Randomness, dimension, and profinite groups

André Nies

AMS/AustMS/NZMS joint meeting Special session on computability theory and applications December 2024

- 1. Profinite groups and their computable presentations
- 2. Algorithmic randomness in computable profinite groups
- 3. Fractal dimensions of closed subgroups

I. Profinite groups and their computable presentations

Profinite groups as inverse limits

An inverse system is a sequence $(G_n, p_n)_{n \in \mathbb{N}}$ where the G_n are finite groups, and the $p_n: G_{n+1} \to G_n$ are homomorphisms.

Its inverse limit is the topological group $G = \varprojlim_n(G_n, p_n)$, given up to isomorphism by a universal property from category theory.

A separable topological group G is called profinite if it is isomorphic to such an inverse limit.

 ${\cal G}$ will always denote a profinite group, with a specified inverse system.

Inverse limit as group on a path space (1) An inverse system $(G_n, p_n)_{n \in \mathbb{N}}$, with G_0 trivial, yields a finitely branching rooted tree T. The *n*-th level consists of G_n ; the predecessor relation is given by the $p_n: G_{n+1} \to G_n$.

The first levels of the tree for \mathbb{Z}_3 , the 3-adic integers. $G_1 = C_3, G_2 = C_9$, etc. Inverse limit as group on a path space (2) Recall: an inverse system $(G_n, p_n)_{n \in \mathbb{N}}$, with G_0 trivial, yields a finitely branching rooted tree T. The *n*-th level consists of G_n ; the predecessor relation is given by the $p_n: G_{n+1} \to G_n$.

- As the domain of the inverse limit one can concretely take the path space [T].
- Its neutral element is the path consisting of the neutral elements in the G_n 's.
- The group multiplication is given by

 $f \cdot g = \bigcup_n [f \upharpoonright_n \cdot g \upharpoonright_n]$ for $f, g \in [T]$.

- Similarly for inverse operation.
- These operations are continuous w.r.t. the topology on [T].

Examples of profinite groups (1)

- Let $(\mathbb{Z}_p, +) = \lim_{n \to \infty} C_{p^n}$ where p is prime and C_{p^n} is the cyclic group of size p^n .
- Via the view as a tree, the elements of Z_p can be encoded by infinite sequences of digits in {0,..., p 1}, with addition via the usual carry digits. Say p = 3:

_	 2	$\frac{-}{2}$	0	0	1	
+	 0	2	1	2	0	
	 1	2	1	1	1	

- This is a pro-p group: all the G_n are p-groups.
- Let k ≥ 2. Since Z_p is in fact a profinite ring, matrix groups such as upper unitriangular UT_k(Z_p), and special linear SL_k(Z_p) are profinite.
- For instance, $\operatorname{SL}_k(\mathbb{Z}_p) = \varprojlim_n \operatorname{SL}_k(C_{p^n}).$

Examples of profinite groups (2)

An extension of fields K/k is Galois if it is algebraic, normal, and separable.

Its Galois group G = Gal(K/k) consist of the automorphisms of K that fix k pointwise.

G = Gal(K/k) is a profinite group with the Krull topology:
If K = U_{i∈N} L_i, where L_{i+1} ≥ L_i and each L_i is a normal finite extension of k, then G ≃ lim_i Gal(L_i/k).

Galois correspondence

Fields L with $K \ge L \ge k$ correspond to closed subgroups of G. In the forward direction, send L to its pointwise stabiliser in G.

Residually finite groups, and profinite completions

A countable group L is called residually finite if for each $w \in L$, $w \neq e$, there is a finite quotient Q of L such that $w \neq e$ in Q.

For such L, there is a descending sequence of normal subgroups $(R_n)_{n\in\mathbb{N}}$ of L such that $\exists nR_n \subseteq R$ for each subgroup of finite index R. In particular, $\bigcap_n R_n = \{e\}$.

 $\widehat{L} = \lim_{n \to \infty} L/R_n$ is the profinite completion of L.

Up to isomorphism, it is independent of the choice of such a sequence, by the universal property of inverse limits.

L embeds into \widehat{L} via $w \mapsto (wR_n)_{n \in \mathbb{N}}$,

where wR_n is the image of w in the quotient L/R_n .

Example: $\widehat{\mathbb{Z}} = \varprojlim_n \mathbb{Z}/n!\mathbb{Z}$ is the profinite completion of $(\mathbb{Z}, +)$.

Co-c.e. and computable profinite groups

Recall: a profinite group is given by an inverse system $(G_n, p_n)_{n \in \mathbb{N}}$; the $p_n \colon G_{n+1} \to G_n$ are homomorphisms of finite groups.

Definition (Smith, 1981; LaRoche, 1981)

A co-c.e. profinite group G is given by a computable inverse system. The group is called computable if in addition, all the p_n 's are onto.

Theorem (Smith, 1981)

(i) Some co-c.e. profinite group G is not isomorphic to a computable one. (ii) Each co-c.e. pro-p group is computable.

Proof. (i) let A be a properly Σ_2^0 set of primes, and let G be a co-c.e. presentation of $\prod_{p \in A} C_p$.

(ii) uses group theoretic methods such as Frattini subgroup.

Co-c.e., and computable in terms of the tree

Recall that an inverse system $(G_n, p_n)_{n \in \mathbb{N}}$ yields a finitely branching tree T with levels consisting of the G_n .

- To say that G is co-c.e. means that the tree T computable with computable branching, and the operations at each level are uniformly computable.
- To say G is computable means that also the tree has no leaves.

The neutral element of the group is given by a computable path. Metakides and Nerode built an example of a computable profinite group where there are no others.

Smith 1981 proved preservation properties for computable G. For instance, the derived group G' is computable, and G has a computable p-Sylow subgroup for each prime p.

Arbitrary effective tree \Rightarrow nice effective tree

Fact: a separable topological group is profinite \iff

it is compact and 0-dimensional (the clopen sets form basis).

- If a topological structure for a finite functional signature σ is compact 0-dimensional, then it has a copy whose domain is [T] for some finitely branching tree T.
- To define co-c.e. σ -structures, ask that T is computable with computable bound on branching, and operations computable.
- To define computable σ -structures, ask that also T has no leaves.

Theorem (Smith 1981/ Melnikov and N., 2022 in l.c. context) Suppose a profinite group has a co-c.e. [computable] presentation in the general sense of topological algebra. Then G has a co-c.e. [computable] presentation in the sense of effective inverse systems. The conversion is uniform 12, 2024 12/35

Computably f.g. subgroups of profinite groups

- Recall that a discrete group L is called residually finite if each $w \in L \{e\}$ we have $w \neq e$ in some finite quotient of L.
- The class of f.g. residually finite groups coincides with the f.g. abstract subgroups of profinite groups. Effectivise?

The effective version of "finitely generated subgroup" is computably f.g. subgroup:

an abstract subgroup of a computably profinite group generated by finitely many computable paths.

We will characterize the computably f.g. subgroups L of computable profinite groups by the following two conditions:

- 1: the word problem of L is Π_1^0
- 2: L is effectively residually finite.

Π-groups

Definition

A f.g. group L is called a Π -group if its word problem is Π_1^0 . Thus, $L = F_k/N$ for some k and a Π_1^0 normal subgroup N of the free group F_k .

- Examples: all f.g. subgroups of the group S_{rec} of computable permutations of ω are Π -groups.
- Morozov (Higman's question revisited, 2000) constructed a II-group that is NOT of this kind.
- Any computably f.g. subgroup of a computable profinite group G is embedded into S_{rec} , and hence a Π -group.
- To verify this, use its action on the tree for $(G_n, p_n)_{n \in \mathbb{N}}$.

Effectively residually finite Π -groups (1)

Definition

A Π -group $L = F_k/N$ is effectively residually finite (e.r.f.) if there is an algorithm that on $w \in F_k$, in case $w \notin N$ computes a finite quotient Q of L such that $w \neq e$ in the quotient. The quotient is given by a homomorphism $F_k \to Q$ whose kernel contains N.

Proposition

The computably f.g. subgroups of computably profinite groups are precisely the effectively residually finite Π -groups L.

The proof of right to left is by noting that there is a computable embedding of L into a computable profinite group H, with images of the generators of L computable.

(But this may not be the profinite completion \overline{L} . To get this, we'd need to be able to list all the finite index subgroups of L.)

Effectively residually finite Π -groups (2)

Proposition (Recall)

The computably f.g. subgroups of computably profinite groups are precisely the effectively residually finite (e.r.f.) Π -groups L.

- As a consequence, each e.r.f. Π -group L is isomorphic to a subgroup of the group of computable permutations.
- For, the computable profinite group $H \ge L$ acts faithfully on its computable tree T, and computable elements of H yield computable permutations of T.

Question

Is there a f.g., residually finite $\Pi\mbox{-}{\rm group}$ that is not effectively r.f.?

II. Algorithmic randomness in

computable profinite groups

Joint with Willem Fouché and Matteo Vannacci

Haar measure

Any compact separable group has a unique translation invariant probability measure, called its Haar measure, we denote by μ .

If $G = \varprojlim_n G_n$ is profinite, this is the uniform measure on [T], where T is the tree given by the inverse system.

If G is computable and infinite, the usual algorithmic test notions for Cantor space can be extended to the paths space [T]. So we can speak of Schnorr random elements of G etc.

"Almost everywhere" results for k-tuples (1)

An "almost everywhere" result for a profinite group G asserts that μ^k -almost every k-tuple $\overline{g} \in G^k$ satisfies some property of interest.

Recall $\widehat{\mathbb{Z}} = \varprojlim_n \mathbb{Z}/n!\mathbb{Z}$ is the profinite completion of \mathbb{Z} . For $\overline{g} \in G^k$, by $\langle \overline{g} \rangle$ one denotes the closure of the subgroup generated by \overline{g} .

Some "almost everywhere" results for $\widehat{\mathbb{Z}}$ (Jarden, Lubotzky):

(1) $|\widehat{\mathbb{Z}}:\langle g\rangle| = \infty$ for a.e. $g \in \widehat{\mathbb{Z}}$.

(2) $|\widehat{\mathbb{Z}}:\langle \overline{g}\rangle| < \infty$ for a.e. $\overline{g} \in (\widehat{\mathbb{Z}})^k$, where $k \ge 2$.

"Almost everywhere" results for k-tuples (2)

Recall "almost everywhere" results for $\widehat{\mathbb{Z}}$ (Jarden, Lubotzky):

(1) $|\widehat{\mathbb{Z}}:\langle g\rangle| = \infty$ for a.e. $g \in \widehat{\mathbb{Z}}$.

(2) $|\widehat{\mathbb{Z}}:\langle \overline{g}\rangle| < \infty$ for a.e. $\overline{g} \in (\widehat{\mathbb{Z}})^k$, where $k \geq 2$.

Theorem (Algorithmic versions of these results)
(1) If g ∈ Z is Kurtz random then |Z : ⟨g⟩| = ∞
(2) If k ≥ 2 and g ∈ Z^k is Schnorr random, then |Z : ⟨g⟩| < ∞; being Kurtz random is not sufficient.

When a k-tuple generates an open subgroup a.s.

We say a profinite G is a k-group if $|G: \langle \overline{g} \rangle| < \infty$, for a.e. $\overline{g} \in G^k$. This means Q(G, k) = 1 in the sense of Avinoam Mann (1996).

Each k-group is topologically finitely generated. So could as well require $\langle \overline{g} \rangle$ open. By the above, $\widehat{\mathbb{Z}}$ is a 2-group, but not a 1-group.

When a k-tuple generates an open subgroup a.s. Recall a profinite G is a k-group if $|G: \langle \overline{g} \rangle| < \infty$, for a.e. $\overline{g} \in G^k$.

Proposition

Let the computable profinite group G be a k-group. Then $|G:\langle \overline{g} \rangle| < \infty$ for each weakly 2-random $\overline{g} \in G^k$.

Proof:

- Let $V_m = \{\overline{g} \in G^k \colon |G : \langle \overline{g} \rangle| \ge m\}.$
- If $\overline{g} \in V_m$ this becomes apparent at some G_n in the inverse system. So V_m is uniformly Σ_1^0 .
- Also $\mu^k(V_m) \to_m 0$ since G is a k-group.
- So $(V_m)_{m \in \mathbb{N}}$ is a weak 2-test. \Box

How fast does $\mu^k(V_m)$ go to 0? Work in progress with Vannacci would show that if G is pro-p, then Schnorr randomness suffices.

Effective form of a.e. results for $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ (1)

We give algorithmic versions of "a.e." theorems from "the bible" Fried and Jarden, Field arithmetic (3d edition, 2005).

 $G = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) = Aut(\overline{\mathbb{Q}}, +, \times)$ is the absolute Galois group of \mathbb{Q} . $\mathbb{Q}[X]$ has a splitting algorithm $\Rightarrow G$ is computable profinite.

Theorem (algorithmic form of Thm. 18.5.6 in Fried-Jarden) Let $\overline{g} \in G^k$ be Kurtz random. Then $\langle \overline{g} \rangle$ is a free profinite group of rank k. Effective form of a.e. results for $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ (2)

 $G = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ is the absolute Galois group of \mathbb{Q} .

A field L is pseudo-algebraically closed (PAC) \iff every absolutely irreducible polynomial $p \in L[X, Y]$ has a zero in L.

Theorem (algorithmic form of Thm. 27.4.8 in Fried-Jarden) Let $g \in G$ be Kurtz random. Then the fixed field of the least closed normal subgroup containing g is PAC.

- Since Kurtz randomness is enough, the Fried-Jarden results prove more than what they say.
- Instead of Q can take computable "Hilbertian" field with splitting algorithm.

III. Fractal dimensions of closed subgroups Joint with Elvira Mayordomo (see 2023-24 Logic Blog)

Closed subgroups of a profinite group

- Write $H \leq_c G$ to express that H is a closed subgroup of $G = \varprojlim_n (G_n, p_n).$
- Let H_n be the natural projection of H into G_n . Let q_n be p_n restricted to H_{n+1}
- Then $H = \varprojlim_n (H_n, q_n)$ with onto maps.

Recall G = [T] where T is the tree associated with the inverse system. Clearly the subgroup H is given as [S] where S is the subtree associated with (H_n, q_n) .

How to measure the size of H? Note that $\mu(H) = 0$ unless H has finite index (and hence is open in case that G is topologically f.g.) Answer: Use fractal dimension!

Metrics on a profinite group

- For this we need a metric. The tree T for G gives us the usual ultrametric.
- Little problem: the inverse system for G the tree is based on can be somewhat arbitrary. Certainly it's not unique.
- Recall pro-*p* groups, where all the G_n have size a power of *p*.
- For G in such a class, there is a natural inverse system: Let R_n be the closed (normal) subgroup generated by the p^n -th powers. Clearly $\bigcap_n R_n = \{e\}$.
- Let $G_n = G/R_n$. Then $(G_n)_{n \in \mathbb{N}}$, with the canonical maps $G_{n+1} \to G_n$, forms an inverse system for G.
- If $G = \mathbb{Z}_p$, we get back $G_n = C_{p^n}$.
- For *d*-generated free pro-*p* groups the inverse system is quite complicated. G_n is the largest *d*-generated group of order p^n .

Lower and upper box (counting) dimension Let M be a metric space, and $X \subseteq M$ be compact. For $\alpha > 0$, let $N_{\alpha}(X) =$ least size of a covering of X with sets of diameter $\leq \alpha$. The lower box dimension is

$$\underline{\dim}_B(X) = \liminf_{\alpha \to 0^+} \frac{\log N_\alpha(X)}{\log(1/\alpha)}$$

The upper box dimension $\overline{\dim}_B(X)$ is defined as the limsup.

Source: wikipedia

Lower box dimension of [S]

Consider the metric space [T] for a finitely branching tree $T \subseteq \mathbb{N}^*$. Let X = [S] where S is a subtree.

 $\{[\sigma]: \sigma \in S_n\}$ is the "optimal covering" of [S] for diameter $|T_n|^{-1}$. Only α 's of form $|T_n|^{-1}$ are relevant, so $\liminf_{\alpha \to 0^+} \frac{\log N_\alpha(X)}{\log(1/\alpha)}$ equals

$$\underline{\dim}_B([S]) = \liminf_{n \to \infty} \frac{\log |S_n|}{\log |T_n|}$$

Example (similar to the Cantor "no middle-third" set)

- Let $T = \{0, 1, 2\}^{<\omega}$ and S the subtree of strings without a 1.
- $\log |S_n| / \log |T_n| = \log 2 / \log 3$ for each n.
- So $\underline{\dim}_B[S] = \log_3(2)$

Apply to closed subgroups of G

Recall that

$$\underline{\dim}_B([S]) = \liminf_{n \to \infty} \frac{\log |S_n|}{\log |T_n|}$$

In the case of $H \leq_c G$ we have $|S_n| = |H_n|$, where H_n is the projection of H into G_n .

Example (Barnea-Shalev 1997, essentially) Let G be the Cantor space with symmetric difference Δ . For each $0 \le \alpha \le \beta \le 1$ there is $H \le_c G$ with

 $\underline{\dim}_B(H) = \alpha \text{ and } \overline{\dim}_B(H) = \beta.$

To see this, let $R \subseteq \mathbb{N}$ be a set with lower [upper] density α [β]. Let H be the subgroup $\mathcal{P}(R)$. We have $|S_n| = 2^{|X \cap n|}, |T_n| = 2^n$. Hausdorff and packing dimension

- $\underline{\dim}_B(X)$ is easier to calculate, but less robust than Hausdorff dimension $\dim_H(X)$.
- Recall packing dimension \dim_P .
- We always have

 $\dim_{H}(X) \leq \underline{\dim}_{B}(X)$ $\dim_{P}(X) \leq \overline{\dim}_{B}(X)$

A simple point-to-set phenomenon

Recall that dim(x) is the constructive dimension of a point x. Here $x \in M$ for a computable metric space M with a designated dense sequence of points, encoded by binary strings. Greenberg/ Miller 2011 study dim in path spaces h^{ω} , h computable.

Proposition (Mayordomo and N. (known?))

Let T be a computable tree. Let S be a computable subtree of T (all without leaves).

• For each $f \in [S]$,

$\dim(f) \leq \underline{\dim}_B(S)$

Suppose that S is uniformly branching.
 Then equality holds in the case that f is Martin-Löf random in [S] with respect to the uniform measure μ_S.

Results for fractal dimensions

Theorem (Mayordomo and N.) Suppose a subtree S of T is uniformly branching. Then

> Hausdorff dimension of [S] = lower box dim. of [S]Packing dimension of [S] = upper box dim. of [S]

- This uses two versions of the point-to-set principle in general metric spaces (J. Lutz, N. Lutz and Mayordomo, 2023).
- For Hausdorff dimension we also have a 1-page direct proof.

Apply this to profinite groups: reprove a result that describes the Hausdorff dimension of closed subgroups of G.

Theorem (Barnea-Shalev, 1997) Let $G = \varprojlim_n G_n$. Suppose that $H \leq_c G$. Let H_n be the projection of H into G_n . Then

$$\dim_{H}(H) = \underline{\dim}_{B}(H) = \liminf_{n \to \infty} \frac{\log |H_{n}|}{\log |G_{n}|}$$

They used Prop 2.6 in the topological algebra paper "Subgroups and subrings of profinite rings" by Abercrombie (1994). Our argument shows that this has nothing to do with groups- it only uses the tree structures. By our methods, we also obtain

 $\dim_P(H) = \overline{\dim}_B(H) = \limsup_{n \to \infty} \frac{\log |H_n|}{\log |G_n|}.$

Dimension spectrum

- Main point of the Barnea-Shalev and sequel papers is the spectrum, namely, the set of possible dimensions of closed subgroups.
- For instance, the spectrum of \mathbb{Z}_p^2 is $\{0, 1/2, 1\}$.
- For especially nice pro-*p*-groups known as *p*-adic analytic, the Hausdorff dimension of a closed subgroup is k/n, where k is its dimension as a manifold over \mathbb{Z}_p , and the whole group as a manifold has dimension n.
- Open question from that area: among the pro-*p* groups, are the *p*-adic analytics the only ones with finite spectrum?