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The plan

1. Profinite groups and their computable presentations

2. Algorithmic randomness in computable profinite groups

3. Fractal dimensions of closed subgroups

December 12, 2024 2 / 35



I. Profinite groups and

their computable presentations
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Profinite groups as inverse limits

An inverse system is a sequence (Gn, pn)n∈N where the Gn are

finite groups, and the pn : Gn+1 → Gn are homomorphisms.

Its inverse limit is the topological group G = lim←−n
(Gn, pn), given

up to isomorphism by a universal property from category theory.

A separable topological group G is called profinite if

it is isomorphic to such an inverse limit.

G will always denote a profinite group, with a specified inverse

system.
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Inverse limit as group on a path space (1)
An inverse system (Gn, pn)n∈N, with G0 trivial, yields a finitely

branching rooted tree T . The n-th level consists of Gn;

the predecessor relation is given by the pn : Gn+1 → Gn.

e44 OO jj

0== OO aa 1== OO aa 2== OO aa

00 10 20 01 11 21 02 12 22

· · ·

The first levels of the tree for Z3, the 3-adic integers.

G1 = C3, G2 = C9, etc.
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Inverse limit as group on a path space (2)
Recall: an inverse system (Gn, pn)n∈N, with G0 trivial, yields a finitely

branching rooted tree T . The n-th level consists of Gn; the predecessor

relation is given by the pn : Gn+1 → Gn.

As the domain of the inverse limit one can concretely take the path

space [T ].

Its neutral element is the path consisting of the neutral elements in

the Gn’s.

The group multiplication is given by

f · g =
⋃

n [f ↾n ·g ↾n] for f, g ∈ [T ].

Similarly for inverse operation.

These operations are continuous w.r.t. the topology on [T ].
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Examples of profinite groups (1)
Let (Zp,+) = lim←−n

Cpn where p is prime and Cpn is the cyclic

group of size pn.

Via the view as a tree, the elements of Zp can be encoded by
infinite sequences of digits in {0, . . . , p− 1}, with addition via
the usual carry digits. Say p = 3:

. . . 1 2 1 1 1

+ . . . 0 2 1 2 0

= . . . 2 2 0 0 1

This is a pro-p group: all the Gn are p-groups.

Let k ≥ 2. Since Zp is in fact a profinite ring, matrix groups

such as upper unitriangular UTk(Zp), and special linear

SLk(Zp) are profinite.

For instance, SLk(Zp) = lim←−n
SLk(Cpn).
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Examples of profinite groups (2)

An extension of fields K/k is Galois if it is algebraic, normal, and

separable.

Its Galois group G = Gal(K/k) consist of the automorphisms of K

that fix k pointwise.

G = Gal(K/k) is a profinite group with the Krull topology:

If K =
⋃

i∈N Li, where Li+1 ≥ Li and each Li is a normal

finite extension of k, then G ∼= lim←−i
Gal(Li/k).

Galois correspondence

Fields L with K ≥ L ≥ k correspond to closed subgroups of G.

In the forward direction, send L to its pointwise stabiliser in G.
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Residually finite groups, and profinite completions

A countable group L is called residually finite if for each w ∈ L,

w ̸= e, there is a finite quotient Q of L such that w ̸= e in Q.

For such L, there is a descending sequence of normal subgroups

(Rn)n∈N of L such that ∃nRn ⊆ R for each subgroup of finite

index R. In particular,
⋂

n Rn = {e}.

L̂ = lim←−n
L/Rn is the profinite completion of L.

Up to isomorphism, it is independent of the choice of such a

sequence, by the universal property of inverse limits.

L embeds into L̂ via w 7→ (wRn)n∈N,

where wRn is the image of w in the quotient L/Rn.

Example: Ẑ = lim←−n
Z/n!Z is the profinite completion of (Z,+).

December 12, 2024 9 / 35



Co-c.e. and computable profinite groups

Recall: a profinite group is given by an inverse system (Gn, pn)n∈N;

the pn : Gn+1 → Gn are homomorphisms of finite groups.

Definition (Smith, 1981; LaRoche, 1981)

A co-c.e. profinite group G is given by a computable inverse system.

The group is called computable if in addition, all the pn’s are onto.

Theorem (Smith, 1981)

(i) Some co-c.e. profinite group G is not isomorphic to a

computable one. (ii) Each co-c.e. pro-p group is computable.

Proof. (i) let A be a properly Σ0
2 set of primes, and let G be a

co-c.e. presentation of
∏

p∈A Cp.

(ii) uses group theoretic methods such as Frattini subgroup.
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Co-c.e., and computable in terms of the tree
Recall that an inverse system (Gn, pn)n∈N yields a finitely branching

tree T with levels consisting of the Gn.

To say that G is co-c.e. means that the tree T computable

with computable branching, and

the operations at each level are uniformly computable.

To say G is computable means that also the tree has no leaves.

The neutral element of the group is given by a computable path.

Metakides and Nerode built an example of a computable profinite group

where there are no others.

Smith 1981 proved preservation properties for computable G.

For instance, the derived group G′ is computable, and G has a

computable p-Sylow subgroup for each prime p.
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Arbitrary effective tree ⇒ nice effective tree
Fact: a separable topological group is profinite ⇐⇒

it is compact and 0-dimensional (the clopen sets form basis).

If a topological structure for a finite functional signature σ is

compact 0-dimensional, then it has a copy whose domain is [T ] for

some finitely branching tree T .

To define co-c.e. σ-structures, ask that T is computable with

computable bound on branching, and operations computable.

To define computable σ-structures, ask that also T has no leaves.

Theorem (Smith 1981/ Melnikov and N., 2022 in l.c. context )

Suppose a profinite group has a co-c.e. [computable] presentation

in the general sense of topological algebra.

Then G has a co-c.e. [computable] presentation in the sense of

effective inverse systems. The conversion is uniform.December 12, 2024 12 / 35



Computably f.g. subgroups of profinite groups
Recall that a discrete group L is called residually finite if

each w ∈ L− {e} we have w ̸= e in some finite quotient of L.

The class of f.g. residually finite groups coincides with the

f.g. abstract subgroups of profinite groups. Effectivise?

The effective version of “finitely generated subgroup” is

computably f.g. subgroup:

an abstract subgroup of a computably profinite group

generated by finitely many computable paths.

We will characterize the computably f.g. subgroups L of

computable profinite groups by the following two conditions:

1: the word problem of L is Π0
1

2: L is effectively residually finite.
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Π-groups

Definition

A f.g. group L is called a Π-group if its word problem is Π0
1.

Thus, L = Fk/N for some k and a Π0
1 normal subgroup N of the

free group Fk.

Examples: all f.g. subgroups of the group Srec of computable

permutations of ω are Π-groups.

Morozov (Higman’s question revisited, 2000) constructed a

Π-group that is NOT of this kind.

Any computably f.g. subgroup of a computable profinite

group G is embedded into Srec, and hence a Π-group.

To verify this, use its action on the tree for (Gn, pn)n∈N.
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Effectively residually finite Π-groups (1)
Definition

A Π-group L = Fk/N is effectively residually finite (e.r.f.) if there

is an algorithm that on w ∈ Fk, in case w ̸∈ N computes a finite

quotient Q of L such that w ̸= e in the quotient. The quotient is

given by a homomorphism Fk → Q whose kernel contains N .

Proposition

The computably f.g. subgroups of computably profinite groups are

precisely the effectively residually finite Π-groups L.

The proof of right to left is by noting that there is a computable

embedding of L into a computable profinite group H, with images of

the generators of L computable.

(But this may not be the profinite completion L. To get this, we’d need

to be able to list all the finite index subgroups of L.)
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Effectively residually finite Π-groups (2)

Proposition (Recall)

The computably f.g. subgroups of computably profinite groups are

precisely the effectively residually finite (e.r.f.) Π-groups L.

As a consequence, each e.r.f. Π-group L is isomorphic to a

subgroup of the group of computable permutations.

For, the computable profinite group H ≥ L acts faithfully on

its computable tree T , and computable elements of H yield

computable permutations of T .

Question

Is there a f.g., residually finite Π-group that is not effectively r.f.?
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II. Algorithmic randomness in

computable profinite groups

Joint with Willem Fouché and Matteo Vannacci
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Haar measure

Any compact separable group has a unique translation invariant

probability measure, called its Haar measure, we denote by µ.

If G = lim←−n
Gn is profinite, this is the uniform measure on [T ],

where T is the tree given by the inverse system.

If G is computable and infinite, the usual algorithmic test notions

for Cantor space can be extended to the paths space [T ]. So we can

speak of Schnorr random elements of G etc.
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“Almost everywhere” results for k-tuples (1)

An “almost everywhere” result for a profinite group G asserts that

µk-almost every k-tuple g ∈ Gk satisfies some property of interest.

Recall Ẑ = lim←−n
Z/n!Z is the profinite completion of Z. For g ∈ Gk,

by ⟨g⟩ one denotes the closure of the subgroup generated by g.

Some “ almost everywhere” results for Ẑ (Jarden, Lubotzky):

(1) |Ẑ : ⟨g⟩| =∞ for a.e. g ∈ Ẑ.

(2) |Ẑ : ⟨g⟩| <∞ for a.e. g ∈ (Ẑ)k, where k ≥ 2.
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“Almost everywhere” results for k-tuples (2)

Recall “ almost everywhere” results for Ẑ (Jarden, Lubotzky):

(1) |Ẑ : ⟨g⟩| =∞ for a.e. g ∈ Ẑ.

(2) |Ẑ : ⟨g⟩| <∞ for a.e. g ∈ (Ẑ)k, where k ≥ 2.

Theorem (Algorithmic versions of these results)

(1) If g ∈ Ẑ is Kurtz random then |Ẑ : ⟨g⟩| =∞
(2) If k ≥ 2 and g ∈ Ẑk is Schnorr random, then |Ẑ : ⟨g⟩| <∞;

being Kurtz random is not sufficient.
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When a k-tuple generates an open subgroup a.s.

We say a profinite G is a k-group if |G : ⟨g⟩| <∞, for a.e. g ∈ Gk.

This means Q(G, k) = 1 in the sense of Avinoam Mann (1996).

Each k-group is topologically finitely generated. So could as well

require ⟨g⟩ open. By the above, Ẑ is a 2-group, but not a 1-group.
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When a k-tuple generates an open subgroup a.s.
Recall a profinite G is a k-group if |G : ⟨g⟩| <∞, for a.e. g ∈ Gk.

Proposition

Let the computable profinite group G be a k-group.

Then |G : ⟨g⟩| <∞ for each weakly 2-random g ∈ Gk.

Proof:

Let Vm = {g ∈ Gk : |G : ⟨g⟩| ≥ m}.
If g ∈ Vm this becomes apparent at some Gn in the inverse

system. So Vm is uniformly Σ0
1.

Also µk(Vm)→m 0 since G is a k-group.

So (Vm)m∈N is a weak 2-test. □

How fast does µk(Vm) go to 0? Work in progress with Vannacci

would show that if G is pro-p, then Schnorr randomness suffices.
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Effective form of a.e. results for Gal(Q̄/Q) (1)

We give algorithmic versions of “a.e.” theorems from “the bible”

Fried and Jarden, Field arithmetic (3d edition, 2005).

G = Gal(Q̄/Q) = Aut(Q,+,×) is the absolute Galois group of Q.

Q[X] has a splitting algorithm ⇒ G is computable profinite.

Theorem (algorithmic form of Thm. 18.5.6 in Fried-Jarden)

Let g ∈ Gk be Kurtz random. Then ⟨g⟩ is a free profinite group of

rank k.
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Effective form of a.e. results for Gal(Q̄/Q) (2)

G = Gal(Q̄/Q) is the absolute Galois group of Q.

A field L is pseudo-algebraically closed (PAC) ⇐⇒ every

absolutely irreducible polynomial p ∈ L[X, Y ] has a zero in L.

Theorem (algorithmic form of Thm. 27.4.8 in Fried-Jarden)

Let g ∈ G be Kurtz random. Then the fixed field of the least

closed normal subgroup containing g is PAC.

Since Kurtz randomness is enough, the Fried-Jarden results

prove more than what they say.

Instead of Q can take computable “Hilbertian” field with

splitting algorithm.

December 12, 2024 24 / 35



III. Fractal dimensions of closed subgroups

Joint with Elvira Mayordomo (see 2023-24 Logic Blog)
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Closed subgroups of a profinite group

Write H ≤c G to express that H is a closed subgroup of

G = lim←−n
(Gn, pn).

Let Hn be the natural projection of H into Gn. Let qn be pn
restricted to Hn+1

Then H = lim←−n
(Hn, qn) with onto maps.

Recall G = [T ] where T is the tree associated with the inverse

system. Clearly the subgroup H is given as [S] where S is the

subtree associated with (Hn, qn).

How to measure the size of H? Note that µ(H) = 0 unless H has

finite index (and hence is open in case that G is topologically f.g.)

Answer: Use fractal dimension!
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Metrics on a profinite group
For this we need a metric. The tree T for G gives us the usual

ultrametric.

Little problem: the inverse system for G the tree is based on

can be somewhat arbitrary. Certainly it’s not unique.

Recall pro-p groups, where all the Gn have size a power of p.

For G in such a class, there is a natural inverse system:

Let Rn be the closed (normal) subgroup generated by the

pn-th powers. Clearly
⋂

nRn = {e}.
Let Gn = G/Rn. Then (Gn)n∈N, with the canonical maps

Gn+1 → Gn, forms an inverse system for G.

If G = Zp, we get back Gn = Cpn .

For d-generated free pro-p groups the inverse system is quite

complicated. Gn is the largest d-generated group of order pn.
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Lower and upper box (counting) dimension
Let M be a metric space, and X ⊆M be compact. For α > 0, let

Nα(X) = least size of a covering of X with sets of diameter ≤ α.

The lower box dimension is

dimB(X) = lim inf
α→0+

logNα(X)

log(1/α)

The upper box dimension dimB(X) is defined as the limsup.

dimB(Coastline) = 1.25

Source: wikipedia
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Lower box dimension of [S]
Consider the metric space [T ] for a finitely branching tree T ⊆ N∗.

Let X = [S] where S is a subtree.

{[σ] : σ ∈ Sn} is the “optimal covering” of [S] for diameter |Tn|−1.

Only α’s of form |Tn|−1 are relevant, so lim infα→0+
logNα(X)
log(1/α)

equals

dimB([S]) = lim inf
n→∞

log |Sn|
log |Tn|

Example (similar to the Cantor “no middle-third” set)

Let T = {0, 1, 2}<ω and S the subtree of strings without a 1.

log |Sn|/ log |Tn| = log 2/ log 3 for each n.

So dimB[S] = log3(2)
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Apply to closed subgroups of G
Recall that

dimB([S]) = lim inf
n→∞

log |Sn|
log |Tn|

In the case of H ≤c G we have |Sn| = |Hn|, where Hn is the

projection of H into Gn.

Example (Barnea-Shalev 1997, essentially)

Let G be the Cantor space with symmetric difference ∆. For each

0 ≤ α ≤ β ≤ 1 there is H ≤c G with

dimB(H) = α and dimB(H) = β.

To see this, let R ⊆ N be a set with lower [ upper ] density α [β].

Let H be the subgroup P(R). We have |Sn| = 2|X∩n|, |Tn| = 2n.
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Hausdorff and packing dimension

dimB(X) is easier to calculate, but less robust than Hausdorff

dimension dimH(X).

Recall packing dimension dimP .

We always have

dimH(X) ≤ dimB(X)

dimP (X) ≤ dimB(X)
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A simple point-to-set phenomenon
Recall that dim(x) is the constructive dimension of a point x.

Here x ∈M for a computable metric space M with a designated

dense sequence of points, encoded by binary strings.

Greenberg/ Miller 2011 study dim in path spaces hω, h computable.

Proposition (Mayordomo and N. (known?))

Let T be a computable tree. Let S be a computable subtree of T

(all without leaves).

For each f ∈ [S],

dim(f) ≤ dimB(S)

Suppose that S is uniformly branching.

Then equality holds in the case that f is Martin-Löf random

in [S] with respect to the uniform measure µS.
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Results for fractal dimensions

Theorem (Mayordomo and N.)

Suppose a subtree S of T is uniformly branching. Then

Hausdorff dimension of [S] = lower box dim. of [S]

Packing dimension of [S] = upper box dim. of [S]

This uses two versions of the point-to-set principle in general

metric spaces (J. Lutz, N. Lutz and Mayordomo, 2023).

For Hausdorff dimension we also have a 1-page direct proof.
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Apply this to profinite groups: reprove a result that describes the

Hausdorff dimension of closed subgroups of G.

Theorem (Barnea-Shalev, 1997)

Let G = lim←−n
Gn. Suppose that H ≤c G. Let Hn be the projection

of H into Gn. Then

dimH(H) = dimB(H) = lim inf
n→∞

log |Hn|
log |Gn|

They used Prop 2.6 in the topological algebra paper “Subgroups and

subrings of profinite rings” by Abercrombie (1994). Our argument

shows that this has nothing to do with groups- it only uses the tree

structures. By our methods, we also obtain

dimP (H) = dimB(H) = lim supn→∞
log |Hn|
log |Gn| .
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Dimension spectrum

Main point of the Barnea-Shalev and sequel papers is the

spectrum, namely, the set of possible dimensions of closed

subgroups.

For instance, the spectrum of Z2
p is {0, 1/2, 1}.

For especially nice pro-p-groups known as p-adic analytic, the

Hausdorff dimension of a closed subgroup is k/n, where k is

its dimension as a manifold over Zp, and the whole group as a

manifold has dimension n.

Open question from that area: among the pro-p groups, are

the p-adic analytics the only ones with finite spectrum?
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