 / 24



Book references on higher randomness

Final chapters in three books

▶ Computability and randomness (N., 2009)

▶ Recursion theory (Chong and Yu, 2015)

▶ Computability Theory Algorithmic Randomness, Reverse

Mathematics and Higher Computability Theory (Monin and

Patey, PiL, to appear)
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