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1. Introduction

Two of the foundational results in classical infinitary logic are Scott’s theorem [26], 
producing for every countable structure a canonical sentence that uniquely describes it up 
to isomorphism, and the theorem of López-Escobar [23], characterizing the isomorphism-
invariant Borel sets of models. These results and the techniques developed around them, 
Scott analysis (based on the back-and-forth method of Ehrenfeucht and Fraïssé) and the 
Vaught transforms (introduced by Vaught [28] to give a new proof of the López-Escobar 
theorem) have become a cornerstone of infinitary model theory as well as of the descrip-
tive set theoretic study of the complexity of isomorphism of countable models. See, e.g., 
Gao [16] for an exposition of the general theory, and Hjorth–Kechris [20] and Hjorth–
Kechris–Louveau [21] for some more detailed results. The notion of Scott rank, an ordinal 
that measures the model-theoretic complexity of structures, is also an indispensable tool.

The goal of this paper is to develop a parallel theory for infinitary continuous logic. 
In recent years, there has been a lot of activity in first order continuous logic (see [4]
for a gentle introduction) and it turns out that much of the classical first order model 
theory extends to this setting, often with interesting twists. Perhaps more importantly, 
it seems that continuous logic is the “correct” setting for applying model-theoretic ideas 
to functional analysis and operator algebras, areas that have been hitherto far removed 
from model theory (see, for example, [13] and the references therein).

Some progress has been made towards the study of metric structures using classi-
cal infinitary logic (see, for example, [8]). However, it seems that classical logic is too 
expressive in this setting and continuous logic is more appropriate for descriptive set 
theoretic applications. We discuss the connections of our approach with classical logic in 
Section 10.

An extended form of continuous logic, called infinitary here, allows connectives to act 
on certain infinite collections of formulas. It was introduced in [5], where the authors 
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obtain some applications to Banach space theory. Two other papers that focus on various 
versions of the omitting types theorem for infinitary continuous logic (that we also use 
here) are Caicedo and Iovino [6] and Eagle [11]. However, their framework is somewhat 
more general (for example, they do not always require that structures be complete), 
while we keep the setting from [5] as it seems to be the most relevant to our purposes.

Our results are inspired by their classical counterparts but, as is usual in continuous 
logic, new difficulties and interesting phenomena appear that have no analogue in the 
classical setting. On a philosophical level, this is perhaps best explained by descriptive 
set theory: the isomorphism equivalence relation of classical countable models (which, in 
view of Scott’s results, is one of the main objects of study) is strictly less complicated 
than isomorphism of separable metric structures. More precisely, the former is a universal 
orbit equivalence relation of an action of S∞ and the latter is (bi-reducible with) the 
universal orbit equivalence relation for Polish group actions [12]; by Hjorth’s results [19]
on turbulence, the latter is strictly more complicated.

The basis for classical Scott analysis is given by the back-and-forth equivalence re-
lations ≡α (originally defined by Fraïssé) indexed by the countable ordinals α. These 
can be considered as Borel approximations of the analytic equivalence relation of iso-
morphism. The first novelty in the metric setting is that these equivalence relations are 
replaced by pseudo-distances rα (i.e., distinct points can have distance 0) that mea-
sure how different two tuples, of the same length and possibly coming from different 
structures, are. These pseudo-distances naturally give rise to equivalence relations Eα: 
ā Eα b̄ ⇐⇒ rα(ā, ̄b) = 0, and E∞ =

⋂
α Eα. The inductive definition is mostly un-

eventful, apart from the base case. For classical structures, two tuples are declared to be 
≡0-equivalent if all quantifier-free formulas agree on them; in the metric situation, we 
would like to define r0 as the supremum of the difference of the values that quantifier-free 
formulas take when evaluated on the tuples. This approach meets an immediate obsta-
cle: the difference can be arbitrarily amplified by scaling formulas by a multiplicative 
constant. Thus we are led to consider formulas with a fixed modulus of continuity and in 
order to organize this, we introduce the notion of a weak modulus of continuity (denoted 
by Ω) that controls what formulas we are allowed to use in the definition of r0. It turns 
out that the weak modulus is an additional parameter in the construction that has no 
analogue in the classical setting; by varying it one obtains different equivalence relations 
E∞ at the end.

The basic results of the general theory are independent of the choice of a weak mod-
ulus. Our first theorem is that the pseudo-distances rα capture exactly the expressive 
power of formulas of quantifier rank at most α.

Theorem 1.1. Let A, B be metric structures in the same signature and let ā ∈ An, ̄b ∈ Bn. 
Then, for any α < ω1,

rα(Aā,Bb̄) = sup
φ

|φA(ā) − φB(b̄)|,

where the sup is taken over all n-ary Ω-formulas of quantifier rank α.
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We also obtain analogues of Scott’s results from the classical setting.

Theorem 1.2. For every separable structure A, there exists a Lω1ω-sentence σA (the Scott 
sentence of A) such that for every separable structure B,

AE∞ B ⇐⇒ σA(B) = 0.

Moreover, the quantifier rank of σA is equal to the Scott rank of A plus ω. In particular, 
the E∞-class of A is Borel and its complexity is bounded by the Scott rank of A.

With a certain choice of the weak modulus Ω (which we call universal), one obtains 
isomorphism as E∞-equivalence, exactly as in the classical case. All separable metric 
structures for a fixed language can be seen as points in a Polish space, as explained in 
detail in Section 4. Applying Theorem 1.2 tells us that isomorphism classes of separable 
metric structures are Borel (which is one of the classical applications of Scott sentences). 
This result, however, is not new: it can be deduced from [12], where the authors prove 
that isomorphism is reducible to the orbit equivalence relation of a group action. Our 
approach, however, gives more detailed information and bounds for the Borel complexity 
of the equivalence class in terms of the Scott rank.

Our next theorem characterizes exactly when the isomorphism equivalence relation is 
Borel (again inspired by a similar result in the classical setting).

Theorem 1.3. Let ∼= denote the isomorphism equivalence relation of separable structures 
(in a fixed signature) and let X be an ∼=-invariant Borel set of structures. Then the 
following are equivalent:

(i) ∼= |X is Borel;
(ii) the supremum of the Scott ranks of the elements of X is bounded below ω1.

In particular, this theorem provides a new method to show that certain isomorphism 
equivalence relations are not Borel, so long as one is able to calculate the Scott ranks.

An important connection between infinitary logic and descriptive set theory is 
provided by the López-Escobar theorem which asserts that the σ-algebra of Borel, 
∼=-invariant sets in the space of models coincides with the algebra of sets definable by 
Lω1ω-sentences. We obtain an analogue of this theorem in the continuous setting.

Theorem 1.4. Let U be a bounded, Borel function on the space of separable models that is 
invariant under isomorphism. Then there exists a Lω1ω-sentence φ such that U(A) = φA

for every structure A.

Our proof of this theorem is based on Vaught transforms [28]. However, as we do not 
have a group action readily available, we develop the transforms in a different setting, 
better adapted to our situation.
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A theorem similar to Theorem 1.4 was independently and simultaneously proved by 
Coskey and Lupini [7]. The main difference between their approach and ours is that they 
only consider structures with universe the Urysohn sphere U1. In that case, the equiv-
alence relation of isomorphism is given by the action of Iso(U1) and Vaught transforms 
can be used directly.

With a different natural choice of a weak modulus (the 1-Lipschitz one), the pseudo-
distance r∞ = supα rα defines a coarser equivalence relation than isomorphism and 
specializes to Gromov–Hausdorff distance for metric spaces and Kadets distance for Ba-
nach spaces. This approach to the Gromov–Hausdorff distance has the advantage that 
it does not require embeddings into a third structure and is defined for arbitrary metric 
structures, even ones that do not have amalgamation (and where the original definition 
is not applicable). Combining this with our general results, we obtain the following.

Corollary 1.5. For a Polish metric space A, the set of Polish metric spaces such that the 
Gromov–Hausdorff distance to A is 0 is Borel. A similar fact holds for Banach spaces 
and the Kadets distance.

Finally, generalizing a theorem of Gao [15] from the classical setting, we characterize 
the separable structures with a Scott sentence that has only separable models (that is, 
it is absolutely categorical).

Theorem 1.6. Let A be a separable metric structure. Then the following are equivalent:

(i) The Scott sentence of A only has separable models;
(ii) The left uniformity of the group Aut(A) is complete.

2. Continuous infinitary logic

2.1. Moduli of continuity

An important feature of classical Lω1ω-logic is that when one forms an infinite con-
junction (or disjunction) of the formulas {φi(x̄) : i ∈ N}, all φi share the same finite set 
of free variables x̄; as a result, every Lω1ω-formula has only finitely many free variables. 
The analogous uniformity condition in infinitary continuous logic is ensured by mandat-
ing that all φi obey the same continuity modulus. This ensures that the interpretations of 
all formulas are uniformly continuous functions (with a modulus that can be determined 
syntactically). To formalize this, we start with several basic definitions and facts about 
moduli of continuity.

Definition 2.1. Let n be a natural number or N. A modulus of arity n is a function 
Δ: [0, ∞)n → [0, ∞) that is:
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(i) non-decreasing, subadditive, vanishing at zero:

Δ(δ) ≤ Δ(δ + δ′) ≤ Δ(δ) + Δ(δ′), Δ(0) = 0;

(ii) continuous.

A weak modulus is a function Ω: [0, ∞)N → [0, ∞] that satisfies 1 and is

(ii′) lower semi-continuous in the product topology and separately continuous in each 
argument.

The main use of a modulus is to measure the uniform continuity of a function defined 
on a product of finitely many metric spaces.

Definition 2.2. Let Δ be an n-ary modulus, and let X =
∏

i<n Xi be a product of metric 
spaces. On X2, define

dΔ(x, y) = Δ
(
dXi(xi, yi) : i ∈ n

)
.

If Z is another metric space and f : X → Z is a map, we say that f respects (or obeys) 
Δ if for all x, y ∈ X, we have

dZ(f(x), f(y)) ≤ dΔ(x, y).

The conditions in the definition of a modulus are chosen in such a way that dΔ is a 
continuous pseudo-distance on any product of metric spaces. If Δ is moreover faithful, 
i.e., Δ(δ) = 0 implies that δ = 0, then dΔ is a distance compatible with the product 
uniform structure.

If K ⊆ Rn is a product of compact intervals and f : K → R is a continuous function, 
we define its modulus of continuity Δf by

Δf (δ) = sup{|f(x) − f(y)| : x, y ∈ K, |xi − yi| ≤ δi}. (2.1)

Δf is the least modulus of continuity that f obeys.
The main purpose of weak moduli is to control the uniform continuity of formulas and 

organize together an infinite collection of moduli of different arities. A weak modulus will 
never be used directly but rather via its traces on finite products. If Ω: [0, ∞)N → [0, ∞]
is a weak modulus and n ∈ N, define the truncation Ω|n : [0, ∞)n → [0, ∞] by

Ω|n(δ0, . . . , δn−1) = Ω(δ0, . . . , δn−1, 0, 0, . . .).

A weak modulus Ω is shift-increasing if for every sequence i0 < i1 < · · · of natural 
numbers and every δ ∈ [0, ∞)N, we have Ω(δ) ≤ Ω(δ′), where δ′i = δp and δ′k = 0 if 
p
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k /∈ {i0, i1, . . .}. All natural weak moduli that we have in mind satisfy this condition; 
however, it is only used in one place in the general theory (Proposition 3.4) and we have 
preferred to keep it as a separate hypothesis where necessary rather than make it part 
of the definition of a weak modulus.

The following lemma clarifies the connection between weak moduli and moduli.

Lemma 2.3. Let Ω: [0, ∞)N → [0, ∞] be a weak modulus. Then all truncations of Ω are 
moduli and Ω is determined by its truncations:

Ω(δ0, δ1, . . .) = sup
n

Ω|n(δ0, . . . , δn−1). (2.2)

Proof. Since Ω|n is lower semi-continuous, it suffices to show that it is upper semi-
continuous. Fix δ ∈ [0, ∞)n and s ∈ R such that Ω|n(δ) < s. Using that Ω|n is separately 
continuous in each variable, find consecutively γ0, . . . , γn−1 such that

Ω|n(δ) ≤ Ω|n(δ0 + γ0, δ1, . . . , δn−1) ≤ · · · ≤ Ω|n(δ0 + γ0, . . . , δn−1 + γn−1) < s.

As Ω|n is monotone, this shows that {δ ∈ [0, ∞)n : Ω|n(δ) < s} is open, completing the 
proof.

For (2.2), the inequality ≥ follows from the monotonicity and ≤ follows from lower 
semi-continuity. �

Thus, given a metric space (X, d), each weak modulus Ω defines a family of distances 
dΩ|n on powers of X; we will often abuse notation and write dΩ instead when n is clear 
from the context. Similarly, we will say that a function f : Xn → R respects Ω rather 
than that it respects Ω|n.

Two examples of weak moduli that will be important for us are the following. The 
1-Lipschitz weak modulus ΩL : [0, ∞)N → [0, ∞] is defined by

ΩL(δ) = sup
i

δi, where δ = (δ0, δ1, . . .). (2.3)

The universal weak modulus for Lipschitz languages ΩU(Lip) : [0, ∞)N → [0, ∞] is 
defined by

ΩU(Lip)(δ) =
∞∑
i=0

i · δi. (2.4)

Both of those weak moduli are shift-increasing.

2.2. Infinitary logic

Continuous infinitary logic was first introduced by Ben Yaacov and Iovino in [5]. The 
definitions we give here are compatible with theirs.
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A metric language (or signature) is a collection L of symbols. For each symbol s ∈ L, 
the language also determines its kind (function or predicate), its arity (a natural number 
ns), a ns-ary modulus of continuity Δs, and, for predicates, a compact interval Is ⊆ R
of allowed values for s that we will refer to as a bound. The language always contains, 
implicitly, a binary predicate symbol d with Δd(δ1, δ2) = δ1 + δ2. The bound for d is 
determined by the language.

An L-structure A is a complete metric space equipped with interpretations of the 
symbols:

• Each function symbol F is interpreted by a map FA : AnF → A respecting the 
modulus ΔF ;

• Each predicate symbol P is interpreted by a function PA : AnP → R respecting the 
modulus ΔP and bound IP (i.e., PA(ā) ∈ IP for all ā ∈ AnP );

• The symbol d is always interpreted by the distance. It must respect the bound Id.

Let L be a metric signature. The logic Lω1ω(L) is defined as follows. First, we fix a 
family {xi : i ∈ N} of distinct variable symbols. The syntactic objects of the logic are 
terms and formulas; terms come equipped with a modulus of continuity that they respect 
and formulas have a modulus of continuity and a bound.

Terms, atomic formulas, and basic formulas are constructed inductively as follows.

• Each xi is a term that respects the N-ary modulus Δxi
(δ) = δi;

• If τi, i < n are terms and F is a function symbol of arity n, then σ = F (τ̄) is a term 
that respects Δσ = ΔF ◦ (Δτi : i < n);

• If P a predicate symbol of arity n and τ̄ are terms, then φ = P (τ̄) is an atomic 
formula that respects the modulus Δφ = ΔP ◦ (Δτi : i < n) and the bound IP ;

• If {φi : i < n} are atomic formulas with moduli of continuity Δφi
and bounds Iφi

, 
and f :

∏
i Iφi

→ R is continuous, then ψ = f(φ̄) is a basic formula that respects 
the modulus Δψ = Δf ◦ (Δφi

: i < n), where Δf is as per (2.1), and the bound 
Iφ = f(

∏
i Iφi

).

Next, we define general Lω1ω-formulas starting from atomic formulas and combining 
them using finitary connectives, quantifiers, and countable infima and suprema (also 
called infinitary connectives). As before, every formula φ respects some modulus of con-
tinuity Δφ and a bound Iφ. If φ respects Δ and I, and Δ′ ≥ Δ, I ′ ⊇ I, then we will also 
say that φ respects Δ′ and I ′.

• Every atomic formula is a formula.
• If φ0, . . . , φn−1 are formulas that respect Δφ0 , . . . , Δφn−1 and Iφ0 , . . . , Iφn−1 and 

f :
∏

i Iφi
→ R is a continuous function, then f(φ0, . . . , φn−1) is a formula that 

respects Δf ◦ (Δφi
: i < n) and f(

∏
i Iφi

).
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• If φ is a formula that respects Δ and I and i ∈ N, then supxi
φ and infxi

φ are 
formulas that respect Δ̂ and I, where

Δ̂(δ0, . . . , δn) = Δ(δ0, . . . , δi−1, 0, δi+1, . . . , δn).

• If {φi : i ∈ N} are formulas, Δ is a modulus, and I is a bound such that each φi

respects Δ and I then 
∨

i φi, 
∧

i φi are also formulas that respect Δ and I. 
∨

i φi is 
interpreted as supi φi and 

∧
φi is interpreted as infi φi.

The finitary fragment Lωω is defined as the set of all Lω1ω-formulas, where the infinitary 
connectives (the last item above) are not used. Two frequent binary connectives are ∧
(min) and ∨ (max).

Finally, we need the notion of (Ω, I)-formulas for some given weak modulus Ω and 
bound I ⊆ R. This definition is more restrictive than that of general formulas in several 
ways: first, we require that all (Ω, I)-formulas respect Ω and I; second, we only allow 
1-Lipschitz connectives in the inductive definition; and third, we keep track of the vari-
ables used and quantifiers are allowed only in a certain order. The last restriction is 
needed when we compute quantifier ranks. Here, the base of the inductive construction 
are the basic rather than the atomic formulas; that is, we allow applying an arbitrary 
connective in the beginning. The formal definition of an n-ary (Ω, I)-formula is by in-
duction as follows.

• All basic formulas φ(x0, . . . , xn−1) that only depend on the first n variables and 
respect Ω and I are n-ary (Ω, I)-formulas.

• If {φi : i ∈ N} are n-ary (Ω, I)-formulas, then 
∨

i φi and 
∧

i φi are n-ary 
(Ω, I)-formulas.

• If φ is an (n +1)-ary (Ω, I)-formula, then infxn
φ and supxn

φ are n-ary (Ω, I)-formulas.
• If φ0, . . . , φk−1 are n-ary (Ω, I)-formulas and f : Rk → R is a 1-Lipschitz function 

(for the max distance on Rk), then f(φ0, . . . , φk−1) is a n-ary (Ω, f(Ik))-formula.
• An n-ary Ω-formula is an n-ary (Ω, I)-formula for some I. An Ω-formula is an n-ary 

Ω-formula for some n. An Ω-sentence is a 0-ary Ω-formula.

Note that an n-ary (Ω, I)-formula automatically respects the modulus Ω|n and the 
bound I. Thus the collection of all n-ary (Ω, I)-formulas is equicontinuous and uniformly 
bounded; in particular, we do not need any further equicontinuity and boundedness 
requirements in the second item of the definition. Note, however, that, as Ω is not 
required to be symmetric, our variables are not necessarily interchangeable. If, however, 
Ω is symmetric (as is the case with ΩL), then we can quantify over any variable and 
not only over the one with the largest index. The condition that Ω is shift-increasing 
translates into the fact that we are allowed to substitute variables with bigger indices 
for free variables in formulas: if φ(x0, . . . , xn) is an Ω-formula and i0 < i1 < · · · < in−1, 
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then φ(xi0 , . . . , xin) is also an Ω-formula. This property turns out to be very convenient 
when one tries to write actual formulas.

The notion of an Ω-formula becomes more permissive as Ω becomes larger; we will 
see later (Corollary 6.5) that for a certain choice of Ω, every Lω1ω-sentence is equivalent 
to an Ω-sentence. On the other hand, the expressive power of ΩL-formulas is strictly 
weaker than that of full Lω1ω-logic (see Section 8). This distinction is purely an infinitary 
phenomenon: if one restricts to Lωω, then it follows from [2, Corollary 1.7] that any 
formula can be uniformly approximated by a Lipschitz formula and thus the values of 
1-Lipschitz formulas completely determine the values of all Lωω-formulas.

Terms and formulas in Lω1ω(L) can naturally be interpreted in any L-structure A: 
every term σ is interpreted as a function σA : AN → A and every formula φ is interpreted 
as a function φA : AN → R that obeys its modulus and bound. If φ is an n-ary formula, 
then it only depends on the first n variables, so its interpretation can be considered as 
a function An → R. Sometimes we will write A |= (φ = r) instead of φA = r.

Formulas of fixed arity n are naturally equipped with a seminorm defined as follows:

‖φ‖ = sup{|φ(ā)| : A is a structure and ā ∈ An}. (2.5)

The norm ‖φ‖ is always finite because an interpretation of a formula is required to obey 
its bound Iφ. The following basic fact will be needed later.

Lemma 2.4. Let κ be an infinite cardinal. If the language L has size at most κ, then the 
space of Lωω-formulas, equipped with the norm given by (2.5) has density character at 
most κ.

Proof sketch. The only possible problem is that we allow arbitrary continuous functions 
as connectives and there are uncountably many of them. However, as the space of con-
tinuous functions defined on a compact subset of Rn is separable in the uniform norm, 
we can use a countable collection of connectives and thus obtain a dense set of size κ. 
(In fact, it is possible to use only finitely many connectives.) �

Note, however, that the space of (even quantifier-free) Lω1ω-formulas has density 
character 2|L|.

Remark 2.5. Our framework also allows us to treat unbounded predicates. If P is an 
unbounded predicate, we replace it with an infinite family {Pn : n ∈ N} of predicate 
symbols interpreted as Pn = min(P, n). In the special case where the distance d is 
unbounded, we take d1 to be the “official” distance required by the language. This does 
not change much as d and d1 are uniformly equivalent. Note also that isomorphism is 
preserved by this procedure.
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3. The back-and-forth hierarchy and Scott ranks

3.1. The back-and-forth pseudo-distances

Throughout, we fix a signature L and a weak modulus Ω: [0, ∞)N → [0, ∞].
The rα pseudo-distances that we define in this subsection are the continuous analogue 

of the back-and-forth equivalence relations for classical structures. Note that rα take 
values in [0, ∞].

Definition 3.1. Let α be an ordinal or the symbol ∞ greater than all ordinals. Let n ∈
N, let A and B be structures and let ā ∈ An, b̄ ∈ Bn. We define the back-and-forth 
pseudo-distance (of rank α and arity n, with respect to Ω), denoted by rA,B,Ω

α,n (ā, ̄b) (or 
simply rA,B

α (ā, ̄b)) by induction on α as follows. For α = 0, we set

rA,B
0 (ā, b̄) = sup

φ

∣∣φA(ā) − φB(b̄)
∣∣,

where φ varies over all basic n-ary Ω-formulas. For α limit (or ∞),

rA,B
α (ā, b̄) = sup

β<α
rA,B
β (ā, b̄).

Finally, for the successor step,

rA,B
α+1(ā, b̄) = sup

c∈A, d∈B
inf

c′∈A, d′∈B
rA,B
α (āc, b̄d′) ∨ rA,B

α (āc′, b̄d).

We may also write rα,n(Aā, Bb̄) instead of rA,B
α,n (ā, ̄b), allowing A and B to vary together 

with ā and b̄. In case n = 0, we write just rα(A, B).

For the rest of this section, fix a signature L and a weak modulus Ω.

Lemma 3.2.

(i) For fixed α and n, rα,n is a pseudo-distance on the class of all pairs Aā.
(ii) For every α, A and ā, ̄b ∈ An, we have rA,A

α (ā, ̄b) ≤ dΩ(ā, ̄b).
(iii) For fixed α, n, A, and B, the function rA,B

α is uniformly continuous on An × Bn, 
respecting the modulus Ω|n on each side. In particular, if rα(Aā, Bb̄) < ∞ for some 
ā ∈ An, b̄ ∈ Bn, then rα(Ac̄, Bd̄) < ∞ for all c̄ ∈ An, d̄ ∈ Bn.

Proof. All three items are proved by induction on α.
(i) The only non-obvious property is the triangle inequality. For α = 0 and α limit, this 

is easy. For the successor step, assume that rα+1(Aā, Bb̄) < s and rα+1(Bb̄, Cc̄) < t in 
order to show that rα+1(Aā, Cc̄) ≤ s + t. Fix d ∈ A. Since s > rα+1(Aā, Bb̄), there exists 
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e ∈ B such that rα(Aād, Bb̄e) < s. Similarly, there exists f such that rα(Bb̄e, ̄cf) < t. 
By the induction hypothesis, rα(Aād, Cc̄f) < s + t. Similarly, for all f there exists d
such that the same holds, so rα+1(Aā, Cc̄) ≤ s + t and we are done.

(ii) For α = 0, this holds since the interpretation of an n-ary Ω-formula respects Ω|n. 
For limit steps, this is clear, and at the successor step, take d′ = c and c′ = d and note 
that by the definition of dΩ, dΩ(āc, ̄bc) = dΩ(ā, ̄b).

(iii) follows from (i) and (ii). �
The next lemma shows that the rα stabilize at a certain point.

Lemma 3.3. The following statements hold:

(i) If β < α then rβ ≤ rα (i.e., rβ,n ≤ rα,n for all n);
(ii) If κ is an infinite cardinal and A and B are structures of density character at most 

κ, then there exists α < κ+ such that rA,B
α+1 = rA,B

α . Moreover, in this case, the 
sequence of rA,B stabilizes beyond α, i.e., rA,B

∞ = rA,B
α .

Proof. (i) We argue by induction on α. For α = 0 and α limit, there is nothing to show. 
We now prove the statement for α + 1 assuming that it holds for α. By the induction 
hypothesis, it will suffice to show that rα ≤ rα+1, which we do by distinguishing different 
cases.

If α = 0, then r0 ≤ r1 because a formula φ(x0, . . . xn−1, xn) that respects Ω|n+1 and 
does not depend on xn also respects Ω|n. On the other hand, if β < α, then rβ ≤ rα by 
the induction hypothesis, so rβ+1 ≤ rα+1. From this, for both α limit and α successor, 
we deduce that rα ≤ rα+1.

(ii) For β < κ+, q ∈ Q, and n ∈ N, let

Uβ,q,n = {(ā, b̄) ∈ An ×Bn : rβ(ā, b̄) > q}.

If we keep q and n fixed, {Uβ,q,n : β < κ+} is an increasing sequence of open sets in 
the space An × Bn which has weight κ; therefore the sequence must stabilize at some 
β(q, n) < κ+. Finally, set α = sup{β(q, n) : q ∈ Q, n ∈ N}. �

The pseudo-distances rα define naturally equivalence relations Eα:

AāEα Bb̄ ⇐⇒ rα(Aā,Bb̄) = 0.

In view of Lemma 3.3, we naturally have that Eα ⊇ Eα+1 and E∞ =
⋂

α Eα.
If A is a separable structure, say that the sequence (ai)i∈N of elements of A is tail-dense

if for every k, {ai : i > k} is dense in A. It is easy to see that a sequence is tail-dense iff 
it is dense and it hits every isolated point of A infinitely many times. The following is 
the key back-and-forth fact that will be used throughout the paper.
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Proposition 3.4. Suppose that Ω is shift-increasing. Let A and B be separable structures 
and let v̄ ∈ Ak, w̄ ∈ Bk. Then we have that r∞(Av̄, Bw̄) < t if and only if there exist 
tail-dense sequences a ∈ AN and b ∈ BN such that a|k = v̄, b|k = w̄, and

sup
n

rA,B
0,n (a|n, b|n) < t.

Proof. We start with the “only if” part. Let BA be a countable basis for A and let 
(UA

n : n ∈ N) be a sequence of open sets such that every element of BA appears infinitely 
often; similarly, define (UB

n : n ∈ N) for B.
We construct the desired sequences by a back-and-forth argument; we only describe 

the “forth” step. Let ā = (a0, . . . , an−1) and b̄ = (b0, . . . bn−1) be given (for some even 
n ≥ k) and suppose that r∞(Aā, Bb̄) < t′ < t. Let an be an arbitrary element of UA

n/2. 
We are looking for bn ∈ B such that r∞(Aāan, Bb̄bn) < t′. By Lemma 3.3, there exists 
α = αA,B , so that rA,B

∞ = rA,B
α = rA,B

α+1. We have

t′ > rα(Aā,Bb̄)

= rα+1(Aā,Bb̄)

≥ sup
c∈A

inf
d′∈B

rα(Aāc,Bb̄d′)

≥ inf
d′∈B

rα(Aāan, Bb̄d′).

We obtain that there exists bn ∈ B such that rα(Aāan, Bb̄bn) < t′, which allows us 
to continue. The fact that a2n ∈ UA

n and b2n+1 ∈ UB
n for every n ensures that both 

sequences are tail-dense. In the end, we have

sup
n

r0(a|n, b|n) ≤ sup
n

r∞(a|n, b|n) ≤ t′ < t,

and we are done.
Conversely, suppose we are given sequences ā and b̄ with

sup
n

rA,B
0,n (ā|n, b̄|n) < t′ < t.

We show by induction on α that for any i0 < · · · < in−1 and all α, we have

rα(Aai0 . . . ain−1 , Bbi0 . . . bin−1) ≤ t′. (3.1)

First consider the case that α = 0 and take some i0 < · · · < in−1. Then we have

r0(Aai0ai1 . . . ain−1 , Bbi0bi1 . . . bin−1) ≤ r0(Aa0a1 . . . ain−1 , Bb0b1 . . . bin−1) < t,

where the fist inequality follows from the fact that Ω is shift-increasing and the second 
from the assumption.
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Suppose now that α = β + 1 for some β ≥ 0 for which (3.1) has been proved. Fix 
again some i0 < · · · < in−1. Then we have

rβ+1(Aai0 . . . ain−1 , Bbi0 . . . bin−1) ≤ lim sup
m→∞

rβ(Aai0 . . . ain−1am, Bbi0 . . . bin−1bm)

≤ t′.

Indeed, to see why the first inequality holds, suppose that the right-hand side is 
smaller than s. Let ε > 0. Fix c ∈ A and let mk → ∞ be such that amk

→ c and 
rβ(Aai0 . . . ain−1amk

, Bbi0 . . . bin−1bmk
) < s + ε for all k. Now taking k big enough so 

that rβ(Aai0 . . . ain−1c, Aai0 . . . ain−1amk
) < ε (which exists because rβ is contractive in 

dΩ by Lemma 3.2), shows that

inf
d
rβ(Aai0 . . . ain−1amk

, Bbi0 . . . bin−1d) < s + 2ε.

The other term in the inductive definition of rβ+1 is treated in a similar way.
The second inequality follows from the inductive hypothesis. The limit case is trivial. 

This completes the induction and the proof of the proposition. �
Note that the assumption that Ω is shift-increasing is only used in the “if” direction 

of the proposition.

3.2. Quantifier rank

The quantifier rank of a formula φ, denoted by qrφ, is defined by induction as follows:

• qrφ = 0 if φ is an atomic formula;
• qr f(φ0, . . . , φn−1) = maxi qrφi if f is a connective;
• qr

∨
i φi = qr

∧
i φi = supi qrφi;

• qr(supx φ) = qr(infx φ) = qrφ + 1.

The following theorem tells us that, as in the classical case, the distance rα captures 
exactly the expressive power of the Ω-formulas of quantifier rank at most α.

Theorem 3.5. Let α be an ordinal, A, B ∈ M, ā ∈ An and b̄ ∈ Bn. Then

rA,B
α (ā, b̄) = sup

φ

∣∣φA(ā) − φB(b̄)
∣∣, (3.2)

where φ varies over all n-ary Ω-formulas of quantifier rank at most α.

Proof. We prove by induction on α that for all bounds I,

rA,B
α (ā, b̄) ∧ |I| = sup

∣∣φA(ā) − φB(b̄)
∣∣,
φ
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where |I| denotes the length of I and φ varies over all n-ary (Ω, I)-formulas of quantifier 
rank at most α. For α = 0 and limit this is by definition, so assume this for α and let us 
prove it for α + 1. For simplicity, suppose that min I = 0.

Fix t > 0, and assume that rA,B
α+1(ā, ̄b) > t. Without loss of generality, there exists c

such that rA,B
α (āc, ̄bd) > t for all d. By the induction hypothesis, for each d, there exists 

an (n +1)-ary (Ω, I)-formula φd of quantifier rank ≤ α such that 
∣∣φA

d (ā, c) −φB
d (b̄, d)

∣∣ > t, 
and possibly replacing φd with another formula of the same kind, we may assume that 
φA
d (ā, c) > t > 0 = φB

d (b̄, d). Now, ψ = supxn

∧
d∈N φd is an n-ary (Ω, I)-formula of 

quantifier rank ≤ α + 1 and

ψA(ā) ≥ t > 0 ≥ ψB(b̄),

which is enough.
Conversely, assume that supφ

∣∣φA(ā) − φB(b̄)
∣∣ > t. Then 

∣∣φA(ā) − φB(b̄)
∣∣ > t for 

some n-ary Ω-formula φ of quantifier rank ≤ α + 1. If φ is of the form 
∨

i φi, 
∧

i φi, or 
f(φ0, . . . , φk−1), where f is a 1-Lipschitz connective, then we can replace φ with one of 
the φi. If φ is basic, use the fact that r0 ≤ rα+1 (Lemma 3.3). We are left with the case 
where φ = supxn

ψ (or φ = infxn
ψ but it is similar), where qrψ = α. We may assume 

that φA(ā) > t > 0 = φB(b̄). In other words, there exists c such that ψA(ā, c) > t and 
yet ψB(b̄, d) ≤ 0 for all d. By the induction hypothesis, rA,B

α (āc, ̄bd) > t for this one c
and all d, so rA,B

α+1(ā, ̄b) ≥ t and we are done. �
3.3. Scott rank and Scott sentence

In this subsection, given a separable structure A, we describe how to associate to 
it a countable ordinal, its Scott rank, and construct a sentence that describes it up to 
E∞-equivalence.

Definition 3.6. We call the least ordinal α for which rA,B
α = rA,B

α+1 the (Ω-)Scott rank of 
the pair A, B, denoted by αA,B (or αΩ,A,B). If A = B, we call it the (Ω-)Scott rank of 
A and denote it by αA.

Note that by Lemma 3.3, if A is infinite, then αA < |A|+.

Lemma 3.7. If the structures A and B are E∞-equivalent, then αA,C = αB,C for any 
structure C and, in particular, αA = αA,B = αB.

Proof. Let α = αA,C . By symmetry, it will suffice to prove that αB,C ≤ α.
Let b̄ ∈ Bn and c̄ ∈ Cn. As r∞(A, B) = 0, for any ε > 0, there exists a tuple ā ∈ An

such that

rα(Aā,Bb̄) ≤ rα+1(Aā,Bb̄) ≤ r∞(Aā,Bb̄) < ε.
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Since rα(Aā, Cc̄) = rα+1(Aā, Cc̄), we have
∣∣rα(Bb̄, Cc̄) − rα+1(Bb̄, Cc̄)

∣∣ < ∣∣rα(Aā, Cc̄) − rα+1(Aā, Cc̄)
∣∣ + 2ε = 2ε.

As ε is arbitrary, rα(Bb̄, Cc̄) = rα+1(Bb̄, Cc̄), as desired. �
Next we observe that, analogously to the classical case, for every separable structure 

A, each ā ∈ An, and each ordinal α, there exists a formula φα,Aā(x̄) such that for all 
structures B,

φB
α,n,Aā(b̄) = rA,B

α,n (ā, b̄) ∧ 1. (3.3)

As formulas are always uniformly bounded, taking the minimum with 1 (or some other 
constant) above is necessary.

First, we fix a countable, dense subset D ⊆ A. Note that the formulas that we define 
do depend on this choice of D; however for different choices of D, one obtains equivalent 
formulas. For a countable ordinal α, n ∈ N and ā ∈ An, we define inductively the n-ary 
Ω-formula φα,n,Aā as follows.

For α = 0,

φ0,n,Aā(x0, . . . , xn−1) =
∨
φ

∣∣φA(ā) − φ(x0, . . . , xn−1)
∣∣,

as φ varies over a countable family of basic n-ary (Ω, [0, 1])-formulas, dense in the norm 
given by (2.5) (see Lemma 2.4). For α limit,

φα,n,Aā =
∨
β<α

φβ,n,Aā.

For a successor,

φα+1,n,Aā(x0, . . . , xn−1) =
( ∨

c∈D

inf
xn

φα,n+1,Aāc

)
∨
(

sup
xn

∧
c∈D

φα,n+1,Aāc

)
. (3.4)

An easy induction shows that φα,n,Ab̄ is an n-ary (Ω, [0, 1])-formula of quantifier rank 
α, and that (3.3) holds.

Now let αA be the Scott rank of A and note that, as A is separable, by Lemma 3.3, 
αA < ω1. We define σA, the Scott sentence of A, as

σA = φαA,0,A ∨
∨

n, ā∈Dn

sup
x0,...,xn−1

1
2
∣∣φαA,n,Aā − φαA+1,n,Aā

∣∣. (3.5)

This is an (Ω, [0, 1])-sentence; the coefficient 1
2 is needed because the function (x1, x2) �→

|x1 − x2| is 2-Lipschitz and in Ω-formulas, we only allow 1-Lipschitz connectives.
The main property of the Scott sentence is the following.
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Theorem 3.8. Let B be a separable structure. Then B |= (σA = 0) iff r∞(A, B) = 0.

Proof. Assume first that B |= (σA = 0). Then the second part of σA ensures that 
rA,B
αA

= rA,B
∞ , and then the first part ensures that rαA

(A, B) = 0. Together, r∞(A, B) = 0.
Conversely, assume that r∞(A, B) = 0. Then rαA

(A, B) = 0 so the first part of σA

vanishes on B. By Lemma 3.7, we have αA = αA,B , so the second part of σA also vanishes 
on B. �
4. The space of Polish structures

From now on we will assume that the language L is countable, and we will only 
consider separable structures. Then it is possible to parametrize all L-structures by 
elements of a Polish space M, in such a way that the pseudo-distances rα become Borel 
functions on M.

We will code function symbols by predicates in the following way. If F is an n-ary 
function symbol with modulus ΔF , we replace it by the (n +1)-ary predicate DF defined 
by

DF (x̄, y) = d(F (x̄), y) (4.1)

with modulus of continuity ΔDF
given by

ΔDF
(δ, δ′) = ΔF (δ) + δ′ (4.2)

and bound equal to the bound of the metric d. Call L′ the resulting language.

Lemma 4.1. Every Lωω(L)-formula is equivalent to a Lωω(L′)-formula. A similar fact 
holds for Lω1ω.

Proof. We show by induction that for every term τ(x̄), there exists an L′-formula 
Dτ (x̄, y) such that Dτ (x̄, y) = d(τ(x̄), y). Suppose that τ = F (τ0, . . . , τn−1), where F is 
a function symbol and the τi are terms. Define Dτ by

Dτ (x̄, y) = inf̄
z
{DF (z̄, y) :

∨
i

Dτi(x̄, zi) = 0}.

This can be written as a legitimate Lωω-formula by [4, Theorem 9.17].
Similarly, if P (τ̄0, . . . , τn−1) is an atomic formula, the following L′-formula is equiva-

lent to it:

P ′(x̄) = inf̄
y
{P (ȳ) :

∨
i

Dτi(x̄, yi) = 0}.

Now the lemma follows by induction on formulas. �
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Enumerate all predicates in L′ as d = P0, P1, P2, . . . and let n0, n1, . . . be their respec-
tive arities. Let M(L) = M(L′) be the set of all p ∈

∏
i RNni such that there exists an 

L-structure A and a tail-dense sequence (ai)i∈N of elements of A such that

p(i)(j0, . . . , jni−1) = PA
i (aj0 , . . . , ajni−1)

for all i ∈ N, (j0, . . . , jni−1) ∈ Nni . We will also often write just M when the language 
L is clear from the context.

Proposition 4.2. M is a Gδ subset of 
∏

i RNni , and therefore a Polish space.

Proof. It is easy to check that p ∈ M iff the following hold: p(0) defines a pseudo-distance 
on N; the set N is tail-dense in the metric space (N, p(0)); for every i > 0, p(i) : Nni → R
respects the modulus ΔPi

and the bound IPi
on N; finally, for every predicate of the form 

DF , there exists a function F that satisfies (4.1). Indeed, if p satisfies these conditions, 
one can just take A to be the completion of N with respect to the distance p(0), extend 
all predicates by uniform continuity, and define the functions via (4.1). The first three 
of these conditions are clearly Gδ; we check the fourth.

Suppose that F is a function symbol in L with modulus ΔF . We claim that a predicate 
DF satisfying the modulus (4.2) comes from a function iff it satisfies the conditions

d(y1, y2) ≤ DF (x̄, y1) + DF (x̄, y2) (4.3)

and

∀x̄ ∀ε > 0 ∃y DF (x̄, y) < ε. (4.4)

The first one is a closed condition and says that F is a function; the second ensures that 
F is total. As DF is uniformly continuous, the quantifiers ∀x̄ and ∃y in (4.4) can be 
taken to range over the distinguished dense subset, so the condition (4.4) is Gδ. Then 
any predicate that respects ΔDF

and satisfies (4.3) and (4.4) is of the form DF for some 
function F that respects ΔF . To see this, fix x̄ and take a sequence (yn) as given by 
(4.4) for ε = 2−n; then by (4.3), the sequence (yn) is Cauchy and its limit y satisfies 
DF (x̄, y) = 0. Define F (x̄) to be the (unique by (4.3)) y such that DF (x̄, y) = 0. One 
then easily checks that F respects ΔF and that DF (x̄, y) = d(F (x̄), y). �

We will consider an element A ∈ M as a complete structure with a distinguished 
tail-dense set N ⊆ A; thus we will write PA

i (a0, . . . , ani−1) instead of A(i)(a0, . . . , ani−1)
for a0, . . . , ani−1 ∈ N. In this way, we also interpret rα(Aā, Bb̄), where A, B ∈ M and 
ā, ̄b ∈ Nn. Thus rα,n is a pseudo-distance on M × Nn. Since N is dense and rA,B

α is 
continuous in each variable, we also have
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rA,B
α+1(ā, b̄) = sup

c,d∈N
inf

c′,d′∈N
rA,B
α (āc, b̄d′) ∨ rA,B

α (āc′, b̄d), (4.5)

that is, it is enough to take suprema and infima over the distinguished dense sets.

Proposition 4.3. The following statements hold:

(i) For every formula φ(x̄), the function M ×Nn → R, Aā �→ φA(ā) is Borel.
(ii) For every n ∈ N and α < ω1, the function rα,n : (M × Nn)2 → R is Borel.
(iii) If Ω is shift-increasing, then for every s ∈ R, the set

{(Aā,Bb̄) ∈ (M× Nn)2 : r∞(Aā,Bb̄) < s}

is analytic.

Proof. (i) By Lemma 4.1, it is enough to prove the claim for L′-formulas, which is done by 
induction. Evaluation of L′-atomic formulas is a continuous function. For the quantifier 
step, note that it suffices to quantify over the distinguished dense set.

(ii) For α = 0, recall that r0(Aā, Bb̄) ≤ s iff for all basic φ that obey Ω, |φA(ā) −
φB(b̄)| ≤ s. By (i), all of those are Borel conditions and by Lemma 2.4, it suffices 
to consider only countably many of them. The rest of the proof is a straightforward 
induction on α using (4.5).

(iii) This follows from Proposition 3.4, which gives an analytic description of the 
condition r∞(Aā, Bb̄) < s. �

We obtain the following corollary from Theorem 3.8.

Corollary 4.4. Let L be a countable signature and Ω be a weak modulus. Then for every 
separable L-structure A, the set

{B ∈ M(L) : rΩ
∞(A,B) = 0}

is Borel.

5. The universal weak modulus

In this section, we show that for every countable language L, there exists a universal 
weak modulus Ω such that every Lω1ω(L)-sentence is equivalent to an Ω-sentence (Corol-
lary 6.5) and for which the equivalence relation E∞ is the finest one possible, that of 
isomorphism (Theorem 5.5).

What we will need from the universal modulus is that Ω-formulas be sufficiently 
expressive; see Proposition 5.2 below. The definition is chosen in such a way to make 
this work.
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Definition 5.1. Let L be a countable signature. We say that a weak modulus Ω is universal 
for L if it satisfies the following conditions:

(i) For every atomic formula φ(x0, . . . , xk−1), there exists n such that

Δφ(δ0, . . . , δk−1) ≤ Ω|n(0, . . . , 0, δ0, . . . , δk−1);

(ii) For every k ∈ N and every M > 0, there exists n such that

M · Ω|k(δ0, . . . , δk−1) ≤ Ω|n(0, . . . , 0, δ0, . . . , δk−1);

(iii) For every k, n ∈ N,

Ω|k(δ0, . . . , δk−1) + Ω|n(γ0, . . . , γn−1) ≤ Ω|k+n(δ0, . . . , δk−1, γ0, . . . , γn−1);

(iv) Ω is shift-increasing.

Proposition 5.2. Let Ω be a universal weak modulus for L. Then the following hold:

(i) For every k-ary atomic formula φ(x̄), there exists n such that φ(xn, . . . , xn+k−1) is 
an Ω-formula;

(ii) For every k-ary Ω-formula φ(x̄) and every M > 0, there exists n such that M ·
φ(xn, . . . , xn+k−1) is an Ω-formula;

(iii) For all tuples

i0 < · · · < in−1 < j0 < · · · < jn−1,

dΩ((xi0 , . . . , xin−1), (xj0 , . . . , xjn−1)
)

is an Ω-formula.

Proof. The items (i) and (ii) follow from the corresponding ones in Definition 5.1. We 
check (iii). Let A be an L-structure and ā, ̄b, ̄c, d̄ ∈ An. Let δi = d(ai, ci) and γi = d(bi, di). 
We have:

|dΩ(ā, b̄) − dΩ(c̄, d̄)| ≤ dΩ(ā, c̄) + dΩ(b̄, d̄)

= Ω(δ0, . . . , δn−1) + Ω(γ0, . . . , γn−1)

≤ Ω(δ0, . . . , δn−1, γ0, . . . , γn−1)

≤ Ω(. . . , δ0, . . . , δn−1, . . . , γ0, . . . , γn−1, . . .),

where in the last line, δ0, . . . , δn−1, γ0, . . . , γn−1 are in positions i0, . . . , in−1, j0, . . . , jn−1, 
respectively, and the other positions are filled with zeros. The second inequality is condi-
tion (iii) in Definition 5.1 and the last one follows from the fact that Ω is shift-increasing. 
This completes the proof of (iii). �
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Proposition 5.3. For every signature L, a universal modulus ΩU(L) for L exists. If L
is a Lipschitz language (that is, all moduli of continuity for symbols in L are linear 
functions), then we can take Ω = ΩU(Lip) as defined by (2.4).

Proof. Let {φi}i∈N be an enumeration of all atomic formulas in L. Let

ΩU(L)(δ0, δ1, . . .) =
∞∑
i=0

i · sup
k≤i

Δφk
(δi, . . . , δi).

One easily checks that all conditions in Definition 5.1 are satisfied. Similarly for ΩU(Lip)
and Lipschitz languages. �
Remark 5.4. Our definition of a universal weak modulus is somewhat arbitrary: we have 
put together all conditions that we need (here, as well as in Sections 6 and 7) and what 
is important for us is the fact that such a universal modulus exists. For other purposes, 
one might need additional properties.

Theorem 5.5. Let L be a countable signature and let Ω be a universal weak modulus for 
L. Let A and B be separable L-structures and v̄ ∈ Ak, w̄ ∈ Bk. Then

rΩ
∞(Av̄,Bw̄) = inf{dΩ(f(v̄), w̄) : f is an isomorphism A → B}.

In particular,

rΩ
∞(A,B) =

{
0 if A ∼= B,

∞ otherwise.

Proof. The inequality ≤ is clear: if f : A → B is an isomorphism, then it follows from 
Lemma 3.2 that for all α,

rα(Av̄,Bw̄) ≤ dΩ(f(v̄), w̄).

For the inequality ≥, suppose that r∞(Av̄, Bw̄) < t. By Proposition 3.4, there exist 
tail-dense sequences a ∈ AN and b ∈ BN such that a|k = v̄, b|k = w̄ and for all n, 
rA,B
0 (a|n, b|n) ≤ t.

Consider an n-ary atomic formula φ(ȳ). By Proposition 5.2 (i), (ii) and the fact that 
Ω is shift-increasing, for every M > 0, there exists l(M, φ) such that for σ ∈ Nn with 
min σ > l,

φσ = M · φ(xσ0 , . . . , xσn−1)

is a basic Ω-formula. It follows that
∣∣φσ(aσ0 , . . . , aσn−1) − φσ(bσ0 , . . . , bσn−1)

∣∣ ≤ r0(a|max σ, b|max σ) < t, (5.1)
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i.e., for all σ with min σ > l(M, φ),

∣∣φ(aσ0 , . . . , aσn−1) − φ(bσ0 , . . . , bσn−1)
∣∣ < t/M,

which implies that

∣∣φ(aσ0 , . . . , aσn−1) − φ(bσ0 , . . . , bσn−1)
∣∣ → 0 as min σ → ∞. (5.2)

Applied to the formula d(y0, y1), this means that for a strictly increasing sequence 
(mn) ⊆ N, if one of the subsequences (amn

) and (bmn
) is Cauchy, then so is the other. 

If lim amn
= lim am′

n
, then (amn

, am′
n
) is Cauchy, therefore so is (bmn

, bm′
n
), and thus 

lim bmn
= lim bm′

n
(and vice versa). We therefore obtain a bijection θ : A → B defined 

by θ
(
lim amn

)
= lim bmn

. By (5.2) again, θ is an isomorphism. Next we check that 
dΩ(θ(a|k), b|k) ≤ t. For i < k, let (mi,n)n be strictly increasing sequences such that 
ami,n

→ ai as n → ∞ and

k < m0,n < · · · < mk−1,n for each n.

Then Proposition 5.2 (iii) and (5.1) give us that

∣∣dΩ(a|k, (am0,n , . . . , amk−1,n)
)
− dΩ(b|k, (bm0,n , . . . , bmk−1,n)

)∣∣ < t

for all n and taking limits yields dΩ(b|k, θ(a|k)) ≤ t as desired. �
Applying Corollary 4.4 allows us to recover one of the original applications of Scott 

sentences.

Corollary 5.6. Let L be a countable signature and A be a separable L-structure. Then the 
set {B ∈ M(L) : B ∼= A} is Borel.

Remark 5.7. We should note that Corollary 5.6 also follows from the main result of [12], 
where the authors prove that isomorphism of Polish metric structures is Borel reducible 
to a Polish group action (which implies that classes are Borel). However, our result is 
more precise as it gives a bound of the Borel complexity of the isomorphism class in 
terms of the Scott rank.

Remark 5.8. Note that in Theorem 5.5, if r∞(Aā, Bb̄) = 0, this does not imply that 
there is an isomorphism between A and B that sends ā to b̄. An easy example of this 
is when A = B and the orbits of the action of Aut(A) on A are not closed. Then, for 
any a and b in the same orbit closure of Aut(A), r∞(Aa, Ab) = 0. However, if a and b
are not in the same orbit, there is no automorphism that maps a to b. Such a structure 
can be obtained as follows: if G is a Polish group, its completion under a left-invariant 
metric GL can be made into a metric structure in such a way that Aut(GL) = G with 
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the action of G on GL by left translation. If G �= GL (this holds, e.g., for G = S∞), 
this provides an example of an automorphism group with orbits that are not closed. See 
Melleray [24] for more details.

Remark 5.9. It is possible to take a slightly different approach that may be more suitable 
for some purposes when defining the back-and-forth pseudo-distances. In the definition 
of r0, one could replace basic formulas by full Lωω-formulas that obey Ω. This has the 
advantage of being much more robust with respect to syntactical considerations: one can 
assume from the start, without loss of generality, that the signature contains no function 
symbols and that all predicates are Lipschitz (see [2, Corollary 1.7]), thus allowing a 
unique universal weak modulus that works for all languages (namely, ΩU(Lip)). The 
main disadvantage of this approach is that r0 becomes very hard to compute, while with 
our definition, computations are sometimes feasible (see Section 8).

6. A López-Escobar theorem

Next we prove a continuous analogue of the classical López-Escobar theorem: that 
every Borel set of structures invariant under isomorphism is the set of models of some 
Lω1ω-sentence. This is a converse to Proposition 4.3 (i).

Let L be a fixed countable language, and, as before, denote by M the space of Polish 
metric L-structures. Let Ω be a universal weak modulus for L. Let ∼= be the (analytic) 
equivalence relation of isomorphism on M (by Theorem 5.5, this is the same as E∞).

We proceed to the main theorem of this section. We use the definition of Baire class 
for real valued, Borel functions given in [22, 24.1]. If θ is the least ordinal such that the 
function U is of Baire class θ, we write BC(U) = θ.

Theorem 6.1. Let I ⊆ R be a compact interval and U : M → I be a Borel function that 
is ∼=-invariant. Then there exists an (Ω, I)-sentence φ such that

U(A) = φA for all A ∈ M.

Moreover, we have that qr(φ) ≤ ω · 2 · (2 + BC(U) + 1).

There are two known proofs of the López-Escobar theorem in the classical case: the 
original one in [23], based on proof theory, and another one by Vaught [28], based on 
Baire category and the fact that isomorphism is given by an action of S∞. It is the latter 
that we adapt to our situation. In our setting, we do not have a group action around 
but we do have Baire category and it will turn out that this is sufficient.

If A ∈ M is a model, we denote by [A] the ∼=-equivalence class of A in M (by Corol-
lary 5.6, this is a Borel set). We also define

D(A) =
{
y ∈ AN : {y(n) : n ∈ N} is tail-dense in A

}
.
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Here and later, by a slight abuse of notation, we denote by A both the element of M
(which prescribes the values of all predicates on a dense set) and the actual model (the 
completion of N with respect to the metric). Note that D(A) is a Gδ set in AN, and 
therefore a Polish space.

For each A ∈ M, there is a natural continuous surjection πA : D(A) → [A] defined by

PπA(y)(i0, . . . , in−1) = PA(y(i0), . . . , y(in−1))

for all predicates P ∈ L of arity n and all i0, . . . , in−1 ∈ N. Because of the way we code 
models, we may assume, without loss of generality, that the language L does not contain 
function symbols. The map πA will allow us to push forward the ideal of meager sets on 
D(A) to [A], which is an essential element of the proof.

If X is a Baire topological space, we will use the category quantifiers “∃∗” to mean 
“for a non-meagre set of” and “∀∗” to mean “for a comeagre set of”. If f : X → R is 
a Baire measurable function, define the operators sup∗ (essential supremum) and inf∗

(essential infimum) as follows:

sup∗
x∈X

f(x) > t ⇐⇒ ∃∗x ∈ X f(x) > t

inf∗
x∈X

f(x) < t ⇐⇒ ∃∗x ∈ X f(x) < t.

Note that if f is continuous, then

sup∗
x∈X

f(x) = sup
x∈X

f(x) and inf∗
x∈X

f(x) = inf
x∈X

f(x).

If y and z are finite or infinite sequences of elements of a metric space (Y, d) at least 
one of which is finite, we will abuse notation and write dΩ(y, z) instead of dΩ(y|m, z|m), 
where m = min(|y|, |z|). If y or z is the empty sequence, we set dΩ(y, z) = 0.

We will call a function F : M → R a basic continuous function if there exists k ∈ N, 
predicates Pi of arity ni for i < k, elements ai,j ∈ N (i < k, j < ni), and a Lipschitz (for 
the max distance on Rk) function f : Rk → R such that

F (A) = f
(
(PA

i (ai,0, . . . , ai,ni−1))i<k

)
.

Lemma 6.2. Let I ⊆ R be a compact interval. The class of Borel functions M → I is 
the smallest class that contains the basic continuous functions taking values in I and is 
closed under countable suprema and infima.

Proof. First recall that, by [22, 11.6], the class of Borel functions on a Polish space is the 
smallest class containing all continuous functions and closed under pointwise limits. If 
limn fn exists then limn fn = infn supm≥n fm, so it is also the smallest class containing 
all continuous functions and closed under countable suprema and infima.
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Thus it suffices to prove that all continuous functions can be obtained from the ba-
sic ones using pointwise limits. As M ⊆

∏
i I

NnPi

Pi
is a Gδ set (Proposition 4.2), any 

continuous function on M extends to a Baire class 2 function on the compact space 
Z =

∏
i I

NnPi

Pi
. Any continuous function on Z is uniformly continuous and can be 

approximated by a function that only depends on finitely many coordinates, that is, 
a function of the type A �→ f

(
(PA

i (ai,0, . . . , ai,ni−1))i<k

)
with f : K → R continuous, 

where K =
∏

i IPi
. By Stone–Weierstrass, f can be approximated by Lipschitz functions, 

and such functions are permitted in our definition of basic continuous functions. By tak-
ing limits (two times), we can obtain any Baire class 2 function on Z from continuous 
functions. �

If M > 0, U : M → [0, M ] is a Borel function, and k ∈ N, define the function 
U∗k : M × Nk → [0, M ] as follows:

U∗k(A, ū) = inf∗
y∈D(A)

U(πA(y)) ∨ kdΩ(y, ū).

The following result easily implies Theorem 6.1 and is better suited for an inductive 
argument.

Theorem 6.3. Let M > 0. For every Borel function U : M → [0, M ] and for every k ∈ N, 
there exists l ∈ N and an (Ω, [0, M ])-formula φU,k(xl, . . . , xl+k−1) such that

U∗k(A, ū) = φA
U,k(u0, . . . , uk−1) (6.1)

for all (A, ̄u) ∈ M ×Nk. Moreover,

qr(φU,k) ≤ ω · 2 · (2 + BC(U) + 1). (6.2)

Proof. For the main statement of the theorem, by Lemma 6.2, it is enough to check 
that the class of functions U that satisfy the theorem contains the basic continuous 
functions and is closed under countable infima and the operation U �→ M − U . (This 
operation exchanges infima and suprema and preserves the interval [0, M ].) Thereafter 
we will check “moreover” statement by bounding the quantifier rank of the constructed 
formulas.

First suppose that U is a basic continuous function. Then, by the properties of the 
universal modulus (Proposition 5.2 (i), (ii) and the fact that Ω is shift-increasing), there 
exist n ∈ N, variables z0, . . . , zn−1, and a basic Ω-formula θ(z0, . . . , zn−1) such that 
U(A) = θA(0, . . . , n −1). As U is continuous, sup and sup∗ coincide, and by the properties 
of the universal modulus again, there exists l ∈ N such that

φU,k(xl, . . . , xl+k−1) = inf̄
z

θ(z̄) ∨ kdΩ(x̄, z̄) (6.3)

is an Ω-formula and satisfies (6.1). (Note that φU,k is technically not an (Ω, [0, M ])-
formula as the subformula kdΩ(x̄, ̄z) does not respect the bound [0, M ]. This can be 
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easily fixed by replacing it by (kdΩ(x̄, ̄z)) ∧M but we will not do this in order to avoid 
cluttering the exposition. This change is completely harmless as it transforms φU,k into 
an equivalent formula. A similar remark also applies to the constructions below.)

Suppose now that U = infn Un and that the formulas φUn,k have already been con-
structed. We verify that

φU,k(x̄) =
∧
n

φUn,k(x̄)

works. Using the inductive hypothesis and the fact that inf∗ commutes with taking 
countable infima, we obtain

U∗k(A, ū) = inf∗
y∈D(A)

inf
n

Un(πA(y)) ∨ kdΩ(y, ū)

= inf
n

inf∗
y∈D(A)

Un(πA(y)) ∨ kdΩ(y, ū)

= inf
n

φA
Un,k(ū).

Finally, suppose that U = M − V , and that formulas φV,m satisfying

φA
V,m(z̄) = inf∗

v∈D(A)
V (v) ∨mdΩ(v, z̄) (6.4)

have already been constructed for every m.
We show that

φU,k(x̄) =
∧
m

inf
z0,...,zm−1

(M − φV,m(z̄)) ∨ kdΩ(x̄, z̄)

satisfies (6.1). Note also that the variables can be chosen in a such a way that φU,k is an 
Ω-formula.

Fix A, ū, and r ∈ R in order to show that

U∗k(A, ū) < r ⇐⇒ φA
U,k(ū) < r. (6.5)

If z̄ ∈ Am and r > 0, let B(z̄, r) be the open set

B(z̄, r) = {y ∈ D(A) : dΩ(z̄, y) < r}.

Suppressing πA from the notation, we have that

U∗k(A, ū) < r ⇐⇒ ∃∗y ∈ D(A)
(
kdΩ(ū, y) < r and (M − V (y)) < r

)
⇐⇒ ∃ open W ⊆ D(A)

(
W ⊆ B(ū, r/k) and ∀∗y ∈ W V (y) > M − r

)
.
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On the other hand,

φA
U,k(ū) < r ⇐⇒ ∃m, z̄

((
(M − inf∗

v∈D(A)
V (v)) ∨mdΩ(z̄, v)

)
< r

and kdΩ(ū, z̄) < r
)

⇐⇒ ∃m, z̄
((

∀∗v ∈ D(A) V (v) > M − r or mdΩ(v, z̄) > M − r
))

and kdΩ(ū, z̄) < r
)

⇐⇒ ∃m, z̄
((

∀∗v ∈ B(z̄, (M − r)/m) V (v) > M − r
)

and kdΩ(ū, z̄) < r
)
.

For the direction (⇐) of (6.5), suppose that z and m are given. By enlarging m if 
necessary (and prolonging z̄ arbitrarily), we may assume that (M−r)/m < r/k−dΩ(ū, ̄z). 
Then it suffices to take W = B(z̄, (M − r)/m) to witness that U∗k(A, ̄u) < r.

For the other direction, suppose that W is given. Let y ∈ W be arbitrary and take m
so big that B(y|m, (M − r)/m) ⊆ W . Finally, set z = y|m.

This completes the induction.
Now we give bounds on the quantifier ranks. Let F be the function defined by F (θ) =

ω · 2 · (2 + θ + 1) for each ordinal θ. Note that if U = limn Un for Borel functions Un, 
then we may assume that the range of each Un is contained in [0, M ] without increasing 
the Baire class, and we have

U = lim sup
n

Un = inf
m

(M − inf
n≥m

(M − Un)). (6.6)

If U is basic continuous, for φU,k defined in (6.3), we have qr(φU,k) < ω.
For the general case, we induct on BC(U). First suppose that BC(U) = 0, that is, U

is continuous. By the proof of Lemma 6.2, we need to take limits two times to obtain U
from basic continuous functions. Moreover, each basic continuous function is represented 
by a formula of quantifier rank < ω; thus (6.6) shows that qrφU,k ≤ ω+ω ·2 +ω ·2 = ω ·5, 
whence (6.2) holds for U .

Now suppose that BC(U) = θ > 0. Then U = limn Un where BC(Un) < θ for 
each n. By the inductive hypothesis, qr(φUn,k) ≤ F (BC(Un)), so there is ρ < F (θ) such 
that for each n, k we have qr(φM−Un,k) ≤ ρ. Therefore qr(ψm,k) ≤ ρ where ψm,k =
φinfn≥m M−Un,k. A similar argument now shows that qr(φU,k) ≤ ρ + ω ≤ F (θ). �
Proof of Theorem 6.1. Suppose U : M → I is a Borel function invariant under isomor-
phism. Let M = |I| and let U ′ = U − min I, so that U ′ takes values in [0, M ]. In 
Theorem 6.3, take ū = ∅ and observe that U ′ ∗0(A, ∅) = U ′(A) for every A. Thus, 
φ = φU ′,0 + M is (equivalent to) an (Ω, I)-sentence such that U(A) = φA for every A. 
Moreover, such a sentence has quantifier rank at most ω · 2 · (2 + BC(U) + 1). �



I. Ben Yaacov et al. / Advances in Mathematics 318 (2017) 46–87 73
A standard corollary of the López-Escobar theorem is the Craig interpolation theorem 
for Lω1ω-logic. (In fact, López-Escobar first proved the interpolation result and then 
deduced his theorem from it.) Here we note the continuous version.

Corollary 6.4 (Interpolation). Suppose that L1 and L2 are two countable signatures and 
φ1 and φ2 are Lω1ω(L1) and Lω1ω(L2) sentences respectively. Suppose that φA

1 ≤ φA
2 for 

every separable model A of Lω1ω(L1 ∪ L2). Then there is an interpolating sentence θ in 
Lω1ω(L1 ∩ L2) such that |= φ1 ≤ θ ≤ φ2.

Proof. Let L0 = L1 ∩ L2 and let π1 : M(L1) → M(L0) and π2 : M(L2) → M(L0) be the 
natural restriction maps. For every r ∈ Q, consider the two analytic sets

{A ∈ M(L0) : ∃B ∈ M(L1) π1(B) = A and φB
1 > r} and

{A ∈ M(L0) : ∃B ∈ M(L2) π2(B) = A and φB
2 < r}.

They are ∼=-invariant and by hypothesis, they are disjoint. By [22, Exercise 14.14], there 
exists an invariant Borel set Cr that separates them. Define U : M(L0) → R by

U(A) = sup{r : A ∈ Cr}.

The function U is ∼=-invariant and Borel. So by Theorem 6.1, there exists a sentence θ
such that U(A) = θA and then for all separable A, φA

1 ≤ θA ≤ φA
2 . Using the downwards 

Löwenheim–Skolem theorem, this implies that φ1 ≤ θ ≤ φ2 is universally valid. �
Another corollary is that our universal modulus Ω is indeed universal.

Corollary 6.5. Let L be a countable language and Ω be a universal modulus for L. Then 
every Lω1ω(L)-sentence φ is equivalent to an Ω-sentence φ′.

Proof. Apply Theorem 6.1 to the Borel function U(A) = φA. �
7. Bounded rank and Borelness of isomorphism

In this section, we characterize when the isomorphism relation restricted to an in-
variant Borel subset of M is Borel and prove Theorem 1.3. This is again analogous to 
the classical setting (see, e.g., [16, Theorem 12.2.4]). Our proof follows the same general 
outline, but certain new features appear.

For the remainder of the section, we fix a countable language L and a weak modulus 
Ω universal for L. Recall that a fragment F of Lω1ω(L) is a separable set of formulas 
containing all atomic formulas and closed under subformulas, substitution of terms for 
variables, quantifiers, and finitary connectives. An F -theory is a collection of statements 
of the form φ = 0, where φ is a sentence in F . If A is a structure, the theory of A, 
denoted by Th(A), is the collection of all statements φ = 0 that are true in A.
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We will use a homogeneity result for atomic models. In order to state it correctly, we 
will need to define a topometric structure (see [1]) on the (non-compact) type spaces, 
which we proceed to do. Let T be an F -theory. Define a seminorm ‖ · ‖T on the (unital) 
algebra of n-ary F -formulas by:

‖φ‖T = sup{|φA(ā)| : A |= T, ā ∈ An}.

Denote by ̂Sn(T ) the Gelfand space of the Hausdorff completion of the algebra of all 
n-ary F -formulas equipped with this seminorm. (See, for example, [14, Chapter 1] for 
details on Gelfand theory.) This is the compact space of finitely consistent n-types. In 

what follows, we will identify the algebra of formulas with C(̂Sn(T )) via the Gelfand 
transform and simply use the notation φ(p) for the value that the type p gives to the 
formula φ. Alternatively, if φ(p) = r, we will also write p(x̄) |= φ(x̄) = r.

Say that a tuple ā ∈ An realizes a type p (notation ā |= p or tp(ā) = p) if φ(p) = φA(ā)
for all n-ary formulas φ ∈ F . If there exists ā ∈ An such that ā |= p, we will say that 
A realizes p. Otherwise, say that A omits p. Denote by Sn(T ) the set of realizable types 
(or just types for short):

Sn(T ) = {p ∈ ̂Sn(T ) : ∃A |= T such that A realizes p}.

The logic topology on Sn(T ) is the one inherited from ̂Sn(T ). The compactness theorem 

tells us that if F = Lωω(L), then Sn(T ) = ̂Sn(T ). While this fails for general fragments, 
Sn(T ) is always a Gδ subset of ̂Sn(T ) and therefore a Polish space. (We will not prove 
this fact as we will not use it.)

Defining the distance on types is more delicate because of the lack of compactness. 
The definition we give is inspired by Caicedo and Iovino [6]. As in finitary continuous 
logic, the topology defined by the distance on types is finer than the logic topology and 
the distance is lower semicontinuous in the logic topology.

We will need to fix distances on powers of A and for most purposes, any distance will 
do. However, in order to obtain exact equalities in the two propositions below, it will be 
most convenient to take d = dΩ; in the remainder of the section, when we write d(ā, ̄b)
for ā, ̄b ∈ An, we mean dΩ(ā, ̄b) (and similarly, in formulas).

Recall that the operation .− is defined by x .− y = 0 ∨ (x − y). Let the distance ∂F on 
Sn(T ) be given by:

∂F (p, q) ≤ s ⇐⇒ ∀φ ∈ F q(x̄) |= inf̄
y

(d(x̄, ȳ) .− s) ∨ |φ(ȳ) − φ(p)| = 0. (7.1)

In words, ∂F (p, q) ≤ s iff for every φ ∈ F and every ε > 0, for every realization ā ∈ An

of q, there exists ā′ ∈ An such that d(ā, ̄a′) < s + ε and |φ(ā′) − φ(p)| < ε. For F = Lωω, 
using compactness, this definition is equivalent to the usual one (see [4, Section 8] for 
the definition). When the fragment F is clear from the context, we will simply write ∂
instead of ∂F .
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We check that ∂ is symmetric. Suppose that ∂(p, q) ≤ s and fix φ ∈ F , and a realization 
ā ∈ An of q. Let ψ(x̄) = inf ȳ (d(ȳ, ̄x) .− s) ∨ |φ(ȳ) − φ(q)| and suppose, for contradiction, 
that ψ(p) = r > 0. Using (7.1) for ψ, we obtain that for every ε > 0, there exists ā′ ∈ An

with d(ā, ̄a′) < s + ε and ψ(ā′) > r − ε. However, ψ(ā′) ≤ d(ā, ̄a′) .− s (as φ(ā) = φ(q)), 
which yields a contradiction for ε < r/2.

Next we verify the triangle inequality. Suppose that ∂(p1, p2) ≤ s1 and ∂(p2, p3) ≤ s2
in order to show that ∂(p1, p3) ≤ s1 + s2. For simplicity of notation, we assume that 
n = 1. Let φ ∈ F be a formula such that φ(p1) = 0. We know that

p2(y) |= inf
w

(d(y, w) .− s1) ∨ φ(w) = 0,

whence

p3(x) |= inf
y

(d(x, y) .− s2) ∨
(
inf
w

(d(y, w) .− s1) ∨ φ(w)
)

= 0.

Simplifying yields

p3(x) |= inf
w

(d(x,w) .− (s1 + s2)) ∨ φ(w) = 0,

as desired.
Another property of ∂ that we will need, easily checked from the definition, is that 

for any model A |= T and all ā, ̄b ∈ An,

∂(tp ā, tp b̄) ≤ d(ā, b̄). (7.2)

Finally, we check that if φ is an n-ary Ω-formula that is in F , A, B |= T , and ā ∈
An, ̄b ∈ Bn, then

|φ(ā) − φ(b̄)| ≤ ∂(tp ā, tp b̄). (7.3)

Indeed, suppose that ∂(tp ā, tp b̄) ≤ s and fix a formula φ. Then for every ε > 0, there 
exists b̄′ ∈ Bn such that d(b̄′, ̄b) < s +ε and |φ(b̄′) −φ(ā)| < ε. By the choice of the metric 
d on products, φ is contractive in d, so we obtain that |φ(ā) − φ(b̄)| ≤ s + 2ε, which is 
enough.

If X ⊆ Sn(T ) and δ > 0, denote by (X)δ the δ-fattening of X:

(X)δ = {p ∈ Sn(T ) : ∃q ∈ X ∂(p, q) < δ}.

If X = {p} is a singleton, write (p)δ instead of ({p})δ. Say that a type p ∈ Sn(T ) is 
principal if for every δ > 0, p belongs to the interior of (p)δ in the logic topology on 
Sn(T ). A model A is called F -atomic if every type it realizes is principal (for Th(A)). 
One of the important properties of atomic models is that they are homogeneous.
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Proposition 7.1. Let F be a fragment, let A be an F -atomic model, and ū, ̄v ∈ Ak. Then

r∞(Aū,Av̄) = ∂F (tp ū, tp v̄).

In particular, A is homogeneous, i.e., for all ū, ̄v ∈ Ak with tp ū = tp v̄ and ε > 0, there 
is an automorphism f ∈ Aut(A) such that d(ū, f(v̄)) < ε.

Proof. The inequality ∂ ≤ r∞ follows from Theorem 5.5 and (7.2). For the other di-
rection, suppose that ∂(tp ū, tp v̄) < t. We will build inductively tail-dense sequences 
a, b ∈ AN that satisfy a|k = ū, b|k = v̄, and

∂
(
tp(a|n), tp(b|n)

)
< t for all n. (7.4)

We start by setting a|k = ū and b|k = v̄. The rest of the construction is carried by a 
back-and-forth argument of which we only describe the forth step. Suppose that a|n, b|n
are given such that ∂(tp a|n, tp b|n) < s < t and let an ∈ A be arbitrary. We will find 
bn ∈ A such that ∂(tp a|n+1, tp b|n+1) < t. As p = tp(a|n+1) is principal, there exists a 
formula φ taking non-negative values such that φ(a|n+1) = 0 and φ(w̄) < 1 implies that 
∂(tp w̄, p) < (t − s)/2. As ∂

(
tp(a|n), tp(b|n)

)
< s, by (7.1), we have that

A |= inf̄
y

(
(d(ȳ, b|n) .− s) ∨ inf

z
φ(ȳ, z)

)
= 0.

Let ε > 0 be arbitrary and let c̄ ∈ An and d ∈ A be such that d(b|n, ̄c) < s + ε and 
φ(c̄d) < 1. Then ∂(tp(c̄d), p) < (t − s)/2 and we have

∂(p, tp(b|nd)) ≤ ∂(p, tp(c̄d)) + ∂(tp(c̄d), tp(b̄d))

≤ (t− s)/2 + s + ε,

which is less than t as long as ε < (t − s)/2. This means that we can take bn = d.
Now it only remains to observe that (7.3) implies that

r0(a|n, b|n) ≤ ∂
(
tp(a|n), tp(b|n)

)
and apply Proposition 3.4. �

The following proposition bounds the Scott rank of F -atomic models.

Proposition 7.2. Let F be a fragment such that the quantifier rank of formulas in F is 
bounded by α. Let A be an F -atomic model. Then for every ū, ̄v ∈ Ak,

∂F (tp ū, tp v̄) = rα(Aū,Av̄) = r∞(Aū,Av̄).

In particular, the Scott rank of A is at most α.
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Proof. In view of Proposition 7.1, we only need to prove that ∂(tp ū, tp v̄) ≤ rα(ū, ̄v). 
Suppose that rα(ū, ̄v) ≤ s and let ε > 0 be arbitrary. As tp v̄ is principal, there exists an 
n-ary Ω-formula ψ ∈ F and δ > 0 such that ψ(v̄) = 0 and ψ(q) < δ =⇒ ∂(q, tp v̄) < ε. 
Let M > s/δ and let

φ(x̄) = inf̄
z

d(x̄, z̄) ∨M · ψ(z̄),

where the variables z̄ are taken in such a way that φ is an n-ary Ω-formula (this can be 
done by Proposition 5.2). Then φ(v̄) = 0 and as φ ∈ F , by Theorem 3.5, we have that 
φ(ū) ≤ s. Then there exists w̄ ∈ Ak such that d(ū, w̄) ≤ s + ε and ψ(w̄) < δ. Thus

∂(tp ū, tp v̄) ≤ ∂(tp ū, tp w̄) + ∂(tp w̄, tp v̄)

≤ d(ū, w̄) + ∂(tp w̄, tp v̄)

≤ s + 2ε.

As ε was arbitrary, this completes the proof. �
The following omitting types theorem will allow us to deduce that F -categorical mod-

els are F -atomic. The version for infinitary continuous logic was proved in Eagle [11, 
Theorem 4.14].

Theorem 7.3 (Omitting types). Let T be a consistent F -theory and p ∈ Sn(T ) be a type 
which is not principal. Then there exists a separable model of T which omits p.

Eagle’s definition of a metrically principal type [11, Definition 4.12] which is used in 
his [11, Theorem 4.14] is not quite the same as our definition of a principal type. The 
following lemma shows that they are equivalent.

Lemma 7.4. Let p ∈ Sn(T ). Then the following are equivalent:

(i) p is principal;
(ii) for every δ > 0, (p)δ has non-empty interior in the logic topology.

Proof. We only need to prove (ii) ⇒ (i). Fix 1 > δ > 0 and suppose that q0 is in the 
interior of (p)δ/2, i.e., there exists a formula φ(x̄) such that φ(q0) = 0 and φ(q) < 1 =⇒
∂(q, p) < δ/2. Let

ψ(x̄) = inf̄
y

φ(ȳ) ∨ (d(x̄, ȳ) .− δ/2).

First we check that ψ(p) = 0. Let ā |= p. Then, as ∂(p, q0) < δ/2 and φ(q0) = 0, we have 
that ψ(p) = 0. Next we verify that ψ(q) < δ/2 =⇒ q ∈ (p)δ, thus showing that p is 
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in the interior of (p)δ. Suppose that ψ(q) < δ/2 and let ā |= q. Then there exists b̄ such 
that φ(b̄) < δ/2 < 1 and d(ā, ̄b) < δ/2. In particular, ∂(p, tpb) < δ/2. We have

∂(p, q) ≤ ∂(p, tp b̄) + ∂(tp b̄, tp ā) < δ/2 + δ/2 = δ. �
Combining everything we have so far, we obtain the following theorem.

Theorem 7.5. Let F be a fragment such that the quantifier rank of formulas in F is 
bounded by α and let T be an F -theory which has a unique separable model A. Then the 
Scott rank of A is at most α.

Proof. By Theorem 7.3, A is F -atomic: if tp ā is non-principal for some ā ∈ An, there 
exists a separable model of T that omits it and is therefore not isomorphic to A. Now 
Proposition 7.2 implies the conclusion. �

We are finally ready to prove the main theorem of this section.

Theorem 7.6. Let L be a countable language, let ∼= denote the isomorphism relation on 
M(L) and let X ⊆ M(L) be an ∼=-invariant Borel subset. Let Ω be a universal modulus 
for L. Then the following are equivalent:

(i) ∼= |X is Borel;
(ii) The Ω-Scott rank of elements of X is uniformly bounded below ω1.

Proof. (i) ⇒ (ii) Suppose that ∼= |X is Π0
α for some α < ω1. Then each isomorphism 

class contained in X is Π0
α; by Theorem 6.1, for every A ∈ X, there exists a sentence 

ψA of quantifier rank at most α′ = ω · 2 · (2 + α + 1) such that ψB
A = 0 if A ∼= B and 

ψB
A = 1 otherwise. Now for each A ∈ X, apply Theorem 7.5 to the fragment generated 

by ψA and the theory {ψA = 0} to obtain that the rank of A is at most α′.
(ii) ⇒ (i) Suppose that the Scott rank of all structures in X is bounded by α < ω1. 

Then the Scott sentence of each of those structures has quantifier rank at most α+ω. By 
Theorems 3.8 and 3.5, for A, B ∈ X, A Eα+ω B iff A E∞ B and by Theorem 5.5, A E∞ B

iff A ∼= B. Thus, on X, the Borel relation Eα+ω coincides with isomorphism. �
Example 7.7. Recall that a complete metric space is called proper (or Heine–Borel) if 
all closed bounded sets are compact. The Euclidean spaces and, more generally, all 
complete Riemannian manifolds are examples of proper metric spaces. Clearly it suffices 
to require the Heine–Borel condition for closed balls centered at points in a countable 
dense sequence. Then, since a complete metric space is compact iff it is totally bounded, 
properness is a Borel property of Polish metric spaces.

By a theorem of Hjorth (see [17, Thm. 3]), isometry of proper metric spaces is Borel 
bireducible with the universal countable Borel equivalence relation, and in particular 
Borel. Hence by Theorem 7.6, the Scott rank of proper metric spaces is bounded.
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8. Two examples for the 1-Lipschitz modulus

8.1. Gromov–Hausdorff distance between metric spaces

We apply the tools we have developed in a particular example: calculating the 
Gromov–Hausdorff distance between metric spaces. Throughout this subsection, we fix 
a signature L containing only the distance symbol d, say, bounded by 1, and we let 
Ω = ΩL be the 1-Lipschitz weak modulus defined by (2.3). All metric spaces that we 
consider below have diameter bounded by 1. (Everything goes through if 1 is replaced 
by an arbitrary positive constant.)

Recall that if (C, d) is a metric space and A, B are closed subsets of C, the Hausdorff 
distance between A and B, denoted by dH(A, B) is defined by

dH(A,B) = sup
x∈A

d(x,B) ∨ sup
y∈B

d(y,A).

If (A, d) and (B, d) are now abstract metric spaces, the Gromov–Hausdorff distance [18, 
Def. 3.4] between A and B, denoted by dGH(A, B), is defined by

dGH(A,B) = inf
f1,f2

dH(f1(A), f2(B)),

where f1 and f2 vary over all isometric embeddings of A and B in a third space C.
Similarly, we define the enumerated Gromov–Hausdorff distance between enumerated 

metric spaces as follows. Let A and B be metric spaces and {ai : i ∈ I}, B = {bi :
i ∈ I} be sequences of elements of A and B, respectively. We define the enumerated 
Gromov–Hausdorff distance deGH(a, b) as

deGH(a, b) = inf
f1,f2

sup
i

d
(
f1(ai), f2(bi)

)
,

where f1 and f2 vary over all isometric embeddings of {ai : i ∈ I} and {bi : i ∈ I} in a 
third metric space C.

Theorem 8.1. Let L = {d} and Ω = ΩL as above. Then for any two metric spaces A, B
of diameter at most 1,

r∞(A,B) = dGH(A,B).

We start by calculating deGH between finite tuples.

Lemma 8.2. Let A, B be metric spaces and let ā ∈ An, b̄ ∈ Bn be finite tuples. Then

deGH(ā, b̄) = 1
2 sup

i,j

∣∣d(ai, aj) − d(bi, bj)
∣∣ = r0(Aā,Bb̄).
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Proof. The first equality is proved in Uspenskij [27, Proposition 7.1]; we proceed to show 
the second. As basic formulas are 1-Lipschitz and they are preserved by embeddings, it 
is clear that r0(Aā, Bb̄) ≤ deGH(ā, ̄b).

On the other hand, we have

Δ1
2d(xi,xj)

(δ) = 1
2(δi + δj) ≤ δi ∨ δj ≤ ΩL(δ),

so 1
2d(xi, xj) is an ΩL-formula. This implies the other inequality. �

Proof of Theorem 8.1. Let A, B be metric spaces and s ∈ R. We have:

dGH(A,B) < s ⇐⇒ ∃a ∈ AN, b ∈ BN tail-dense such that deGH(a, b) < s

⇐⇒ ∃a ∈ AN, b ∈ BN sup
n

deGH(a|n, b|n) < s

⇐⇒ ∃a ∈ AN, b ∈ BN sup
n

r0(a|n, b|n) < s

⇐⇒ r∞(A,B) < s.

The second equivalence follows by compactness (or, alternatively, from the fact that the 
first equality in Lemma 8.2 also holds for infinite tuples), the third is Lemma 8.2, and 
the fourth is given by Proposition 3.4. �

Theorem 8.1 and Corollary 4.4 give us the following.

Corollary 8.3. Let L = {d} and let A ∈ M(L). Then the set

{B ∈ M(L) : dGH(A,B) = 0}

is Borel.

Question 8.4. Let M be the space of Polish metric spaces with distance bounded by 1, 
as above. Let A ∈ M be fixed. Is dGH(A, ·) a Borel function on M?

Remark 8.5. It is not clear what the exact complexity of the equivalence relation EGH
(dGH = 0 on bounded metric spaces) is. However, Christian Rosendal pointed out to us 
that it is above the universal orbit equivalence relation of a Polish group action. This 
can be seen as follows. For a compact metrizable space X, denote by C(X) the space of 
continuous functions on X equipped with the sup norm. Dutrieux and Kalton show in 
[10] that if X and Y are not homeomorphic, then dGH(C(X), C(Y )) ≥ 1/16. Thus the 
map X �→ C(X) is a reduction from homeomorphism of compact spaces to EGH. As the 
former is universal for orbit equivalence relations of Polish group actions (Zielinski [29]), 
this yields the claim.
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One way to see that this reduction is Borel is as follows. In [29], compact metrizable 
spaces are parametrized by the elements of the hyperspace K([0, 1]N) of closed subspaces 
of the Hilbert cube. An easy way to find a Borel map Φ: K([0, 1]N) → M such that Φ(X)
is isometric to C(X) is the following. Let zi : [0, 1]N → [0, 1] denote the projection on 
the i-th coordinate. Then instead of N, we can take as a distinguished countable dense 
set in the definition of M the set of all polynomials with rational coefficients in infinitely 
many variables (all but finitely many coefficients of which are zero), and calculate the 
distance by

d(P1, P2) = sup
x∈X

|P1(z0(x), z1(x), . . .) − P2(z0(x), z1(x), . . .)|,

which is easily a Borel function of X. The Stone–Weierstrass theorem tells us that the 
resulting element of M is isometric to C(X).

Question 8.6. Is EGH Borel reducible to an orbit equivalence relation of a Polish group 
action?

Next we provide a simple example of two discrete metric spaces that have Gromov–
Hausdorff distance 0 but are not isometric. Note however, that for compact metric spaces 
as well as for metric spaces with discrete set of distances, EGH and isometry coincide.

Example 8.7. Let A be a countable subset of the open interval (0, 1). We define a count-
able metric space (XA, dA) as follows: XA = {xa, ya : a ∈ A}, and for x �= y ∈ XA we 
set

dA(x, y) =
{
a if x = xa, y = ya or vice versa;
1 otherwise.

It is easy to check that (XA, dA) is a complete, ultrametric space. Now let A, B ⊆ (0, 1) be 
two distinct, dense, countable subsets of (0, 1). Then clearly XA and XB are not isometric 
but dGH(XA, XB) = 0. Indeed, fix ε > 0 and let f : A → B be a bijection such that for all 
a ∈ A, |f(a) −a| < ε. Let Y be the disjoint union of XA and XB and define the distance 
on Y by d(xa, ya) = a, d(xb, yb) = b, for a ∈ A, b ∈ B; d(xa, xf(a)) = d(ya, yf(a)) = ε, 
d(xa, yf(a)) = d(ya, xf(a)) = min((a + b)/2 + ε, 1) for all a ∈ A and d(x, y) = 1 in all 
other cases. This Y witnesses that dGH(XA, XB) ≤ ε.

8.2. Kadets distance between Banach spaces

Our second example is Banach spaces. Here the language is {0, +, ‖ · ‖n} ∪ {Mλ :
λ ∈ R}, where 0 is a constant symbol, + is a binary operation with Δ+(δ1, δ2) = δ1 +δ2, 
‖ · ‖n is a 1-Lipschitz predicate symbol (interpreted as ‖x‖n = ‖x‖ ∧ n), and Mλ is a 
function symbol representing multiplication by λ with ΔMλ

(δ0) = |λ|δ0. We will denote 
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by M (and restrict our considerations to) the Borel set of all separable Banach spaces 
rather than the space of all structures in this signature. Note that this is not relevant for 
the definition of the pseudo-distances rα: they are computed in a manner independent of 
the ambient space. We can also restrict to a countable sublanguage by only keeping Mλ

for λ ∈ Q without loss of generality. The distance function is given by d(x, y) = ‖x −y‖1.
Every atomic formula is equivalent (on M) to a formula of the type ‖ 

∑n−1
i=0 λixi‖k

for some k, n ∈ N, λi ∈ R. An easy calculation yields that the modulus of continuity of 
this formula is Δ(δ) =

∑n−1
i=0 |λi|δi. In particular, it obeys ΩL iff 

∑
i |λi| ≤ 1.

Let A, B be two Banach spaces. The Kadets distance between A and B is defined 
analogously to the Gromov–Hausdorff distance by

dK(A,B) = inf
f1,f2

dH(f1(BA), f2(BB)),

where BA and BB denote the unit balls of A and B and f1 and f2 vary over all linear
isometric embeddings of A and B in a third Banach space C.

Let now A and B be two Banach spaces and ā and b̄ be two sequences in BA and BB

with dense span. The enumerated Kadets distance is defined as

deK(Aā,Bb̄) = inf
f1,f2

sup
i

‖f1(ai) − f2(bi)‖C ,

where f1 and f2 vary over all linear isometric embeddings of A and B in a third space 
C. The following is the analogue of Lemma 8.2 for Banach spaces.

Lemma 8.8. Let A and B be Banach spaces and ā ∈ Bn
A, b̄ ∈ Bn

B be finite tuples. Then

deK(Aā,Bb̄) = sup{
∣∣‖∑

i

λiai‖ − ‖
∑
i

λibi‖
∣∣ :

∑
i

|λi| ≤ 1}

= r0(Aā,Bb̄).

Proof. The first equality is proved in [3, Fact 3.4]. (There, the sup is taken over all λi

with 
∑

λi = 1; however, scaling up in order to make the sum equal to 1 only increases 
the values inside the sup.) For the second, exactly as in Lemma 8.2, it suffices to recall 
that the formula ‖ 

∑
i λixi‖ obeys ΩL if 

∑
i |λi| ≤ 1. �

In the same way as before, we obtain the following theorem.

Theorem 8.9. For any two separable Banach spaces A and B, we have

rΩL
∞ (A,B) = dK(A,B).

Question 8.4, Remark 8.5, and Question 8.6 also apply to the Kadets distance.
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9. A characterization of CLI Polish groups

Recall that a Polish group is called a CLI group if it admits a complete, compatible, 
left-invariant metric. In [15], Gao proves that if M is a classical countable structure, the 
automorphism group Aut(M) is a CLI group iff the classical Scott sentence of M does 
not admit uncountable models. In this section, we note that a similar result holds for 
general separable structures.

We start with a simple lemma (well-known in the classical setting) that establishes 
the connection between the left completion of Aut(M) and Lω1ω-logic.

Lemma 9.1. Let M be a separable metric structure and Aut(M) be its automorphism 
group equipped with the pointwise convergence topology. Then the left completion of 
Aut(M) can be identified with the monoid of Lω1ω-elementary embeddings of M into 
itself. In particular, Aut(M) is a CLI group iff every such elementary embedding is sur-
jective.

Proof. The left uniformity of Aut(M) is defined by the pseudo-distances ρa given by 
ρa(g, h) = d(g · a, h · a) for a ∈ M . If (gn)n is a left-Cauchy sequence in Aut(M), then 
gn · a converges for every a ∈ M ; denote by f the limit map. As the interpretation of 
any Lω1ω-formula φ(x̄) is continuous, we have that

φM (f(ā)) = lim
n

φM (gn · ā) = φM (ā)

for any tuple ā ∈ Mk. We conclude that f is elementary.
Conversely, let f : M → M be Lω1ω-elementary; we will show that it can be arbitrarily 

well approximated by automorphisms. Let ā ∈ Mk be any tuple. By elementarity and 
Theorem 3.8, we have that rΩU(L)

∞ (Mā, Mf(ā)) = 0; now Theorem 5.5 implies that for 
any ε > 0, there exists an automorphism g of M such that d(f(ā), g · ā) < ε.

For the second claim of the lemma, note that Aut(M) is CLI iff it coincides with its 
left completion. �
Theorem 9.2. Let M be a separable structure in a countable language. Then the following 
are equivalent:

(i) The Scott sentence of M is non-zero on non-separable models;
(ii) Aut(M) is a CLI group.

Proof. The proof is similar to the one in [15], so we only give a brief sketch. By 
Lemma 9.1, we can replace (ii) by the condition that every Lω1ω-elementary embed-
ding of M into itself is surjective.

(i) ⇒ (ii) Suppose that f : M → M is an elementary embedding which is not surjec-
tive. By iterating f ω1 times, we obtain an elementary chain every element of which is 
isomorphic to M ; its union is non-separable and elementarily equivalent to M .
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(ii) ⇒ (i) Conversely, suppose that N is a non-separable model elementarily equivalent 
to M . Let F denote the fragment of Lω1ω generated by the Scott sentence of M . Then 
by the downward Löwenheim–Skolem theorem, M can be embedded F -elementarily into 
N . Let a ∈ N\M be arbitrary. Again by Löwenheim–Skolem, there exists a separable 
M ′ ≺F N such that M ∪ {a} ⊆ M ′. Then M ′ ∼= M (as M ′ satisfies the Scott sentence 
of M) and the embedding M ⊆ M ′ is not surjective. �

As isometry groups of proper metric spaces (see Example 7.7 for the definition) are 
locally compact, and locally compact groups are CLI, we have the following corollary.

Corollary 9.3. Let M be a separable structure such that the underlying metric space is 
proper. Then M is the unique model of its Scott sentence.

As noted in [15], Hjorth and Solecki proved that all solvable groups are CLI. This 
provides a further setting where Theorem 9.2 applies.

10. Connections with classical logic

One might ask about the connection between the continuous Lω1ω-logic considered 
in this paper and classical ({0, 1}-valued) Lω1ω-logic with regard to Polish metric struc-
tures. The latter has already been considered in the literature (see [8] and the references 
therein). The main difference is that, while continuous logic treats separable structures as 
essentially countable objects, in classical logic, which does not allow for approximations, 
they are basically discrete structures of size continuum and as a result, quite unman-
ageable from a descriptive set theoretic point of view. Classically Lω1ω-definable sets of 
Polish structures are usually not Borel sets. For a natural example, take local compact-
ness of Polish metric spaces: by [25], the class of such spaces is properly co-analytic, and 
at the same time definable in classical Lω1ω.

In this section, we observe that, with appropriate coding, the expressive power of 
classical Lω1ω-logic is strictly greater than that of continuous Lω1ω-logic. Each continuous 
signature L yields a classical signature L̂ defined as follows. For every predicate symbol 
P of arity nP and for every q ∈ Q, we put into L′ an nP -ary relation symbol Pq. 
(For simplicity, we assume that the language L has no function symbols; as we saw 
in Section 4, this entails no loss of generality.) To every L-structure A, we associate a 
classical L̂-structure Â with the same domain, where the interpretations of the symbols 
are given by:

Â |= Pq(ā) ⇐⇒ PA(ā) < q

for each q ∈ Q and ā ∈ An.
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Proposition 10.1. For every n-ary Lω1ω(L)-formula φ(x̄) and every q ∈ Q, there exists 
a formula φ̂q(x̄) in Lω1ω(L̂) such that for every L-structure A, ā ∈ An and each q, we 
have

Â |= φ̂q(ā) ⇐⇒ φA(ā) < q.

Moreover, the quantifier rank of φ̂q is equal to that of φ.

Proof. First note that if we have formulas φ̂q for every q, then we can easily find a 
formula φ̂q that expresses φ > q, namely φ̂q =

∨
p>q ¬φ̂p.

The proof of the proposition proceeds by induction on φ. For atomic formulas this is 
true by definition. If φ(x̄) = inf y ψ(x̄, y), we can take φ̂q(x̄) = ∃y ψq(x̄, y). If φ =

∧
i ψi, 

we can take φq =
∨

i ψi,q.
Finally, suppose that φ = f(ψ0, . . . , ψk−1), where f : Rk → R is a connective. Write

f−1((−∞, q)
)

=
⋃
i∈N

∏
j<k

(pi,j , qi,j),

where pi,j , qi,j ∈ Q. This can be done because f−1((−∞, q)
)

is an open set and products 
of rational intervals form a basis for Rk. Then we can take

φ̂q =
∨
i

∧
j<k

ψ̂
pi,j

j ∧ ψ̂j,qi,j . �

Thus, using Theorem 6.1, one obtains for every invariant Borel set of models a classical 
sentence that describes it. However, there is no converse to this: the set of models of a 
classical Lω1ω-sentence is in general not Borel, as mentioned above. From Corollary 5.6, 
we obtain the following.

Corollary 10.2. For every separable structure A, there exists a sentence σA in classical 
Lω1ω-logic such that for every separable structure B,

B̂ |= σA ⇐⇒ B ∼= A.

Finally, note that the classical Scott rank (as discussed in [8]) and the continuous 
Scott rank from this paper are different. For example, consider the structure GL from 
Remark 5.8: as it is ultrahomogeneous, its continuous Scott rank is 0. However, as orbits 
of the automorphism group are not closed, its classical Scott rank is non-zero. It was 
proved in [8] that the classical Scott rank of Polish metric spaces is at most ω1 but it 
remains an open question whether it must be countable.
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