THE MASTER THEOREM FOR DIVIDE-AND-CONQUER RECURRENCES COMPSCI 320

MARK C. WILSON

There are many versions of this in the literature. What follows is not the most general, but it is enough for our purposes.

Here we assume that f is a function on the natural numbers with $f(n) \ge 0$, n_0 a natural number, a > 0, b a natural number with $b \ge 2, c > 0$.

Theorem. Suppose that T is an increasing function on \mathbb{N} that satisfies $T(n_0) = c$ and T(n) = aT(n/b) + f(n) whenever $n/n_0 = b^k$ for some integer $k \ge 0$. Define $e = \log_b a$. Then if $f(n) \in \Theta(n^d(\lg n)^q)$ for $d, q \ge 0$, we have

$$T(n) \in \begin{cases} \Theta(n^e) & \text{ if } d < e; \\ \Theta(f(n) \lg n) & \text{ if } d = e; \\ \Theta(f(n)) & \text{ if } d > e. \end{cases}$$

Proof. Ask me, find it in the literature (check my handouts directory), or work it out yourself.

Date: 6 August 2002.