
The Unit Conjecture, Classes of
Torsion Free Groups, and Connections

to Logic

Kirwin Hampshire
Department of Mathematics
The University of Auckland
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1 Overview

This dissertation aims to discuss a number of interesting results about torsion
free groups, explain Giles Gardam’s counterexample to the Unit conjecture
for group rings, and show how these results are connected to logic.

1.1 Introduction

The unit conjecture for group rings was originally stated in Higman’s 1940
unpublished thesis [12] and was later popularized by Kaplansky. It claims
that if K is a field and G is a torsion-free group, then the only units of K[G]
are the trivial units. Giles Gardam’s counterexample to Kaplansky’s unit
conjecture offers a springboard to investigate certain group-theoretic proper-
ties related to the conjecture, and their relationship to logic.

The second section introduces the relevant group properties and their re-
lationships, as well as presenting proofs from Burns and Hale [4], Ohnishi
[24], and Conrad [6], the latter’s yielding a corollary that a group being one-
sided orderable is expressible in first-order logic.

The third section introduces some preliminaries to understanding Gardam’s
paper, in which he presents the aforementioned counterexample [9]. We then
explain some aspects of Gardam’s paper, while including some requisite back-
ground knowledge to make reading the paper more accessible.

The fourth section explores how the group-theoretic properties from Section
2 relate to first-order logic, and explains Gardam’s use of boolean logic to
help obtain his result. We conclude by looking at a result by Alan G. Murray,
which extends Gardam’s counterexample by presenting a class of counterex-
amples falsifying the conjecture for every positive characteristic [20].

1.2 Timeline and History

Below is a timeline depicting some of the major papers drawn on in this
project. The papers on this timeline fit into two distinct but related historical
narratives. One, a search for results about orderable groups, the other, a hunt
to resolve Kaplansky’s conjectures.
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Higman (1940)

Ohnishi (1952)

Conrad (1959)

Kaplansky (1970)

Burns & Hale (1972)

Strojnowski (1980)

Rips & Segev (1987)

Bowditch (2000)

Dunfield (2014)

Gardam (2021)

Murray (2021)

Nies (2023)

Higman initially proposed the unit conjecture for group rings in his unpub-
lished thesis (1940)[12]. The next point of interest for us were the results in
the 1950s by Ohnishi (1952) [24] and Conrad (1959) [6], which established
criterions for one-sided orderable groups. It is mentioned in the introduc-
tion of Groups, Orders and Dynamics (2016) that the study of bi-orderable
groups begins with the “seminal works of Dedekind, Hölder, and Hilbert”[8].
In 1970, kaplansky popularized the conjectures about group rings which now
bear his name [16]. In 1972, Burns and Hale published a paper detailing
some results about one-sided orderable groups and groups with the unique
product property, which used Conrad’s criterion [4].

Later, Strojnowski (1980) proved that groups with the unique product prop-
erty also have the two-unique products property [30], and 7 years later Rips
and Segev (1987) presented a torsion-free group without unique products
[26]. Much later, in 2000, Bowditch defined the term diffuse, which acts as a
geometric analogue of the unique products property [3]. In the next decade,
Dunfield (2014) gave an example of a diffuse group which is not one-sided or-
derable [17]. Then in 2021, Gardam published his counterexample [9]. Later
that year Murray (2021) had generalized it to characteristic p for all primes,
p [20]. Now in 2023, Nies (in part with Gardam’s observations) has shown
that many of the properties integral to these results are expressible in first-
order logic [22].

The bulk of the material in this project is drawn from Gardam’s 2021 paper
and Nies’ Logic Blog. There are many other results and counterexamples
related to the above narrative which I have mentioned throughout the pa-
per. Those included above are either milestone papers in the narrative of
group rings, ordered groups, and Kaplansky’s conjectures or are papers I
have drawn on heavily, or both.

5



2 Groups and Group Rings

2.1 Group-Theoretic Properties

In this section, we will introduce and discuss the relationship between group-
theoretic properties which have been relevant in the search for a resolution
to the unit conjecture.

Definition 2.1.1. (Kaplansky [16], Passman [25]) A group G has the unique
product property if, for nonempty sets A,B ⊆ G, there is (a, b) ∈ A×B such
that for all a1, b1 ∈ A×B with a1 ̸= a and b1 ̸= b that ab ̸= a1b1.

Definition 2.1.2. A group G has the two unique products property if it has
the unique product property and if A,B are not singletons then there are
exactly two pairs (a1, b1), (a2, b2) ∈ A×B so that for some ab ∈ AB, we have
ab = a1b1 and ab = a2b2.

In 1980, Strojnowski published a proof that groups with the unique product
property have the two unique products property [30].

Definition 2.1.3. (Higman [12], Burns, Hale [4]) Let, X denote a class of
groups closed under taking isomorphic images. A group G is locally X-
indicable if every nontrivial finite subgroup of G can be mapped homomor-
phically onto a nontrivial group in X.

Theorem 2.1.4. Let Ω denote the class of groups with the unique product
property. If a group is locally Ω-indicable, then it is in Ω.

Proof. Rephrasing of Theorem 1 in [4]. Suppose that G is locally Ω-indicable,
but is not in Ω. Let A and B be nonempty finite subsets of G without
the unique product property, so for each pair (a, b), there exists (a1, b1)
with ab = a1b1 and a ̸= a1, b ̸= b1. Suppose also that |A| + |B| is min-
imal. Note that we can assume 1G ∈ A,B, because if A = {a1, . . . , ak}
and B = {b1, . . . , bd} we can instead consider (without loss of generality)
a−1
1 A = {1, . . . , a−1

1 ak} and b−1
1 B = {1, . . . , b−1

1 bd}. Clearly the size of each
set is preserved, it is not hard to check that they still don’t have unique
products.

Let H = ⟨A,B⟩. Because G is locally Ω-indicable, there exists a homo-
morphism ϕ : H → W , where W ∈ Ω. Since Ω is closed under taking
subgroups, it follows by the 1st isomorphism theorem that H/K ∼= M ≤ W
where K = kerϕ and M ∈ Ω. So then there is K ◁ H such that H/K ∈ Ω.
Let ϕ : H → H/K be the canonical homomorphism. Because ϕ(A), ϕ(B) are
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nonempty subsets of H/K, they contain Ka,Kb which clearly have unique
products.

Let A1 = A ∩Ka and B1 = B ∩Kb. Then A1 and B1 do not have unique
products, as, if they did then, since a1 /∈ Ka and b1 /∈ Kb then a1b1 /∈ KaKb,
and so ab ̸= a1b1. Additionally, if A1 = A and B1 = B, then A ⊆ Ka and
B ⊆ Kb. Then, as 1 ∈ A,B we get Ka = Kb = K which implies H/K is
trivial. Therefore |A1|+|B1| < |A|+|B|, so there is a smaller counterexample
which contradicts minimality.

Definition 2.1.5. A group G with elements totally ordered under ≤ is one-
sided orderable if it is invariant under right or left multiplication (also called
translation invariant): a ≤ b → ac ≤ bc. A group which is both left and
right invariant under multiplication with respect to the same ordering, is
called bi-orderable

A group being right orderable is equivalent to it being left orderable (hence
the term one-sided orderable), suppose a totally ordered group (G,≤1) is
right orderable. We define a new ordering a ≤2 b if and only if b−1 ≤1 a

−1.
For our purposes, in proofs and computations, we will often take a one-sided
orderable group to be right orderable.

Additionally, if a group is one-sided orderable, it is torsion-free, because
if a is a non identity element with 1 ≤ a, then 1 ≤ a ≤ a2 ≤ . . . and if 1 ≥ a,
then 1 ≥ a ≥ a2 ≥ . . .

The converse is not true. A counterexample is the group given by presen-
tation: ⟨a, b | (a2)b = a−2, (b2)a = b−2⟩ [8], which we will meet again later
under the name P .

Example 2.1.6. Dehornoy has shown that braid groups are one-sided or-
derable by describing an explicit ordering, see [7].

Braid groups can be described algebraically. We denote the Artin braid
Group on n− 1 generators, σ1, . . . , σn−1, as Bn. The relators are of the form

σiσj = σjσi and σiσi+1σi = σi+1σiσi+1

for 1 ≤ i, j ≤ n− 1 and 1 ≤ i ≤ n− 2 respectively. Note that B2
∼= (Z,+).

Example 2.1.7. Torsion-free nilpotent groups are bi-ordered. A short proof
can be found on page 15 in Section 1.2.1 of [8].
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The below definition of a diffuse group was given by Bowditch in [3]. His
stated goal in defining diffuse groups was to “understand the unique product
property of groups from a more geometric point of view...”

Definition 2.1.8. (Bowditch [3]) A group G is diffuse, if for all nonempty
finite sets C ⊆ G, there exists c ∈ C, called an extremal element, such that
for g ∈ G \ {1} one has gc /∈ C or g−1c /∈ C.

Example 2.1.9. Any one-sided orderable group is diffuse. let C be a finite
subset of some one-sided orderable group G, and let c = max(C). Then
consider, k ̸= 1. Without loss of generality, assume kc ∈ C, then because c is
maximal, and k ̸= 1 it follows kc < c. But because G is one-sided orderable,
c < k−1c. So then k−1c /∈ C.

In 2014, Dunfield presented a group which is diffuse but not one-sided or-
derable. Dunfield’s counterexample is a topological construction, specifically
the fundamental group of a closed orientable hyperbolic 3-manifold, M . Its
fundamental group, denoted π1(M), has presentation ⟨a, b | a2b−1a2b2a−1b2 =
1, ab2a−1ba−2ba−1b2 = 1⟩ [17].

We have seen that G being one-sided orderable implies that G is diffuse.
It can be shown that diffuse groups have the unique product property, a
proof can be found on page 3 of [22]. However it is also possible to prove
directly that one-sided orderable groups have unique products, was was first
shown by Botto Mura and Rhemtulla in 1975 [2].

Lemma 2.1.10. One-sided orderable groups have unique products.

Proof. This proof closely follows the one in Gardam’s slides [11]. Consider
two finite subsets A,B of a one-sided orderable group G, such that their
members are ordered as below:

a1 ≤ a2 ≤ . . . ≤ am

b1 ≤ b2 ≤ . . . ≤ bn

We have, by right-invariance, that aib1 ≤ aibj for all i and for j ̸= 1, since
b1 ≤ bj. This means aib1 is minimal for each i. Consider these minimal
elements a1b1, . . . , amb1. These must all be distinct, otherwise we would find
at least one pair al,ak with al = ak via cancellation. Since there must also
exist a minimum product (A and B are finite) then there exists a unique
product among these elements.
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2.2 Linearly Ordered Groups

This subsection will present some results concerning linearly ordered groups
proved by Masao Ohnishi and Paul Conrad. In his paper Linear-Order on a
Group, Ohnishi uses the term linear order, and in lieu of a definition, pro-
vides a citation to the paper On linearly ordered groups by Kenkichi Iwasawa
(1948), in which a linear order on a group is defined as a total order which is
bi-invariant [14]. It seems “linearly ordered group” has since taken on a more
general meaning, and can now mean bi-orderable or one-sided orderable. In
Section 4, it is shown that Conrad’s result allows for a nice expression for
“one-sided orderable” in first-order logic. However, we should first introduce
semigroups, which appear in the major proofs of this section.

Definition 2.2.1. A semigroup is set S equipped with, and closed under, an
associative binary operation S×S → S. We will denote, by (x1, . . . , xn), the
semigroup obtained from all combinations of x1, . . . , xn, under such a binary
operation. We will call (x1, . . . , xn) the semigroup generated by x1, . . . , xn.
The shorthand (xi | 1 ≤ i ≤ n) may also be used, to denote the same object.

Example 2.2.2. Up to isomorphism, there are five semigroups on two ele-
ments. Three of these are:

(I) The integers under addition mod 2, (Z2,+). We know it is a group,
and every group is also a semigroup.

(I) The right-zero semigroup, R02, of order 2. In a right-zero semigroup,
S, we have that for all a, b ∈ S, ab = b. R02 has no identity element,
and so is not a group.

(III) Logical AND over the truth values 0 (false) and 1 (true) denoted
({0, 1},∧) which has the following Cayley table:

∧ 0 1
0 0 0
1 0 1

We see that ({0, 1},∧) fails to be a group. ∧ is clearly an internal associative
binary operation. Additionally, there exists an identity element 1, making
this semigroup also a monoid. However, 0 does not have an inverse, so it
fails to satisfy all group axioms.

Remark. Choosing logical OR as the group operation instead would also pro-
duce a semigroup. However this cannot be extended to all logical operators.
For example, logical implication is not associative.
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The two remaining semigroups are the left-zero semigroup of order 2 and
the null semigroup. These examples are all finite semigroups, however, semi-
groups can be infinite and there is an infinite example which will be of par-
ticular relevance in the next section. The following is taken from Rotman’s
An Introduction to the Theory of Groups.

Definition 2.2.3. (Rotman, page 349) If Σ is a semigroup and X ⊆ Σ, then
Σ is a free semigroup with basis X if for every semigroup S and every function
f : X → S, there exists a unique homomorphism φ : Σ → S extending f
[27].

Example 2.2.4. The words on a set X are strings consisting of the elements
of X formed by concatenation. For a formal treatment and construction of
free groups and words, see Chapter 11 of the above book by Rotman. A
word w over X is positive if either w = 1 or w = xϵ11 , . . . , x

ϵn
n where each ϵi

for 1 ≤ i ≤ n is positive. In this case, n is the length of the word. The set of
all positive words on x is a free semigroup with basis X [27].

We now establish the definitions and lemmas required for Ohnishi and Con-
rad’s proofs.

Definition 2.2.5. An invariant subsemigroup is a subset S ⊆ G which is
closed under the operation of G, and is closed under conjugation by elements
from G. That is, if s ∈ S and g ∈ G then gsg−1 ∈ S.

Definition 2.2.6. (Ohnishi) An ordering set is a subset H of G fulfilling the
following properties.

(1) H is an invariant subsemigroup of G and 1 ∈ H

(2) H contains either x or x−1 for all x ∈ G.

Lemma 2.2.7. An ordering set, H, of a group G determines a bi-order on
G. If we remove the condition that H is invariant, then it instead defines a
one-sided order.

Proof. Define an ordering: a ≤ b if and only if ba−1 ∈ H. Then we see
that bcc−1a−1 if and only if ac ≤ bc, hence G is one-sided orderable. If H
is invariant, we have that cba−1c−1 ∈ H but then, by the ordering defined
above, we have ca ≤ cb, so G is bi-orderable.

Definition 2.2.8. A family of sets F , is of finite character if and only if, for
all A ∈ F , every finite subset of A is in F .
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The third form of Zorn’s lemma given on page 7 of [31] states that given a
set and a property of finite character, there exists a maximal subset having
that property.

Theorem 2.2.9. (Ohnishi) The following are equivalent:

(I) G is bi-orderable.

(II) for every finite subset {x1, . . . , xn} of G, we have⋂
ϵ∈{1,−1}n

(1, xϵ11 , . . . , x
ϵn
n ) = 1

(III) For any element a ∈ G, there is an ordering set Sa containing a and
having the property that if some non-trivial product xy ∈ Sa, then either
x ∈ Sa or y ∈ Sa [24].

Proof. (I) =⇒ (II): Suppose G is bi-orderable, then for every element x ∈ G
we get 1 ≤ x or 1 ≤ x−1, because x−1 ≤ 1 means x−1x ≤ x so 1 ≤ x. Hence,
for the choice of ϵi ∈ {−1, 1} which results in 1 ≤ xϵii , we have that if
1 ≤ xi and 1 ≤ xj, then, by translation invariance, 1 ≤ xi ≤ xixj and so
by induction on the number of elements 1 ≤ min(1, xϵ11 , . . . , x

ϵn
n ). By a sym-

metric argument, max(1, x−ϵ1
1 , . . . , x−ϵn

n ) ≤ 1. Therefore (1, xϵ11 , . . . , x
ϵn
n ) ∩

(1, x−ϵ1
1 , . . . , x−ϵn

n ) = 1.

(II) =⇒ (III): Let Xi∈I , for some index set I, be a family of subsets of
G such that the following are satisfied for all i ∈ I:

(1) Xi is an invariant subsemigroup containing 1.

(2) For any finite subset {x1, . . . , xn} of G and some a ∈ G we have:

a /∈
⋂

ϵ∈{1,−1}n
(Xi, x

ϵ1
1 , . . . , x

ϵn
n )

Because we are assuming (II), we have that Xi∈I is nonempty. Furthermore,
the collection of subsets with the above properties has finite character. This
is because if (S, ·) is a semigroup, and H ⊆ S, then (H, ·) is also, and in-
variance is likewise inherited. Additionally, if the semigroup generated by S
does not contain a and H ⊆ S, then neither does the semigroup generated
by H. So then we can use Zorn’s lemma (as stated in [31]) to deduce that
there is some maximal subset, Xm, of G with the above properties.
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We know Xm must contain either x or x−1 for every x ∈ G. Suppose not,
then Xm ⊂ (Xm, x) and Xm ⊂ (Xm, x

−1) and so, as Xm is maximal, (Xm, x)
and (Xm, x

−1) must fail property (2). Therefore there are {y1, . . . , yk} and
{z1, . . . , zr} so that ⋂

α∈{−1,1}k
(Xm, x, y

α1
1 , . . . , yαk

k )

⋂
σ∈{−1,1}r

(Xm, x
−1, zσ1

1 , . . . , z
σr
r )

both contain a. Then of course⋂
λ∈{−1,1}k+r+1

(Xm, x
λ0 , yλ1

1 , . . . , y
λk
k , z

λk+1

1 , . . . , zλk+r
r )

also contains a and so Xm fails property (2). So then Xm must contain x or
x−1 for all x ∈ G.

Let Xm = G \ Xm. Clearly a ∈ Xm and if xy ∈ Xm then one of x or y
must be in Xm as otherwise x, y ∈ Xm which is a semigroup, hence xy would
be in Xm which is a contradiction. So we see Xm is our desired set satisfying
(III), meaning Sa = Xm.

(III) =⇒ (I): By assumption, and with application of Zorn’s lemma, there
is a maximal SM . We assume there is some b ∈ G so that b /∈ SM and
b−1 /∈ SM . let Sb also satisfy (III), and let b ∈ Sb.

Now consider Y = (SM ∪ Sb) \ S−1
M . Where S−1

M = {x−1 | x ∈ SM}. We
see b ∈ Y , because b /∈ SM and b−1 /∈ SM (hence b /∈ S−1

M ) and b ∈ Sb.
Suppose xy ∈ Y . If xy is in SM then x or y is in SM , and the same for
Sb as both satisfy (III). Therefore Y satisfies (III) and thus contradicts the
maximality of SM . So then SM must contain x or x−1 for every element in G.

Consequently, SM satisfies one requirement to be an ordering set. We now
show it is a subsemigroup, by arguing it is closed. This is because if a ∈ SM

and b ∈ SM then ab ∈ SM as otherwise, necessarily b−1a−1 would be in SM

and thus either a−1 or b−1 would be in SM , a contradiction. We know from
Lemma 2.2.7 that an ordering set determines a linear order. Therefore G is
bi-orderable.

In Conrad’s paper, he says that the equivalences of properties (1), (2) and (3)
in his Theorem 2.2 are proved exactly as in Ohnishi’s paper but for omitting
every occurrence of the word “invariant”, this follows from Lemma 2.2.7.
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Theorem 2.2.10. Conrad’s Criterion. A group is one-sided orderable if
and only if for every identity-free finite subset {x1, .., xn} of G there exists
ϵi ∈ {1,−1} such that 1 /∈ (xϵ11 , ..., x

ϵn
n ).[6]

For ease, we will call the property right of the if and only if, (IV), so the
above statement says (I) ⇐⇒ (IV).

Proof. We show (I) from Theorem 2.2.9 implies (IV) and that (IV) implies
(II).

(I) =⇒ (IV): Suppose G is one-sided orderable. Then, for all ϵi ∈ {−1, 1}
with 1 ≤ i ≤ n we choose ϵi so that xϵii > 1, then all elements in (xϵ11 . . . , x

ϵn
n )

are greater than 1, and so 1 /∈ (xϵii ).

(IV) =⇒ (II): Suppose G does not satisfy (II), but does satisfy (IV). Then:⋂
ϵ∈{1,−1}n

(xϵ11 , . . . , x
ϵn
n ) ̸= 1

So there must be some non-trivial element, a, in the above intersection. Then
a ∈ (xϵ11 , . . . , x

ϵn
n ) and a ∈ (x−ϵ1

1 , . . . , x−ϵn
n ). Therefore, we have a =

∏
i∈I x

ϵi
i

and a =
∏

j∈J x
−ϵj
j , for ϵi ∈ {ϵ1, . . . , ϵn} and ϵj ∈ {−ϵ1, . . . ,−ϵn} and for

some (not necessarily equal) I, J ⊆ {1, . . . , n}.

Hence a−1 =
∏

j∈J x
ϵj
j . But then a and a−1 would be in (xϵ11 , . . . , x

ϵn
n ) and

so the set {a, x1, . . . , xn} fails (IV). So by contradiction, we get the desired
implication.

Corollary 2.2.11. If every finitely generated subgroup of G is one-sided
orderable, then G is one-sided orderable.

Proof. We prove the contrapositive. Suppose G is not one-sided orderable.
Then, by Conrad’s criterion, there is some finite subset {x1, . . . , xn} such
that, for all ϵi ∈ {1,−1} we have 1 ∈ (xϵ11 , . . . , x

ϵn
n ).

Let the subgroup X =
⋂

i∈I Hi where Hi∈I is the family of all subgroups
of G containing X. This family of subgroups is nonempty because G con-
tains X. It is clear that X also fails Conrad’s criterion, and hence is not
one-sided orderable.

This next result (Theorem 2 in [4]), by R.G. Burns and V.W.D Hale, uses
Conrad’s criterion to obtain a result about one-sided orderable groups and
the property of being locally X-indicable (Definition 2.1.3).
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Theorem 2.2.12. Denote the class of groups which are one-sided orderable
as ∆. If a group G is locally ∆-indicable, then G ∈ ∆.

Proof. (Adapted from Theorem 2 in [4]) Suppose G is a locally ∆-indicable
group but G /∈ ∆. Then, by Conrad’s criterion, there is a smallest minimal
counterexample M = {g1, . . . , gk} so that 1 /∈M , but 1 ∈ (gϵ11 , . . . , g

ϵk
k ) for all

ϵi ∈ {1,−1}. Note that 1 < k < n. Let H = ⟨M⟩. As in the previous proof,
we can take K ⊴ H such that H/K is nontrivial and one-sided orderable.

We cannot have Kgi = K for all i, as this makes H/K trivial. However, we
also cannot have Kgi ̸= K for all i. We have, by assumption that 1 ∈ (gϵii ),
which yields K ∈ (Kgϵii ). But then, by Conrad’s criterion, H/K would not
be one-sided orderable. This would mean K ∈ {Kgi}. So we instead suppose
that the elements of M not in K are (relabelling if necessary) g1, . . . , gr.

We know H/K ∈ ∆ means there are µi ∈ {1,−1} so that K /∈ (Kgµi

i |
1 ≤ i ≤ r). Fix these µi. Because r > 0 but M is minimal, the smaller sub-
semigroup (gµi

i | r+1 ≤ j ≤ k) must be one-sided orderable, hence, must not
contain 1 for some choices of µj. Now because M is not one-sided orderable,
1 can be written 1 = gµb

b · . . . ·gµc
c for all choices of µl where 1 ≤ b ≤ l ≤ c ≤ k.

Note that because (gµi

i | r+ 1 ≤ j ≤ k) does not contain 1, for our choices of
µj, we can infer that some element in the above expression for 1, has index
≤ r. Multiplying 1 by K we get K = Kgµb

b · . . . ·Kgµc
c (again, for all µl with

1 ≤ b ≤ l ≤ c ≤ k) but because the elements gr+1, . . . , gk are definitionally
all elements in M and in K, these disappear in the product (taking with
them all of the µl for r + 1 ≤ l ≤ k, and leaving the µl for 1 ≤ l ≤ r), and
thus, we can choose the remaining µl to be the µi we fixed earlier, and so
deduce that K can be expressed by elements from (Kµi

gi
| 1 ≤ i ≤ r), which

is a contradiction.

Because we know the integers are one-sided orderable, a corollary to the
above theorem is that a locally Z-indicable (also called locally indicable)
group is one-sided orderable.

Example 2.2.13. Let r be an element of the free group F (X) on the gener-
ating set X. A one-relator group is a group with a presentation of the form
⟨X | r⟩. A nontrivial element, g, of a group, G, is called a proper power if
there exists h ∈ G and some integer n > 1 such that hn = g. It was proved
by Howie in 1980 that a one-relator group where r is not a proper power is
locally Z-indicable [13].
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2.3 Group Rings

Kaplansky’s conjectures concern group rings, which we now define. Some of
the group-theoretic properties introduced in the last section turn out to be
relevant to group rings and Kaplansky’s conjectures.

Definition 2.3.1. Let G be a group and K a field. A group ring K[G] is
the ring of finite formal sums with coefficients from K. The underlying set
is therefore {

∑
g∈G kgg | kg ∈ K, g ∈ G} which is closed under the following

operations.

Addition : (
∑
g∈G

kgg) + (
∑
h∈G

khh) =
∑
g,h∈G

(kgg + khh)

Multiplication : (
∑
g∈G

kgg)(
∑
h∈G

khh) =
∑
g,h∈G

(kgkhgh)

Scalar Multiplication : m(
∑
g∈G

kgg) = (
∑
g∈G

mkgg)

Example 2.3.2. Consider the field F2 and the group D4 = ⟨r, s | r4 = s2 =
1, srs = r−1⟩. Then an example of a computation in the group ring F2[D4]
is as follows:

(r2 + s+ 1)(r2 + s) = r4 + r2s+ r2s+ s2 + r2 + s = r2 + s

Example 2.3.3. Group rings are similar to polynomial rings, K[X], in X
over a field K, which is the set of expressions:

p = k0 + k1X + k2X
2 + . . .+ knX

n

Where the usual rules for adding, multiplying polynomials apply. X is a con-
stant symbol, not inR. Polynomial rings are not group rings. Note that expo-
nents on X are not allowed to be negative, and so the set {1, X,X2, X3, . . .}
with the binary operation XnXm = Xn+m, does not form a group.

Example 2.3.4. The Laurent polynomials over some field K form a group
ring. Usually denoted K[X,X−1]. Negative exponents are allowed, and
function as usual. So we see that the group ring K[Z] is exactly the Laurent
polynomials over K.

Definition 2.3.5. In the following, R denotes a ring with unity.
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x ∈ R is a unit if ∃y ∈ R such that xy = yx = 1.

x ∈ R is a zero divisor if ∃y ∈ R with y ̸= 0, such that xy = 0.

x ∈ R is idempotent under a binary operation, ·, if x · x = x.

If k is a unit in the field K, and g ∈ G, then kg is called a trivial unit in
K[G].

Lemma 2.3.6. Let K be a field, and G a group. If G has a torsion element,
then the group ring K[G] has nontrivial zero divisors.

Proof. Let x ∈ G and suppose there exists n > 1 such that xn = 1. Then
(x− 1)(1 + x+ . . .+ xn−1) = (x+ . . .+ xn−1 + 1) − (1 + x+ . . .+ xn−1) = 0
and so (x− 1) is a nontrivial zero divisor.

Definition 2.3.7. A ring, R, is called prime if a, b ∈ R \ {0} implies there
exists an r ∈ R such that arb ̸= 0.

Lemma 2.3.8. G has no non-trivial, finite, normal subgroup if and only if
K[G] is prime (Theorem 1 in [25]).

The following theorem outlines the implication structure among Kaplansky’s
conjectures.

Theorem 2.3.9. Let K be a field and G a torsion-free group. Then, for the
group ring K[G] we have the following implications: K[G] has only trivial
units =⇒ K[G] has no zero divisors =⇒ K[G] has no idempotents other
than 0 and 1.

Proof. For the first implication, because G is torsion-free and all finite sub-
groups of a torsion-free group are trivial, we can apply Lemma 2.3.8, and find
K[G] is prime. Suppose, for the contrapositive, that ab = 0 in K[G] where
a or b is nonzero. Because K[G] is prime, we can find c, such that bca ̸= 0.
Define α := bca, then α2 = 0 and (1−α)(1 +α) = (1 +α)(1−α) = 1, mean-
ing 1 − α is a unit. Suppose it was trivial, then 1 − α = kg so α = kg − 1,
which is in the subring K[⟨g⟩], G being torsion-free gives us that ⟨g⟩ ∼= Z.
So kg − 1 ∈ K[Z]. Because this is a domain (which we get from Z being a
domain), we have a contradiction.

For the second implication. We again prove the contrapositive. Simply note
that any nontrivial idempotent, x, is a zero divisor, as x(x− 1) = 0.
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3 Gardam’s Counterexample

This section will explain some aspects of Giles Gardam’s 2021 paper A Coun-
terexample to the Unit Conjecture for Group Rings. We now restate the unit
conjecture introduced in the last section.

If K is a field and G is a torsion-free group, then the only units of K[G]
are the trivial units.

3.1 The Group P and Requisite Definitions

Gardam’s counterexample is located in the group given by this presentation.

P = ⟨a, b | (a2)b = a−2, (b2)a = b−2⟩

Where the exponents denote right conjugation, for example ba = a−1ba. Gar-
dam informs us that P is also known as Hantzsche–Wendt group, Promislow
group, and the Fibonacci group F (2, 6) [9].

Definition 3.1.1. A sequence of homomorphisms G0
φ1→ G1

φ2→ . . .
φn→ Gn

mapping between groups is called exact if imφi = kerφi+1 at Gi, for each Gi

in the sequence. If we consider the following exact sequence

1 → N
ι→ G

φ→ Q→ 1

we will find that ι is injective and φ is surjective. An exact sequence of this
form is called a short exact sequence. In this case, we will call G an extension
of Q by N , (however another convention is to say G is an extension of N
by Q). Further, the above short exact sequence would be called split if
G ∼= N ⋊ Q (where ⋊ denotes a semidirect product - see page 167 in [27])
otherwise it is called non-split.

Example 3.1.2. The Group P introduced above is a non-split extension

1 → Z3 ι→ P
φ→ Z2 × Z2 → 1

Because ι is injective we can say Z3 ∼= ι(Z3) ⊴ P . We also know that kerφ =
ι(Z3) and later we will give the explicit map φ with kernel ⟨a2, b2, abab⟩ ∼= Z3.
Note also that by the first isomorphism theorem P/Z3 ∼= Z2 × Z2, and this
quotient group will later be important, for separating the elements of P into
cosets.
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Definition 3.1.3. In the category of groups (see section 1.1 of Basic Cat-
egory Theory by Leinster for an introduction to categories [18]), a direct
system is a directed set (I,≤) (where ≤ is a preorder such that every pair
of elements has an upper bound) a family of groups {Gi | i ∈ I} and a col-
lection of homomorphisms {fij : Gi → Gj | i ≤ j}, satisfying the following
properties:

� Gii is the identity id : Gi → Gi

� fik = fjk · fij for all i ≤ j ≤ k.

Definition 3.1.4. The direct limit of a direct system can be denoted simply
lim
→
Gi and is defined as

⊔
iGi/R where R is some equivalence relation. We

can also show that this is equivalent to the existence of the unique dotted
arrow which makes this diagram commute for all i, j ∈ I, where H is any
group.

Gi Gj

G

H

πi πj

ϕi ϕj

fi,j

Definition 3.1.5. Suppose we are given a group A, a family of groups (G)i∈I
and for each i ∈ I an injective homomorphism A → Gi. We identify A with
its image in each of the Gi. We denote ∗AGi the direct limit of the family
(A,Gi) with respect to these homomorphisms, and call it the product of Gi

with A amalgamated (see section 1.2 of Serre’s Trees [28]).

When A is trivial, we say ∗Gi is the free product of the Gi. Notation: some-
times the images which are being identified, are put as the subscript of ∗,
e.g. G1 ∗f(α)=g(β) G2.

Example 3.1.6. In the case of the aforementioned group P , A = Z2 =
⟨(1, 0), (0, 1)⟩, G1 = ⟨x, b | xb = x−1⟩, G2 = ⟨y, a | ya = y−1⟩ and the
functions f1 : A→ G1 and f2 : A→ G2 are given by:

f1((1, 0)) = x f2((1, 0)) = a2

f1((0, 1)) = b2 f2((0, 1)) = y
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We set the additional relations f1(1, 0)f2(1, 0)−1 = 1 and f2(0, 1)f2(0, 1)−1 =
1. Hence setting the isomorphic subgroups ⟨x, b2⟩ and ⟨a2, y⟩ equal to each
other. Giving the following presentation which Gardam also provides:

⟨x, b, y, a | xb = x−1, ya = y−1, x = a2, y = b2⟩

Observe that this is just ⟨X1 ∪X2 | R1 ∪ R2 ∪ {f1(1, 0) = f2(1, 0), f2(0, 1) =
f2(0, 1)}⟩. Where X1 and R1 are, respectively, the generators and relations
of G1 and likewise for X2, R2 and G2. This shows P is an amalgamated free
product of two Klein bottle groups.

Lemma 3.1.7. In an amalgamated free product, G = ∗AGi, every element
g ∈ G is conjugate to an element in Gi for some i (Serre, Trees, Section 1.3
Corollary 1 [28]).

Proposition 3.1.8. The Klein bottle group is torsion-free.

Proof. The fundamental group of the Klein bottle can be given as ⟨x, b | xb =
x−1⟩ [21]. However, if we introduce p = xb we see that x can be expressed as
x = pb−1 with xb = x−1 then derived as:

b2 = p2 = xbxb =⇒ b = xbx =⇒ bx−1b−1 = x =⇒ bxb−1 = x−1

So we can re-express the presentation as ⟨p, b | p2 = b2⟩. This means K =
⟨p⟩∗p2=b2 ⟨b⟩ and by an application of Lemma 3.1.7, we find K is torsion-free,
because for all elements g ∈ K we have g = x−1hx for x, h ∈ Z. However, as
Z is abelian, we have g = h, and h has infinite order.

Proposition 3.1.9. P is torsion-free.

Proof. One way to show this is to apply Lemma 3.1.7 again. We know P is
an amalgam of two Klein bottle groups, and the Klein bottle group is torsion
free.

Another interesting proof of the above is found in Section 1.4.1 of [8].

Definition 3.1.10. Given a surjective homomorphism φ : G → H, a lift of
an element a ∈ H is an element b ∈ G such that φ(b) = a.

Summary 3.1.11. Gardam, after expressing P as the amalgam of two Klein
bottle groups, claims that the identified subgroups are normal in P , with quo-
tient D∞. He then chooses z = abab as a lift to P of a generator of [D∞, D∞].
Let s and r, be the generators of D∞. It can be shown that [D∞, D∞] is gen-
erated by (sr)2 by considering s as a shift along Z and r as a flip about a
point on Z.
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Now, for x, y, z as defined in the presentation of P , we have that ⟨x, y, z⟩ ∼=
Z3. This can be seen by showing x, y, z all commute. Note that the case for
xz is symmetric to the case for yz. Firstly, we show xz = x.

(a2)abab = (abab)−1a3bab = b−1a−2b = b−2a2b2 = (b−2a)(ab2) = (ab2)(b−2a) = x

We get xy = x for free, as we showed above that b−2a2b2 = a2. So we have
⟨x, y, z | xy = yx, xz = zx, yz = zy⟩ which is isomorphic to Z3. Is is now
clear that Z3 is the kernel of the mapping φ : P → Z2 × Z2 given explicitly
by, φ(a) 7→ (−1, 1), φ(b) 7→ (1,−1) and φ(ab) 7→ (−1,−1).

Let Q = Z2 × Z2, and set z = abab. Then the action of P on ⟨x, y, z⟩
by conjugation induces an action on Q, since P/Z3 ∼= Q as we recall from
Example 3.1.2. We see xb = x−1 and ya = y−1 can be read off the presenta-
tion, xa = x and yb = y are also immediate. The rest are calculated below.

xab = b−1a−1a2ab = b−1a2b = xb = x−1

yab = a−1b−1b2ab = b−1a−1b2ab = b−1y−1b = b−1b−2b = y−1

zaz = bab(a2b)ab = bab(xb)ab = bab(bx−1)ab = bab(ba−2)ab = babba−2ab =
b(ab2a−1)b = b(b−2a)a−1b = 1

zzb = b−1ab(ab2)abab = b−1ab(b−2a)abab = b−1ab−1a2bab = b−1a(b−1a2)bab =
b−1aa−2b−1bab = b−1a−1ab = 1

zab = b−1a−1ababab = abab = z

3.2 Calculations and the Counterexample

We now present some of calculations required to verify that there is a non-
trivial unit in F2[P ], following [9] closely. First we must discuss the normal
form each element will be expressed in.

Recall Q = Z2 × Z2. Define σ : Q→ P explicitly by:

σ((1, 1)) = 1 σ((−1, 1)) = a

σ((1,−1)) = b σ((−1,−1)) = ab

the function σ is to act as the set-theoretic section of the previously defined
function φ (defined in Summary 3.1.11). This means σ should return the
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preimage of φ given the image. However, this incurs an “error” which is
dealt with by the cocycle f : Q×Q→ Z3 defined as:

f(g, h) = σ(g)σ(h)σ(gh)−1

This essentially tells us how to rearrange elements in P . Later we will present
a table summarizing the inputs and outputs of this cocycle. At the bottom
of page 4 in [9], Gardam shows how to push an a past a b resulting in the
identity ba = x−1yz−1ab. We calculate below the easier identities showing
how to push an a through x, y and z.

ax = aa2 = a2a = xa

ay = ab2 = b−2a = y−1a

The second is obtained by considering the inverse of the relation a−1b2 =
b−2a−1. To show az = z−1a requires a little more work. First we show the
following:

b−1a2b = a−2

b−1a2 = a−2b−1

ab−1a2 = a−1b−1

b−1ab−1a2 = b−1a−1b−1

With this in hand, we note that showing az = z−1a is equivalent to showing
aabab = b−1a−1b−1a−1a = b−1a−1b−1, which by the above working is the same
as showing aabab = b−1ab−1a2. The rest follows easily.

a2bab = b−1a−2ab = b−1ab−1a2

It follows similarly for b that:

bx = x−1b by = yb bz = z−1b

These identities save time when multiplying elements in K[P ]. Repeated
application of the above identity (ba = x−1yz−1ab), is enough to show that
every element in K[P ] can be written in a normal form. Precisely stated, ev-
ery β ∈ K[P ] can be written in the form (β)1+(β)aa+(β)bb+(β)abab, where
(β)cc is in K[x±1, y±1, z±1] for c ∈ {1, a, b, ab}. Recall again that P/Z3 ∼= Q
by φ and so when we mod P out by ⟨x, y, z⟩, we are left with 1, a, b and ab.
We can also see this by verifying every case as we do below.

Let w ∈ P be a reduced word (for the precise meaning of “reduced word”
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see [27]) with n instances of a or a−1 and m instances of b or b−1 so that the
length of w is n + m. Then, by repeated application of the above rules we
obtain:

wx = x(−1)mw wy = y(−1)nw wz = z(−1)n+m

w

These rules mean all instances of a2, b2 and abab can be pulled to the left side
of a string w in P . This means, without considering inverses and modulo
x±1, y±1, z±1, there are only these cases to address.

aba = ax−1yz−1ab = y−1zb

bab = x−1yz−1ab2 = x−1z−1a

baba = bax−1yz−1ab = x2z−1

However, any combination of inverses can be changed to the form (β)abab:

a−1b = x−1ab b−1a = y−1ba = x−1z−1ab

ab−1 = yab ba−1 = x−1yz−1abx−1 = yz−1ab

So it is now clear that by induction on the length of an element, w, of
P , we can always reduce w to (β)1, (β)aa, (β)bb or (β)abab where (β)c for
c ∈ {1, a, b, ab} can be thought of as a monomial in variables x±1, y±1 and
z±1. Therefore, after application of the above rules and factoring, any ele-
ment β in K[P ] can be written as β = (β)1 + (β)aa + (β)bb + (β)abab. So
this is another way to see what was clear from the observing the cosets of
the factor group P/Z3.

These calculations also show how to get each entry in the table Gardam
includes at the top of page five of [9], which we recreate below. This is the
table for the cocycle defined at the beginning of this subsection.

f(g, h) 1 a b ab
1 1 1 1 1
a 1 x 1 x
b 1 x−1yz−1 y x−1z−1

ab 1 y−1z y−1 z

We can think about the table in familiar terms by recognizing that each entry
shows how to rearrange a product of an element in the leftmost column and
an element in the header row, such that the resultant element has a,b or ab as
a suffix. So in the case of the a-row and the b-column, the product is ab which
already has ab as a suffix, so the table reads 1. Below are some examples of
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multiplying elements of K[P ]. Here we use the notation in [20] which says
that if f(x, y, z) is some Laurent polynomial in x, y and z then, for example,
fxy denotes f(x−1, y−1, z), i.e., subscripts denote which variables have been
flipped.

Example 3.2.1. let c and d be in K[x±1, y±1, z±1]. We wish to multiply
cab and da and determine whether the suffix is 1, a, b or ab. Computing the
product yields

cabda = cdxyaba = cdxyax
−1yz−1ab = x−1zy−1cdxya

2b = zy−1cdxya

So we can say zy−1cdxy has suffix a.

Example 3.2.2. Say that instead that we wish to compute the product
cbdab, then:

cdxzbab = cdxzx
−1yz−1abb = x−1zzcdxza

so x−1z−1cdxz has suffix a.

I emphasize that this notation is from Murray’s 2021 paper [20] and Gardam
denotes x−1z−1cdxz as x−1z−1cdb in [9]. Proceeding as shown in the above
examples we can calculate the result of a general product of two elements
written in the normal form. The equations given further down the page
are almost exactly as they appear in Murray’s paper (the original one in
Gardam’s paper is identical to Murray’s but for the choice of notation).
Each line is a member of one of the cosets, so that the entire product can be
written

αα′ = (αα′)1 + (αα′)a + (αα′)b + (αα′)ab

the factors, before expanding, are αα′ = (p+qa+rb+sab)(p′+q′a+r′b+s′ab).

(α′α) = p′p + xq′qyz + yr′rxz + zs′sxy

(α′α)a = p′q + q′pyz + x−1z−1r′sxy + y−1s′rxy

(α′α)b = p′r + xq′syz + r′pxz + y−1zs′qxy

(α′α)ab = p′s + q′ryz + x−1yz−1r′qxz + s′pxy

Recall that to find a counterexample to the unit conjecture, we want to find
a nontrivial unit, α. That is, we want αα′ = 1 for some α′, this requires
that (αα′)a, (αα′)b and (αα′)ab vanish in the sum, and that (αα′)1 = 1.
With this set-up, it is possible to verify Gardam’s counterexample by hand.
The nontrivial unit is given in Theorem A of [9]. For p, q, r, s as defined in
Theorem A, the inverse is x−1pa + x−1qa+ y−1rb+ z−1saab [11].
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4 First-Order Logic and Model Theory

Many of the properties explored in Section 2 and Section 3 have expressions
in first-order logic (FOL). As we will see, it is also possible for a property,
given some language, to not have a first-order expression.

In a seminar talk on groups and first-order logic, André Nies provided three
reasons to care about the intersection of these two areas.

� First-order properties of a group, G, can be verified within G.

� First-order logic has a “toolbox”, e.g., compactness theorem.

� The first-order theory of a group is an invariant, that is, preserved
under isomorphism.

Definition 4.0.1. The language of groups, GL, contains the following: A
constant symbol, denoted 1G or simply 1, which is the identity. A unary
function, denoted (with input g) as g−1, and a binary multiplication function
which can be represented as g1 ·g2. Sometimes the function symbol is omitted
and we write g1g2

For a comprehensive treatment of languages, models and related preliminary
material, please see section 1.3 of Chang and Keisler’s Model Theory 3rd
edition (1990) [5].

4.1 Expressing Properties in First-Order Logic

We begin by showing that first-order logic cannot describe every property.
More precisely we show there is a formal theory in the first-order language
of groups containing a sentence which can’t be expressed. We first state the
compactness theorem for first-order logic.

Theorem 4.1.1. Compactness. let Σ be a set of first-order sentences over
some first-order language L. If every finite subset of Σ has a model, then Σ
has a model.

The following proposition shows that we can construct a formal theory in
the first-order language of groups

Proposition 4.1.2. The property of being a torsion group, is not expressible
in the language of groups.
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Proof. Let LG be the language of groups and let Tt be a first-order theory
of groups with torsion. We add a constant symbol c to our language, so we
have LG ∪ {c} and we define a new theory T = Tt ∪ {cn ̸= 1G | 1 ≤ n}, (cn is
shorthand for c · c, n times).

We can’t have a model for T , because any model M of T is a group with
torsion, but the added axioms say cM must have infinite order. So by the
compactness theorem, any finite subset T1 ⊆ T also cannot have a model.
However, T1 ∪ Tt clearly has a model, take m = max{n | (cn ̸= 1g) ∈ T1}
and consider the largest group satisfying the presentation ⟨x | xm+1 = 1G⟩,
this is a group with torsion which satisfies the formulas in T1, which is a
contradiction.

We now know that some structures and their properties cannot be expressed
in first-order logic. In the Logic Blog 2021, André Nies considers FO expres-
sions for the properties of groups and group rings defined in the previous
section.

Expression 4.1.3. We express one-sided orderable (Definition 2.1.5) by us-
ing Conrad’s criterion, Theorem 2.2.10. G is one-sided orderable if and only
if for each n ≥ 1 and each non-identity elements x0, . . . , xn−1 in G, there is
a tuple σ ∈ {−1, 1}n such that e is not in the semigroup generated by the xσi

i .

For each n and each family of semigroup terms t = (tσ)σ∈{−1,1}n , let ϕt be
the sentence

∀x0 ̸= e, . . . , xn−1 ̸= e
∨

σ∈{−1,1}n
tσ(xσ0

0 , . . . , x
σn−1

n−1 ) ̸= e.

We claim that Conrad’s criterion is expressed by satisfying all the ϕt.

If the criterion holds then clearly each of the sentences holds.

Now suppose that the criterion fails for G. So there is n and there are
g1, . . . , gn ∈ G − {e} such that for each σ ∈ {−1, 1}n, the semigroup gener-
ated by the gσi

i contains e. So for each σ we can choose a semigroup term tσ
such that tσ(gσ0

0 , . . . , g
σn−1

n−1 ) = e. Then G fails ϕt where t = (tσ)σ∈{−1,1}n [22].

Expression 4.1.4. The property of being diffuse given in Definition 2.1.8
is expressed by the following set of sentences, where x1, . . . , xn are variables
and the set C is considered as {x1, . . . , xn}

∀x1, . . . , xn
∨
i≤n

∀y(
∧
k

yxi ̸= xk ∨
∧
k

y−1xi ̸= xk)[22]
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Inside the brackets, we iterate over the set with “and”, and outside of the
brackets with “or”. Note that yxi ̸= xk, for each k, is equivalent to saying
yxi /∈ C.

Expression 4.1.5. The unique product property given in Definition 2.1.1
can be expressed as follows.

∀x1 . . . xn∀y1 . . . yn
∨

i,k≤n

(
∧

r,s≤n

(xiyk = xrys → xi = xr))[22]

Note that xi = xr gives yk = ys by cancellation.

Expression 4.1.6. The two unique products property given in Definition
2.1.2 is:

∀x1, . . . , xn∀y1, . . . , yn∨
i,j≤n

(
∧

r,s≤n

xiyj = xrys → xi = xr) ∧
∨

p ̸=i,q ̸=j≤n

(
∧

r,s≤n

xpyq = xrys → xp = xr)

Additionally, the constraint that the sets {x1, . . . , xn} and {y1, . . . , yn} should
not both be singletons can be expressed as:

∀x1 . . . xn∀y1 . . . yn
∧
i,p≤n

(xi ̸= xp ∨ yi ̸= yp)

Like in the case of the Expression 4.1.3, Expressions 4.1.4, 4.1.5 and 4.1.6 all
require that we use a family of first-order sentences. One sentence for each
size n of the sets.

Expression 4.1.7. The goal is to express that K[G] has no zero divisors.
Nies begins by defining a function to code a partial multiplication table T ,
for some group G. Where r, s, l ∈ P and l ≤ rs.

T = {1, . . . , r} × {1, . . . , s} → {1, . . . , l}

For a table T , he then defines the following system of equalities and inequal-
ities:

ET =
∨
i≤r

αi ̸= 0 ∧
∨
k≤s

βk ̸= 0 ∧
∧
u≤l

[
∑

T (i,k)=u

αiβk = 0][22]

Here, αi,βk are taken to be members of an algebraically closed field (note that
any field can be extended to an algebraically closed field), K. The above is re-
ally saying that for pairs of elements in K, not all 0, we set the products equal
to 0 which correspond to the (i, k)th position in the table T . Together, this
says that if the table is realised by elements g1, . . . , gr, h1, . . . , hs, v1, . . . , vl
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with each gi and hk being pairwise distinct, then assigning the coefficients αi

and βk to gi and hk respectively yields:

(Σαigi)(Σβkhk) = Σ(αiβk)(gihk) = 0

Meaning Σαigi and Σβkhk are zero-divisors. However, the following sentence
in LG:

ϕT = ∀x1, . . . , xr∀y1, . . . ys∀z1, . . . , zl∨
i<j≤r

xi = xj ∨
∨

i<j≤s

yi = yj ∨
∨

i≤r∧k≤s

zT (i,k) ̸= xiyk,

[22] states that T cannot be realised by a column of pairwise distinct ele-
ments and a row of pairwise distinct elements, and hence that the product
(Σαigi)(Σβkhk) cannot occur, which means that K[G] has no zero divisors.
Therefore both expressions taken together say that that K[G] has no zero
divisors.

We need to argue that the above set of sentences is actually computable.
Firstly, the theory of algebraically closed fields, ACF , is decidable (Defi-
nition 4.2.1). This argument follows Definition 2.2.7 to Corollary 2.2.9 in
Marker’s Model Theory: An Introduction (2002)[19]. The argument shows
that the theory of Algebraically closed fields is decidable by applying the
Completeness Theorem and using that ACF is a recursively enumerable lan-
guage. Therefore, because ACF is decidable, the set of sentences above is
computable

Example 4.1.8. An example of the previous statement “K[G] has no zero
divisors” for some torsion free group G, is given by the following partial
multiplication table T .

· g0 g1
h0 h0g0 h0g1
h1 h1g0 h1g1

We are given that (g0 + g1)(h0 + h1) = 0 over F2 . Like in the general ex-
pression, we will find that T is impossible and thus the given zero divisor
cannot occur. Recall that g1 and g0 are distinct, and likewise for h0 and h1,
so for g0h0 + g0h1 + g1h0 + g1h1 = 0 we therefore must have g1h1 = g0h0 and
g0h1 = g1h0.

This means that g1 = g0h1h
−1
0 = g0h0h

−1
1 and so h1h

−1
0 = h0h

−1
1 but we

can see that (h1h
−1
0 )−1 = h0h

−1
1 meaning the element h1h

−1
0 is self-inverse,

which contradicts that h0 and h1 are distinct.
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4.2 Boolean Satisfiability

In this section we examine how Giles Gardam transformed the problem of
finding nontrivial units in a group ring into a Boolean satisfiability problem.
This is an effective approach because algorithms for solving Boolean satisfia-
bility problems (SAT solvers) are practically very good, in part, due to SAT
solver competitions [15].

We first need to categorize decision problems, which are problems that, on
some input, output either YES or NO.

Definition 4.2.1. A decision problem can fall into the following categories,
given input x and a set A:

Decidable: There is a deterministic algorithm which outputs YES if
x ∈ A and outputs NO if x /∈ A.

Semidecidable: There is a deterministic algorithm, which outputs
YES if x ∈ A and outputs NO, or runs forever if x /∈ A.

Undecidable: There is no deterministic algorithm outputting YES or
NO, whether x ∈ A or x /∈ A.

There are semidecidable and undecidable problems in Group theory.

Theorem 4.2.2. (Novikov–Boone) The word problem for groups is undecid-
able.

Proof. Novikov’s proof is in [23] and Boone’s is in [1]

Gardam says that finding non-trivial units in a group ring is semidecidable
“modulo the word problem”, meaning we can find non-trivial units, except
for the issues posed by determining if two arbitrary group elements are the
same. He notes further that restricting the problem makes it more plausible.

As we know from Section 3, Gardam found his nontrivial unit by consid-
ering the field F2, he further observes that, more generally, given two subsets
A,B ⊂ G, the problem of determining if they support a non-trivial solution
to αβ = 1 over Fq is in NP. Because SAT is NP-Complete (Cook-Levin the-
orem), it must be possible to reduce the problem to a satisfiability problem.
For an explanation of NP-Completeness and The Cook-Levin Theorem see
section 7.4 of Sipser’s Introduction to the Theory of Computation [29].

28



Definition 4.2.3. A Boolean formula is in conjunctive normal form (CNF)
if it has the following structure.

(xi ∨ . . . ∨ xj) ∧ . . . ∧ (xr ∨ . . . ∨ xs)

Where i, j, r, s are in some indexing set I.

Each variable xi or its negation xi is called a literal, and each disjunction of
literals in a CNF formula is called a clause.

Once a problem is phrased as a satisfiability problem, it can be transformed
into CNF via a Tseytin transformation (shown below). This is done because
almost all SAT solvers work on CNF formulas.

Example 4.2.4. A Tseytin transformation runs the following algorithm on
a logical formula φ:

1. Set new auxiliary variables equivalent to each subformula (must include
a connective) of φ

2. Write a new formula ψ, which is the conjunction of each equivalence
from step 1, and also the formula which asserts φ. So that ψ says “ϕ
AND (first substitution) AND (second substitution)... is true.

3. Use logical laws to convert each “if and only if” statement into CNF.

We perform a partial transformation on the formula p→ (s ∨ q).

1. x1 ↔ s ∨ q, x2 ↔ (p→ (s ∨ q))

2. ψ = x2 ∧ (x1 ↔ s ∨ q) ∧ (x2 ↔ (p→ (s ∨ q)))

3.

x1 ↔ s ∨ q
⇐⇒ (x1 → s ∨ q) ∧ (s ∨ q → x1)

⇐⇒ (¬x1 ∨ s ∨ q) ∧ ((¬s ∧ ¬q) ∨ x1)
⇐⇒ (¬x1 ∨ s ∨ q) ∧ (¬s ∨ x1) ∧ (¬q ∨ x1)

Here we have only transformed the second clause in ψ, but the third follows
similarly from applying logical laws.
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To convert the problem of finding non-trivial units in a group ring into
Boolean logic we need to write that there are non-trivial elements α and
β in K[G] with product 1, that is, encode αβ = 1 as a Boolean expression.
Note that kg ∈ K[G] is 0 if and only if k = 0. The ball of radius n over
words on G, is denoted B(n), and is the set {x ∈ G | |x| ≤ n}. Elements α
and β of K[G] are expressed as follows:

α =
∑

g∈B(n)

agg β =
∑

g∈B(n)

bgg

Where ag and bg are field elements. The non-triviality of the elements is
expressed like:

a1 ∧
∨

g∈B(n)\{1}

ag

The clause “a1” asserts that the field element a1 is non-zero, since each
Boolean variable can have value 0 or 1, recall F2 = ({0, 1},+, ·). The dis-
junction is interpreted similarly. Here, a1 is being thought of as the identity
element of the field.

Next, we set up a quadratic system of equations, the solution of which will
yield the desired α and β. To convert to CNF, we require that the variable
xg,h is introduced. Define xg,h = ag ·bh. Observe that ag ·bh ∈ F2 is equivalent
to ag∧bh where ag and bh are Boolean variables. This results in the following
expression:

ϕ× = (xg,h ∨ ag) ∧ (xg,h ∨ bh) ∧ (ag ∨ bh ∨ xg,h)

As Gardam notes, the above holds if and only if the following holds:

(xg,h → ag) ∧ (xg,h → bh) ∧ ((ag ∧ bh) → xg,h)

So we see that (xg,h ↔ ag ∧ bh) ↔ ϕ×.

Next, we wish to express each equation in the system. For this we need
the coefficient of a given group element to sum to 0, unless the group ele-
ment is 1, in which case it should sum to 1.

This is achieved by setting (ag ∧ bh) = 1 when g and h are trivial, set-
ting (ag ∧ bh) = 1 when h = g−1 and setting (ag ∧ bh) = 0 when gh = w for
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some w ∈ B(n) for some n. This asserts each equation in the system.∑
h,g∈B(n)

agbhgh

However, this still needs to be put into CNF. Gardam provides the following
example of how this is done.

Example 4.2.5. The equation x+y+z = 0 (in F2) takes the following form
as a Boolean expression:

(x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y ∨ z)

Each clause is the negation of a possible non-solution to the above equation.
For example, x = 1, y = 1 and z = 1, or (x ∧ y ∧ z) is not a solution to the
equation, so is ruled out by the constraint (x ∨ y ∨ z) which is its negation.

4.3 Generalizing Beyond Characteristic 2

Less than two months after Gardam’s paper was posted, Alan Murray ex-
tended the counterexample over F2 to a class of counterexamples over fields,
Fp, of every prime characteristic [20]. This class of counterexamples can un-
fortunately not be generalized to characteristic 0, as one might hope.

Gardam pointed out in his talk on Kaplansky’s conjectures in September
2021, that if we had counterexamples to any of Kaplansky’s conjectures (of
uniformly bounded support) for all finite fields, then we would have coun-
terexamples for fields of characteristic 0. The next proposition and its proof
are informed by Gardam’s explanation in the aforementioned talk [10].

Proposition 4.3.1. A uniformly bounded set of counterexamples {ϕi | i ∈ I}
falsifying the unit conjecture in all finite fields would yield counterexamples
for fields of characteristic 0.

Proof. Note that we can express the unit conjecture in first-order logic by a
formula similar to Expression 4.1.7, see [22]. Because the family of counterex-
amples {ϕi | i ∈ I} is uniformly bounded, we can find M so that |ϕi| ≤ M
for all i ∈ I and so we know there is a counterexample with finite support
falsifying the unit conjecture for each finite field. We know that the algebraic
closure of Fp can be given as Fp =

⋃
k Fpk . So then we can find a counterex-

ample for algebraically closed fields of arbitrarily large p. Therefore, by the
Lefschetz principle (which is a consequence of compactness, Theorem 4.1.1),
we have that some ϕi with i ∈ I holds in every algebraically closed field of
characteristic 0. This argument could have also been made with ultrafilters
(which are used in 4.3.3) like Gardam does in [10].
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Before proceeding, we need the Fundamental Theorem of Ultraproducts
(FTU), and also sometimes “ Loś’s Theorem”. Note that “ Loś” is a Pol-
ish name and can be pronounced similar to wash. We will also only use
the third part of this theorem so will denote it FTU3. For the background
definitions, please refer to chapter 4 of Chang and Keisler’s Model Theory
(1990) [5].

Theorem 4.3.2. FTU3 Let D be a filter and B be the ultraproduct
∏

D Ui,
with I as the index set. Then for any sentence φ in some language L:

B |= φ if and only if {i ∈ I | Ui ⊢ φ} ∈ D

which says that φ holds in the ultraproduct if and only if it holds in most of
the components.

Theorem 4.3.3. If Ui is a collection of fields, with only finitely many having
characteristic p for each prime, then the ultraproduct

∏
D Ui has characteris-

tic 0.

Proof. By construction, some member of the ultraproduct, Uj, does not have
characteristic p for some prime p. This means p ̸= 0 in Ui and since Ui is
a field, p has a multiplicative inverse. So we can say ϕp = ∃x(px − 1 = 0),
holds in Ui.

Again, by construction, ϕp holds for all but finitely many members of Ui,
meaning {i | Ui ⊢ ϕp} ⊆ I is confinite. We now use the result (without proof)
that an ultrafilter contains a filter over a cofinite index (called a Fréchet fil-
ter) and thus we can apply FTU3 to find that

∏
D Ui ⊢ ϕp and so, since the

argument can be repeated for all p, we see
∏

D Ui must have characteristic
0.

Let P be the set of all primes. Using the above theorem we can claim that
if K is an ultraproduct of Fp for all p ∈ P , then K has characteristic 0 since
for each characteristic, a field with that characteristic appears only once in
the ultraproduct.

Murray’s counterexamples as given in Theorem 3 of [20], depend on the
prime p and thus the support grows as p grows. Hence, if we had a coun-
terexample for characteristic 0, as described in the paper, it would not have
finite support and so could not be in the group ring. The unit conjecture for
fields of characteristic 0 remains open.
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