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First-order language for a functional signature

A functional “signature” S consists of
finitely many function symbols and constants.
To build the first-order language for S,

m start with equations

s(xy, ... xy) = t(xy, ..., TE),
where the x; are variables, and s and ¢ are terms containing
these variables and the symbols in the signature;

m build formulas from equations using —, A, V, —, dz, V.

A (first-order) sentence ¢ is a formula in which all the variables are
bound. M = ¢, for an S-structure M, denotes that ¢ holds in M.
(This doesn’t depend on any objects external to M.)



Examples of first-order sentences for groups

m Let ¢ be the sentence VaVy [x,y] = e. For a group G,
G |= ¢ expresses that G is abelian.

m The following sentence expresses that every commutator is a
product of three squares:
VuVoIrds3t [u,v] = r?s*t?
Strictly speaking, the signature for groups has a constant e, unary
function symbol f, and a binary function symbol g.
[,y] denotes the term ggfx fygzry, and the expression above is

shorthand for VuVv3rds3t ggfzfygry = gggrrgssgtt.

Th(G) is the set of all sentences that hold in G.
Does it know whether G is torsion free? periodic? finitely
generated?
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First-order definability

Given an S-structure M, one says that a relation R C M* is
definable in M if there is a formula ¢(x1, ..., xx) such that

R={(a1,...,ar): M E ¢(ay,...,ax)}.

Example:
the ordering relation < is definable in the ring Z via the formula

O(z,y) = 21320323324 (2 + 2121 + 2020 + 2323 + 2424 = V).



Finitely axiomatisable in the f.g. groups

Question (N., 2003)

Which infinite, f.g. groups can it be described (up to isomorphism)
by a finite axiom system in first-order logic,
within the class of f.g. groups?

Such a group is called quasi finitely axiomatisable (QFA). Taking
the conjunction of a finite axiom system, the formal definition is:

Definition (N., 2003)

An infinite f.g. group G is called quasi-finitely axiomatizable (QFA)
if there is a first—order sentence ¢ such that

m ¢ holds in G,
m if H is a f.g. group such that ¢ holds in H, then G = H.
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Finitely axiomatisable in the f.g. groups

Many interesting groups are QFA.

= N, 2003:
Baumslag-Solitar groups B(1,m) for m > 2,
restricted wreath product (Z/pZ)Z for p a prime (not f.p.)
Heisenberg group UT3(Z).

m Lasserre, 2014: Thompson groups F' and T'; note 7' is simple.

m Avni and Meiri, 2023: Certain higher rank arithmetic lattices,
such as SL3(Z). Also PSL,(Z) for n > 3.

In contrast, the free groups F,, (n > 1) are not QFA:
For n = 1 one uses quantifier elimination for the theory of abelian
groups. For n > 2 we have F,, = F, (Khar., Myasnikov; Sela).



Algebraic methods and logical methods

m The groups in N. 2003 where shown to be QFA using algebraic
methods. One exploits the structure: for instance both
B(1,m) and (Z/pZ) Z are split extensions A x Z with
definable components, and commutators form a subgroup.

m Lasserre 2014 (Thompson groups) and Avni and Meiri 2023
(arithmetic lattices) show bi-interpretability in parameters
with the ring Z, which implies being QFA.

m UT5(Z) is QFA, but Khelif (2007) has shown that UT3(Z) is
not bi-interpretable with Z.

For a survey of results up to 2007 see

N., Describing Groups, Bull. Symb. Logic, the last two sections.



Algebraic method: axioms for

B(l,m)=Z[1/m| x Z

Write a conjunction ¢ (d) of first-order properties of an element d in a
group G so that B(1,m) is QFA via the sentence 3d(d). We have
B(1,m) = A x (d) where A = Z[1/m].

Given a group G, as first axiom require that the commutators are closed
under product. Then G’ and hence A = {g: ¢™ ! € G'} are definable.

Let u,v range over elements of A and x,y over elements of C' := C(d).
Further conditions involving d:

m A and C abelian, |[A: A9 =¢q, |C:C? =2, and G = A x C,
m Conjugation action of C' — {1} on A — {1} has no fixed points.
m Vu[d lud = u™;

m The map u +— u? is 1-1, for a fixed prime ¢ not dividing m;



Bi-interpretability of structure M with the ring Z

Bi-interpretability of structures M, N is a property from logic,
implying that the structures are model-theoretically equivalent.

Bi-interpretability of M with the ring Z is equivalent to:
m M is interpretable in Z as a ring (usually easy to show).

m There is a copy R of Z defined in M, together with a definable
injection a: M — R (the main work).

Mnemonic for this definition: M is a house, R its architectural plan
stored inside, a(g) is the piece of the plan that encodes g.

Often we can define R as a subset of M. But sometimes it’s
necessary to represent the elements of R by equivalence classes of
k-tuples for fixes k. See again N., Bull. Symb. Logic, 2007.



Examples of bi-interpretability with Z

Definition of bi-interpretability with the ring Z (recall)
M is bi-interpretable with Z if M is interpretable in Z as a ring and

there is a copy R of Z defined in M, together with a definable injection
a: M — R.

m Let M = Q. The copy R of Z is the natural one, f.o. definable
in Q (J. Robinson). Now let
alq)=(r,s)iff s>0A (r,s) =1 ANgs=r.
m Let M = (N, +, x).
The additive group of the copy R of Z is the difference group,
defined on equivalence classes of pairs: (a,b) ~ (c,d) iff
a+d=0b+ c. Can also define x. Let a(n) = (n,0)/ ~.
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Bi-interpretability in params with Z

Definition

We say that a structure M is Bl in parameters with Z if (M, a) is

BI with Z, for some tuple of constants a € M™.

Example:

m The ring Z[X] is BI with Z using parameter X.
The internal copy R of Z is the natural one, the set of
polynomials of degree 0 (Khelif, see N. 2007).

m We need a parameter, because the ring Z[X] has nontrivial
automorphisms, so it’s no BI with Z.



Bi-interpretability in params with Z implies QFA

Theorem (Khelif, N.)

Let M be a finitely generated S structure such that M is
bi-interpretable in parameters with Z.
Then M is FA in the finitely generated S-structures.

m Via the finite axiom system, the ring R interpreted in (N, @) is
required to satisfy basic axioms of arithmetic.

m Finite generation of M implies that R is “standard”.

m So it must be isomorphic to Z, whence N = M.

Khelif in a 2-page announcement (C. R. Math. Acad. Sci. Paris 345,
59-61, 2007) stated this result.
A full proof of a more general result is in N. 2007, Th 7.15.



Thompson groups F' and T'

F < T, and T is simple. Both F' and T are f.p. F'is the group of
continuous bijections of [0, 1] that are piecewise linear, and

m nondifferentiable only at dyadic rationals
m all slopes are of the form 2% z € Z.

T: same conditions, except that the functions are merely

continuous when 0, 1 are identified. (Can jump from 1 to 0.)



F' is Bl in parameters with Z: Step 1

Lasserre (2014) proved that F is Bl in parameters with Z.
The proof has three steps. Below all f.o. definitions can involve
parameters.

Step 1: defined copies of Z Z.

m For any f € F such that the bicentraliser CC(f) = (f), there
is g € F such that (g, f) is naturally isomorphic to the
restricted wreath product (g) 2 (f).

m This enables us to parameter-define a copy of the ring Z on
(f) via sum and also product of exponents.



F' is Bl in parameters with Z: Step 2

For f € F let Supp(f) = {z € [0,1]: f(z) # z}.
Interpret inside F' the action of F on Z[3] N[0, 1].

m Represent a dyadic rational g by any pair of functions
(f,g9) € F? such that Supp(f) C Supp(g), both supports are
open intervals, and ¢ is their common extreme point.

m Can f.o.-define in F this set D of pairs, as well as the
equivalence relation ~ that two pairs represent the same
dyadic rational, and the linear ordering on D/ ~.

m Can also f.o.-define the action F' ~ D/ ~.

m Let a be the first standard generator of F'.

m Use a f.o. defined copy of Z (a) to define a 1 — 1 map
7: (D/ ~) — (a) such that 7(¢q) = (k,n) (Cantor pairing
function) where ¢ is the rational k27", k odd.



F'is Bl in parameters with Z: Step 3

m Any f € F can be described by a fixed number of integers,
and the breakpoints of f.

m Within the ring Z, tuples can be definably encoded by single
integers.

m This gives the 1-1 map a: F — (a).

To show that the simple Thompson group 7" is Bl in params
with Z, Lasserre gives a f.o. definition of F'in 7', and then extends
some of the definability arguments above to T'.
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Finite axiomatizability

within classes of

profinite groups and rings
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Reference classes other than f.g.

We now look at finite axiomatisability for other reference classes C.
Is G € C uniquely described by a f.o. sentence?

m For instance, let C be the class of homeomorphism groups of
compact, connected manifolds M.

m Kim, Koberda and de la Nuez Gonzalez (2023) show that each
G € C is FA with respect to C.

m For each such M they construct sentence ¢, in the language
of groups such that G = Homeo(L) = ¢y, iff M = L, for each
compact connected manifold L.

m In fact ¢, works for each group G such that
Homeoy(L) < G < Homeo(L).



Definition of profinite group

A countably based topological group G is called profinite if G is
the inverse limit of a system (G,,),en of finite groups carrying the
discrete topology.

The profinite groups coincide with the compact groups such that
the clopen sets form a basis.

A similar definition works for other structures, such as rings. For
instance, Z, = @n Cpn as rings, with the maps Cyni1 — Cpn given
by x +— (z mod p").

This implies that matrix groups such as UT(Z,) and SLk(Z,),
k > 2 are profinite: SLi(Z,) = Hm_ SLi(Cypn).



pro-C-groups, pro-C completions

Let C be a class of finite groups with some nice properties (e.g.
closed under isomorphism, taking quotients). A group is called
pro-C if it is an inverse limit of a system of finite groups in C.

The pro-C-completion of a discrete group G is the topological

inverse limit

G= hm G /N,
N
where N ranges over the normal subgroups such that G/N € C.

m If C = finite groups, we have the profinite completion

m [f C = finite pro-p groups, we have the pro-p completion.

If G is residually C, then the natural map G — G is an embedding.



Finite axiomatisability within profinite groups

An infinite, profinite group G is called finitely axiomatisable (FA)
within the profinite groups if there is a first-order sentence ¢ in the
language of groups such that for each profinite group H,

HE¢<— H==G.
Here = denotes topological isomorphism.
UT5(Z,) is perhaps the easiest example of a profinite FA group.

Other classes of profinite structures where being FA is interesting:

m pro-p groups (should be easier than for all profinite groups),

m profinite rings, etc.



The ring of p-adic integers is FA in profinite rings

Proof: Write pzx for x + ... + .
%/_/

p times
Let ¢, be the sentence of L,;,, expressing for a ring R:
pr=0=2=0
Ve[Jypy =z V Izzz = 1]
|R/pR| = p.

Clearly Z, = ¢,. Suppose that R = ¢, where R is a profinite ring.
m Then (R, +) is a pro-p group, since it is abelian, and for each
prime g # p we have ¢R = R.
m the other conditions then imply that (R, +) is also procyclic
and torsion-free.

It follows that R = Z, as topological rings.



FA for nilpotent groups

Theorem (Oger/Sabbagh 2006)

For an infinite, f.g. nilpotent group G,
G is FA in the f.g. groups <= Z(G)/(Z(G) N G') is finite.

One can replace “finite” by “torsion” because any f.g. nilpotent
torsion group is finite. So the condition says that each central
element has a power in G'.

We prove a profinite version of this result. Special case:

Theorem (N., Segal and Tent, Proc. LMS 2021)

Let G be the pro-p completion of a f.g. nilpotent group.
G is FA in the profinite groups <= Z(G)/(Z(G) N G') is torsion.



Theorem (N., Segal and Tent 21, recall )

Let G be the pro-p completion of a f.g. nilpotent group.

G is FA in the profinite groups <= Z(G)/(Z(G) N G') is torsion.
Example: UT5(Z,) is the pro—p completion of UT5(Z) and
satisfies the O/S condition, so it is FA in the profinite groups.

m There are uncountably many non-isomorphic nilpotent of class
2 pro—p groups satisfying the condition of Oger and Sabbagh
(NST, 21). So not all of them can be FA.

m For general nilpotent pro-p groups G, the equivalence above
holds for being finitely axiomatisable in an extended language:

m it includes finitely many unary functions fy, A € Z,, where
fr(z) = lim, 23", These \’s depend on G.
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Examples of profinite objects that are not FA

N., Segal and Tent, 2021:
» Let S be a set of primes and let Rg denote the profinite ring

[I,esZp- If S is infinite then Rg is not FA in the profinite rings.

» The proof uses the Feferman-Vaught theorem from model
theory, which determines the validity of sentences in a direct
product from the validity of related sentences in the

components.

» The group UT;s(Rg) is FA iff S is finite.
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Finite rank, and p-adic analytic groups

m For a profinite group G, by d(G) one denotes the minimal
number of topological generators.

m The (Priifer) rank is r(G) = sup{d(H): H <. G}.

Lazard (1965) studied p-adic analytic groups, the analog of Lie
groups in the totally disconnected setting:

» A pro-p group is p-adic analytic iff it has finite rank.
» A topological group G is p-adic analytic iff it has an open
subgroup P that is pro-p and has finite rank.
» P has a “uniformly powerful” normal open subgroup U.
This means that U is torsion-free, and U/U? is abelian.
Note: Charts are defined via open subsets of Zg.
Analytic means described by power series over Q,,.



Finite rank pro-p groups and finite axiomatisation

Let L, be the uncountable language extending Ly, by a unary
function symbol fy for each A € Z,, interpreted as x — z*.

Theorem (NST, 21)

(a) Each finite rank pro-p group G is finitely axiomatizable using
the language L, within the pro-p groups. (Le., we need finitely
many exponential operations in the language to determine G.)

(b) If G is strictly finitely presented, then an axiom determining G
can be chosen in the basic language L gyoup-

Here G is called strictly finitely presented if it is the pro-p completion of
a f.p. group.



Theorem (Recall)
Each finite rank pro-p group G is finitely axiomatizable within the

pro-p groups using the language L.

Two ideas in the proof:

1. For each d > 1 there is a formula S4(z1,...,x,) that, given a pro-p
group G, expresses that n elements topologically generate G.

This uses that Frat(G) is definable from generators ay,...,aq of G (if
they exists), and then Frat(G) has finite index in G. (See Prop 5.3 in
NST '21.)

2. Let d be least number of generators (same as dimension of a p-adic
manifold G lives on). Then any proper quotient has smaller dimension.

Now we describe G as (a) a group of dimension d, that is (b) generated
by elements z1, ..., x4 which (c) satisfy a certain presentation of G.
(See Th. 5.15 in NST ’21.)



Theorem (Chevalley groups over Z, that are FA)

Let p be an odd prime. Suppose p does not divide n > 2. The
groups SL,(Z,) and PSL,(Z,) are FA within the profinite groups.

m The proof uses the first congruence subgroup G = SL; (Z,). This is
the kernel of the natural map SL,(Z,) — SL,(C)), where C,, is the
cyclic group of order p.

m In G we look at definable closed root subgroups U, V.

For n > 3, they are nilpotent and satisfy the Oger-Sabbagh
condition, and hence can be f.o. described among all profinite
groups. (For n = 2 describe them as (Z,, +) in the context.)

m Next write some axioms that hold in G, and if profinite group H
also satisfies them it is pro-p.

m Now we can use that strictly finitely presented pro-p groups of
finite rank are FA within the pro—p groups.



Finitely generated pro—p groups of infinite rank

Examples:
m [, ,, the pro-p completion of the free group F,, for n > 2
n Cp?Zp, the pro-p completion of C,? Z

An ad-hoc argument establishes an analog of the result (N., 2003)
that C,Z is FA in the f.g. groups:

Theorem (N. Segal and Tent ‘21, Prop 4.5)

C,,?Zp is FA within the profinite groups.

The abstract free groups F;, are not FA in the f.g. groups. It is
unknown at present whether the £}, , are FA in pro-p groups.



Separating classes of groups by their theories

The main object of study in the “QFA paper” [N., 2003] was in fact
the first-order separation of isomorphism invariant classes of groups
C C D. Can one distinguish such classes using first-order logic?

Definition. We say that C and D are first-order separable if some
sentence holds in all groups in C but fails in some group in D.

m This is interesting when the classes are not axiomatizable.

m One way to separate the classes is to find an FA witness:
a group in D — C that is FA within D.



First-order separations

Theorem (N., Segal and Tent, 21)
(a) The finite rank pro-p groups are f.o. separable from the
(topologically) finitely generated pro-p groups.

(b) The f.g. profinite groups are f.o. separable from the class of all
profinite groups. The same holds within the pro-p groups.

Proof.
(a) A witness (i.e., FA in the larger class, and not element of the
smaller) is the pro-p completion of C, Z.

(b) A witness is the affine group Af;(R), where R is the profinite

ring [, [[t]].
Afi(R) is R x R* with (R*,-) acting on (R, +) by
multiplication.



Some open questions

» Are profinite free groups of finite dimension FA? Same for free
pro-p groups.
(Segal has recent results showing FA in the profinite group for
free metabelian pro p groups.)

» Complexity questions in the sense of descriptive set theory. For
instance, given a f.o. sentence ¢, how complex is the class of
concrete profinite groups satisfying it? (Trival upper bound:
projective.)
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