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First–order language for a functional signature

A functional “signature” S consists of

finitely many function symbols and constants.

To build the first-order language for S,
start with equations

s(x1, . . . , xk) = t(x1, . . . , xk),

where the xi are variables, and s and t are terms containing

these variables and the symbols in the signature;

build formulas from equations using ¬,∧,∨,→,∃x,∀x.

A (first-order) sentence ϕ is a formula in which all the variables are

bound. M |= ϕ, for an S-structure M , denotes that ϕ holds in M .

(This doesn’t depend on any objects external to M .)
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Examples of first-order sentences for groups

Let ϕ be the sentence ∀x∀y [x, y] = e. For a group G,

G |= ϕ expresses that G is abelian.

The following sentence expresses that every commutator is a

product of three squares:

∀u∀v∃r∃s∃t [u, v] = r2s2t2

Strictly speaking, the signature for groups has a constant e, unary

function symbol f , and a binary function symbol g.

[x, y] denotes the term ggfxfygxy, and the expression above is

shorthand for ∀u∀v∃r∃s∃t ggfxfygxy = gggrrgssgtt.

Th(G) is the set of all sentences that hold in G.

Does it know whether G is torsion free? periodic? finitely

generated?
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First-order definability

Given an S-structure M , one says that a relation R ⊆Mk is

definable in M if there is a formula ϕ(x1, . . . , xk) such that

R = {(a1, . . . , ak) : M |= ϕ(a1, . . . , ak)}.

Example:

the ordering relation ≤ is definable in the ring Z via the formula

ϕ(x, y) ≡ ∃z1∃z2∃z3∃z4(x+ z1z1 + z2z2 + z3z3 + z4z4 = y).
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Finitely axiomatisable in the f.g. groups

Question (N., 2003)

Which infinite, f.g. groups can it be described (up to isomorphism)

by a finite axiom system in first-order logic,

within the class of f.g. groups?

Such a group is called quasi finitely axiomatisable (QFA). Taking

the conjunction of a finite axiom system, the formal definition is:

Definition (N., 2003)

An infinite f.g. group G is called quasi-finitely axiomatizable (QFA)

if there is a first–order sentence ϕ such that

ϕ holds in G;

if H is a f.g. group such that ϕ holds in H, then G ∼= H.
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Finitely axiomatisable in the f.g. groups

Many interesting groups are QFA.

N., 2003:

Baumslag-Solitär groups B(1,m) for m ≥ 2,

restricted wreath product (Z/pZ) ≀ Z for p a prime (not f.p.)

Heisenberg group UT3(Z).
Lasserre, 2014: Thompson groups F and T ; note T is simple.

Avni and Meiri, 2023: Certain higher rank arithmetic lattices,

such as SL3(Z). Also PSLn(Z) for n ≥ 3.

In contrast, the free groups Fn (n ≥ 1) are not QFA:

For n = 1 one uses quantifier elimination for the theory of abelian

groups. For n ≥ 2 we have Fn ≡ F2 (Khar., Myasnikov; Sela).
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Algebraic methods and logical methods

The groups in N. 2003 where shown to be QFA using algebraic

methods. One exploits the structure: for instance both

B(1,m) and (Z/pZ) ≀ Z are split extensions A⋊ Z with

definable components, and commutators form a subgroup.

Lasserre 2014 (Thompson groups) and Avni and Meiri 2023

(arithmetic lattices) show bi-interpretability in parameters

with the ring Z, which implies being QFA.

UT3(Z) is QFA, but Khelif (2007) has shown that UT3(Z) is
not bi-interpretable with Z.

For a survey of results up to 2007 see

N., Describing Groups, Bull. Symb. Logic, the last two sections.
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Algebraic method: axioms for

B(1,m) = Z[1/m]⋊ Z
Write a conjunction ψ(d) of first-order properties of an element d in a

group G so that B(1,m) is QFA via the sentence ∃dψ(d). We have

B(1,m) = A⋊ ⟨d⟩ where A = Z[1/m].

Given a group G, as first axiom require that the commutators are closed

under product. Then G′ and hence A = {g : gm−1 ∈ G′} are definable.

Let u, v range over elements of A and x, y over elements of C := C(d).

Further conditions involving d:

A and C abelian, |A : Aq| = q, |C : C2| = 2, and G = A⋊ C,

Conjugation action of C − {1} on A− {1} has no fixed points.

∀u [d−1ud = um];

The map u 7→ uq is 1-1, for a fixed prime q not dividing m;

u is not conjugate to u−1 for all u ̸= 1. 8 / 34



Bi-interpretability of structure M with the ring Z

Bi-interpretability of structures M,N is a property from logic,

implying that the structures are model-theoretically equivalent.

Bi-interpretability of M with the ring Z is equivalent to:

M is interpretable in Z as a ring (usually easy to show).

There is a copy R of Z defined in M , together with a definable

injection α : M → R (the main work).

Mnemonic for this definition: M is a house, R its architectural plan

stored inside, α(g) is the piece of the plan that encodes g.

Often we can define R as a subset of M . But sometimes it’s

necessary to represent the elements of R by equivalence classes of

k-tuples for fixes k. See again N., Bull. Symb. Logic, 2007.
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Examples of bi-interpretability with Z

Definition of bi-interpretability with the ring Z (recall)
M is bi-interpretable with Z if M is interpretable in Z as a ring and

there is a copy R of Z defined in M , together with a definable injection

α : M → R.

Let M = Q. The copy R of Z is the natural one, f.o. definable

in Q (J. Robinson). Now let

α(q) = ⟨r, s⟩ iff s > 0 ∧ (r, s) = 1 ∧ qs = r.

Let M = (N,+,×).
The additive group of the copy R of Z is the difference group,

defined on equivalence classes of pairs: ⟨a, b⟩ ∼ ⟨c, d⟩ iff
a+ d = b+ c. Can also define ×. Let α(n) = ⟨n, 0⟩/ ∼.
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Bi-interpretability in params with Z

Definition
We say that a structure M is BI in parameters with Z if (M,a) is

BI with Z, for some tuple of constants a ∈Mn.

Example:

The ring Z[X] is BI with Z using parameter X.

The internal copy R of Z is the natural one, the set of

polynomials of degree 0 (Khelif, see N. 2007).

We need a parameter, because the ring Z[X] has nontrivial

automorphisms, so it’s no BI with Z.
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Bi-interpretability in params with Z implies QFA

Theorem (Khelif, N.)

Let M be a finitely generated S structure such that M is

bi-interpretable in parameters with Z.
Then M is FA in the finitely generated S-structures.

Via the finite axiom system, the ring R interpreted in (N, a) is

required to satisfy basic axioms of arithmetic.

Finite generation of M implies that R is “standard”.

So it must be isomorphic to Z, whence N ∼= M .

Khelif in a 2-page announcement (C. R. Math. Acad. Sci. Paris 345,

59-61, 2007) stated this result.

A full proof of a more general result is in N. 2007, Th 7.15.
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Thompson groups F and T

F ≤ T , and T is simple. Both F and T are f.p. F is the group of

continuous bijections of [0, 1] that are piecewise linear, and

nondifferentiable only at dyadic rationals

all slopes are of the form 2z, z ∈ Z.

Premiere présentation

The group F can be viewed as a subgroup of

the group of all piecewise linear homeomor-

phisms of [0,1]. To be in F a PL homeomor-

phism must:

• be differentiable at all but finitely many dyadic

rationals, and

• away from those break points the derivatives

are all powers of 2.

Here are two examples:

4

T : same conditions, except that the functions are merely

continuous when 0, 1 are identified. (Can jump from 1 to 0.)
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F is BI in parameters with Z: Step 1

Lasserre (2014) proved that F is BI in parameters with Z.
The proof has three steps. Below all f.o. definitions can involve

parameters.

Step 1: defined copies of Z ≀ Z.
For any f ∈ F such that the bicentraliser CC(f) = ⟨f⟩, there
is g ∈ F such that ⟨g, f⟩ is naturally isomorphic to the

restricted wreath product ⟨g⟩ ≀ ⟨f⟩.
This enables us to parameter-define a copy of the ring Z on

⟨f⟩ via sum and also product of exponents.
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F is BI in parameters with Z: Step 2

For f ∈ F let Supp(f) = {x ∈ [0, 1] : f(x) ̸= x}.
Interpret inside F the action of F on Z[1

2
] ∩ [0, 1].

Represent a dyadic rational q by any pair of functions

(f, g) ∈ F 2 such that Supp(f) ⊂ Supp(g), both supports are

open intervals, and q is their common extreme point.

Can f.o.-define in F this set D of pairs, as well as the

equivalence relation ∼ that two pairs represent the same

dyadic rational, and the linear ordering on D/ ∼.
Can also f.o.-define the action F ↷ D/ ∼.
Let a be the first standard generator of F .

Use a f.o. defined copy of Z ≀ ⟨a⟩ to define a 1− 1 map

τ : (D/ ∼)→ ⟨a⟩ such that τ(q) = ⟨k, n⟩ (Cantor pairing
function) where q is the rational k2−n, k odd.
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F is BI in parameters with Z: Step 3

Any f ∈ F can be described by a fixed number of integers,

and the breakpoints of f .

Within the ring Z, tuples can be definably encoded by single

integers.

This gives the 1-1 map α : F → ⟨a⟩.

To show that the simple Thompson group T is BI in params

with Z, Lasserre gives a f.o. definition of F in T , and then extends

some of the definability arguments above to T .
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Finite axiomatizability

within classes of

profinite groups and rings
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Reference classes other than f.g.

We now look at finite axiomatisability for other reference classes C.
Is G ∈ C uniquely described by a f.o. sentence?

For instance, let C be the class of homeomorphism groups of

compact, connected manifolds M .

Kim, Koberda and de la Nuez Gonzalez (2023) show that each

G ∈ C is FA with respect to C.
For each such M they construct sentence ϕM in the language

of groups such that G = Homeo(L) |= ϕM iff M ∼= L, for each

compact connected manifold L.

In fact ϕM works for each group G such that

Homeo0(L) ≤ G ≤ Homeo(L).
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Definition of profinite group

A countably based topological group G is called profinite if G is

the inverse limit of a system ⟨Gn⟩n∈N of finite groups carrying the

discrete topology.

The profinite groups coincide with the compact groups such that

the clopen sets form a basis.

A similar definition works for other structures, such as rings. For

instance, Zp = lim←−n
Cpn as rings, with the maps Cpn+1 → Cpn given

by x 7→ (x mod pn).

This implies that matrix groups such as UTk(Zp) and SLk(Zp),

k ≥ 2 are profinite: SLk(Zp) = lim←−n
SLk(Cpn).

19 / 34



pro-C-groups, pro-C completions

Let C be a class of finite groups with some nice properties (e.g.

closed under isomorphism, taking quotients). A group is called

pro-C if it is an inverse limit of a system of finite groups in C.

The pro-C-completion of a discrete group G is the topological

inverse limit

Ĝ = lim←−
N

G/N,

where N ranges over the normal subgroups such that G/N ∈ C.

If C = finite groups, we have the profinite completion

If C = finite pro-p groups, we have the pro-p completion.

If G is residually C, then the natural map G→ Ĝ is an embedding.
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Finite axiomatisability within profinite groups

An infinite, profinite group G is called finitely axiomatisable (FA)

within the profinite groups if there is a first-order sentence ϕ in the

language of groups such that for each profinite group H,

H |= ϕ⇐⇒ H ∼= G.

Here ∼= denotes topological isomorphism.

UT3(Zp) is perhaps the easiest example of a profinite FA group.

Other classes of profinite structures where being FA is interesting:

pro-p groups (should be easier than for all profinite groups),

profinite rings, etc.
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The ring of p-adic integers is FA in profinite rings

Proof: Write px for x+ . . .+ x︸ ︷︷ ︸
p times

.

Let ϕp be the sentence of Lring expressing for a ring R:

px = 0⇒ x = 0

∀x[∃y py = x ∨ ∃z xz = 1]

|R/pR| = p.

Clearly Zp |= ϕp. Suppose that R |= ϕp where R is a profinite ring.

Then (R,+) is a pro-p group, since it is abelian, and for each

prime q ̸= p we have qR = R.

the other conditions then imply that (R,+) is also procyclic

and torsion-free.

It follows that R ∼= Zp as topological rings.
22 / 34



FA for nilpotent groups

Theorem (Oger/Sabbagh 2006)

For an infinite, f.g. nilpotent group G,

G is FA in the f.g. groups ⇐⇒ Z(G)/(Z(G) ∩G′) is finite.

One can replace “finite” by “torsion” because any f.g. nilpotent

torsion group is finite. So the condition says that each central

element has a power in G′.

We prove a profinite version of this result. Special case:

Theorem (N., Segal and Tent, Proc. LMS 2021)

Let G be the pro-p completion of a f.g. nilpotent group.

G is FA in the profinite groups ⇐⇒ Z(G)/(Z(G) ∩G′) is torsion.
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Theorem (N., Segal and Tent 21, recall )

Let G be the pro-p completion of a f.g. nilpotent group.

G is FA in the profinite groups ⇐⇒ Z(G)/(Z(G) ∩G′) is torsion.

Example: UT3(Zp) is the pro−p completion of UT3(Z) and
satisfies the O/S condition, so it is FA in the profinite groups.

There are uncountably many non-isomorphic nilpotent of class

2 pro−p groups satisfying the condition of Oger and Sabbagh

(NST, 21). So not all of them can be FA.

For general nilpotent pro-p groups G, the equivalence above

holds for being finitely axiomatisable in an extended language:

it includes finitely many unary functions fλ, λ ∈ Zp, where

fλ(x) = limn x
λ↾n. These λ’s depend on G.
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Examples of profinite objects that are not FA

N., Segal and Tent, 2021:

▶ Let S be a set of primes and let RS denote the profinite ring∏
p∈S Zp. If S is infinite then RS is not FA in the profinite rings.

▶ The proof uses the Feferman-Vaught theorem from model

theory, which determines the validity of sentences in a direct

product from the validity of related sentences in the

components.

▶ The group UT3(RS) is FA iff S is finite.
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Finite rank, and p-adic analytic groups

For a profinite group G, by d(G) one denotes the minimal

number of topological generators.

The (Prüfer) rank is r(G) = sup{d(H) : H ≤c G}.

Lazard (1965) studied p-adic analytic groups, the analog of Lie

groups in the totally disconnected setting:

▶ A pro-p group is p-adic analytic iff it has finite rank.

▶ A topological group G is p-adic analytic iff it has an open

subgroup P that is pro-p and has finite rank.

▶ P has a “uniformly powerful” normal open subgroup U .

This means that U is torsion-free, and U/Up is abelian.

Note: Charts are defined via open subsets of Zd
p.

Analytic means described by power series over Qp.

See “Analytic pro-p groups”, Dixon et al., 2003. 26 / 34



Finite rank pro-p groups and finite axiomatisation

Let Lp be the uncountable language extending Lgroup by a unary

function symbol fλ for each λ ∈ Zp, interpreted as x→ xλ.

Theorem (NST, 21)

(a) Each finite rank pro-p group G is finitely axiomatizable using

the language Lp within the pro-p groups. (I.e., we need finitely

many exponential operations in the language to determine G.)

(b) If G is strictly finitely presented, then an axiom determining G

can be chosen in the basic language Lgroup.

Here G is called strictly finitely presented if it is the pro-p completion of

a f.p. group.
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Theorem (Recall)

Each finite rank pro-p group G is finitely axiomatizable within the

pro-p groups using the language Lp.

Two ideas in the proof:

1. For each d ≥ 1 there is a formula βd(x1, . . . , xn) that, given a pro-p

group G, expresses that n elements topologically generate G.

This uses that Frat(G) is definable from generators a1, . . . , ad of G (if

they exists), and then Frat(G) has finite index in G. (See Prop 5.3 in

NST ’21.)

2. Let d be least number of generators (same as dimension of a p-adic

manifold G lives on). Then any proper quotient has smaller dimension.

Now we describe G as (a) a group of dimension d, that is (b) generated

by elements x1, . . . , xd which (c) satisfy a certain presentation of G.

(See Th. 5.15 in NST ’21.)
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Theorem (Chevalley groups over Zp that are FA)

Let p be an odd prime. Suppose p does not divide n ≥ 2. The

groups SLn(Zp) and PSLn(Zp) are FA within the profinite groups.

The proof uses the first congruence subgroup G = SL1
n(Zp). This is

the kernel of the natural map SLn(Zp)→ SLn(Cp), where Cp is the

cyclic group of order p.

In G we look at definable closed root subgroups U, V .

For n ≥ 3, they are nilpotent and satisfy the Oger-Sabbagh

condition, and hence can be f.o. described among all profinite

groups. (For n = 2 describe them as (Zp,+) in the context.)

Next write some axioms that hold in G, and if profinite group H

also satisfies them it is pro-p.

Now we can use that strictly finitely presented pro-p groups of

finite rank are FA within the pro−p groups.
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Finitely generated pro−p groups of infinite rank

Examples:

Fn,p, the pro-p completion of the free group Fn, for n ≥ 2

Cp̂≀Zp, the pro-p completion of Cp ≀ Z

An ad-hoc argument establishes an analog of the result (N., 2003)

that Cp ≀ Z is FA in the f.g. groups:

Theorem (N. Segal and Tent ‘21, Prop 4.5)

Cp̂≀Zp is FA within the profinite groups.

The abstract free groups Fn are not FA in the f.g. groups. It is

unknown at present whether the Fn,p are FA in pro-p groups.
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Separating classes of groups by their theories

The main object of study in the “QFA paper” [N., 2003] was in fact

the first-order separation of isomorphism invariant classes of groups

C ⊂ D. Can one distinguish such classes using first-order logic?

Definition. We say that C and D are first-order separable if some

sentence holds in all groups in C but fails in some group in D.

This is interesting when the classes are not axiomatizable.

One way to separate the classes is to find an FA witness:

a group in D − C that is FA within D.
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First-order separations

Theorem (N., Segal and Tent, 21)

(a) The finite rank pro-p groups are f.o. separable from the

(topologically) finitely generated pro-p groups.

(b) The f.g. profinite groups are f.o. separable from the class of all

profinite groups. The same holds within the pro-p groups.

Proof.

(a) A witness (i.e., FA in the larger class, and not element of the

smaller) is the pro-p completion of Cp ≀ Z.

(b) A witness is the affine group Af1(R), where R is the profinite

ring Fp[[t]].

Af1(R) is R⋊R× with (R×, ·) acting on (R,+) by

multiplication.
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Some open questions

▶ Are profinite free groups of finite dimension FA? Same for free

pro-p groups.

(Segal has recent results showing FA in the profinite group for

free metabelian pro p groups.)

▶ Complexity questions in the sense of descriptive set theory. For

instance, given a f.o. sentence ϕ, how complex is the class of

concrete profinite groups satisfying it? (Trival upper bound:

projective.)
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