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P and NP Randomized algorithms

Overview

So far we have focused on problems that can be solved by
“fast” algorithms, which we have designed using various
paradigms.

It turns out that many problems of practical interest seem
very difficult to solve quickly using any of our algorithm design
methods. Examples: travelling salesrep, independent set.

It also turns out that many of these problems are about
equally hard, so solving any one quickly would yield a quick
solution for all of them.

It also turns out that for many of these problems it is easy to
verify a solution once guessed, but apparently very hard to
find a solution.

It is widely believed that no algorithms exist to solve these
problems quickly, but no one knows for sure. This is the most
famous question in computer science: P = NP?
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Polynomial-time reductions

A problem is solvable in polynomial time if there is some
polynomial p such that every instance of size n can be solved
in time at most p(n). Examples: almost everything in your
courses so far.

If we can’t even do this, then surely the problem is intractable
(even n4 grows very fast with n, let alone n1000000).
Suppose that we have problems X and Y , and that we can
always solve Y using a polynomial number of calls to a
subroutine that solves X, plus a polynomial number of other
basic computational steps. Then we say that Y polynomially
reduces to X and write Y≤P X.
Note that the instances of X must be of polynomial size in
the input, since we need to write them down before calling the
black box.
If Y ≤P X and X can be solved in polynomial time, so can Y .
But if Y cannot be solved in polynomial time, neither can X.
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Example: independent set and vertex cover

IS(k): given a graph, and a number k, does there exist a set
of nodes of size at least k, no two of which are connected by
an edge?

V C(k): given a graph, and a number k, does there exist a set
of nodes of size at most k, such that every edge contains at
least one of these nodes?

Note that a subset S of edges is an independent set if and
only if its complement is a vertex cover.

Thus IS(k) ≤P V C(k) and V C(k) ≤P IS(k).

This is a case of reduction by a simple equivalence of
problems.
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Example: vertex cover and set cover

SC(k): given a set U of elements, a collection of subsets
S1, . . . , Sm of U , and a number k, does there exist a
collection of at most k of these sets whose union is all of U?

Suppose we can solve SC(k) with a black box. Given an
instance of V C(k), we encode it as an instance of SC(k) as
follows.

Let U be the set of all edges of the graph. For each vertex i,
let Si be the set of all edges incident to i.

Now U is the union of sets Si, i ∈ I if and only if I is a vertex
cover.

Thus V C(k) ≤P SC(k).
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SAT and related problems

Constraint satisfaction problems occur often in applications.

Given set X of n Boolean variables x1, . . . , xn, consider terms
(a variable or its negation) and clauses (t1 ∨ t2 ∨ · · · ∨ tk
where ti are terms).

A truth assignment is a function from X to {0, 1}. It satisfies
a clause if the clause evaluates to 1 (iff at least one term in
the clause evaluates to 1).

SAT problem: given a set of k clauses as above, can they be
simultaneously satisfied?

3-SAT problem: as for SAT, but restrict to k = 3.
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Reduction of 3-SAT to IS

Given an instance of 3-SAT , we need to build an instance of
IS whose solution will help solve the original problem (a
gadget). One way is given below.

For each clause i, have 3 nodes vi1, vi2, vi3 where the second
index j represents the jth term in the clause.

Now add an edge for each conflict (when a variable occurs in
one term but negated in another). This gives a graph G.

Now the original 3-SAT instance is satisfiable iff G has an
independent set of size ≥ k.

Thus 3-SAT ≤P IS.
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P and NP: basic definitions

We define input size as the size of a binary string encoding
the input.

A decision problem D is an algorithmic problem with a yes/no
answer. The set X of all input strings for D for which the
answer is “yes” is a formal language.

An algorithm A which returns “yes” on an input string s
precisely when s ∈ X is correct for D. In other words, A
solves the problem D.

An algorithm B that takes input strings s and t and outputs
“yes” for some value t∗ of t precisely when s ∈ X is a certifier
for X (or for D).

Think of t as being a proof (or certificate) that s ∈ X. B
does not solve the problem, but can check certificates.
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Example

For IS(k), a certificate might be the alleged independent set
S. The verifier must check that |S| ≥ k, and that no edge of
the input graph contains two elements of S.

For 3-SAT, a certificate might be a truth assignment of the
variables. The verifier computes its value on each clause, and
checks that these values all equal 1.

How quickly can this be done?
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P and NP: definitions

P is the class of problems D for which there exists an
algorithm A that solves D, and a polynomial p, such that for
each input s, the running time of A on input s is at most
p(|s|). That is, there is a polynomial time solver.

NP is the class of problems D for which there exists an
algorithm B that verifies D, and polynomials p, q, such that
the running time of B on input s, t is at most p(|s|) for each
input s, and |t∗| ≤ q(|s|). That is, there is a polynomial time
certifier.

NP stands for “nondeterministic polynomial time” — it
corresponds to a “nondeterministic Turing machine”.

Many important problems are in NP: Examples: VC, IS,
3-SAT, Hamiltonian cycle, travelling salesperson, graph
colouring, graph isomorphism, subset sum.
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the running time of B on input s, t is at most p(|s|) for each
input s, and |t∗| ≤ q(|s|). That is, there is a polynomial time
certifier.

NP stands for “nondeterministic polynomial time” — it
corresponds to a “nondeterministic Turing machine”.

Many important problems are in NP: Examples: VC, IS,
3-SAT, Hamiltonian cycle, travelling salesperson, graph
colouring, graph isomorphism, subset sum.
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P and NP: consequences

Clearly P ⊆ NP . Biggest problem of theoretical CS: does
P = NP?

Most people believe P 6= NP .

If P 6= NP , then there exist hundreds of important problems
that will never have a polynomial time algorithm. This would
save us wasting time looking for them. Also, hard problems
are useful for applications like cryptography.

If P = NP , then all these hard-looking problems are actually
easy, but we have not yet found the algorithms. Cryptography
would be much harder to do. Mathematicians would be
essentially out of business (computers could find all proofs of
theorems of reasonable length).

The Clay Mathematics Institute offers US$1 000 000 for a
solution to the P = NP? problem.
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NP-completeness

What are the hardest problems in NP?

Suppose that X lies in NP and for all Y in NP, we have
Y ≤P X. Then we call X NP-complete.

Why do any such problems exist? There is no obvious reason.

Cook and Levin proved around 1971 that they do exist (for
example, circuit satisfiability problem). It is now known that
hundreds of natural problems are NP-complete, for example
3-SAT, VC, IS, SC.

Note that if any NP-complete problem is solvable in
polynomial time, then P = NP . Thus it is widely believed
that all of these problems are extremely hard to solve in the
worst case.
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Circuit-SAT

Circuit-SAT takes as input an acyclic digraph representing a
Boolean circuit.

Each source is labelled with a constant 0 or 1, or a variable (all
of the variables are different, and these nodes are called
inputs).
Other nodes labelled by the Boolean operators ∧,¬,∨. There
is a single sink (the output).

The value of a node is computed by following the Boolean
logic in the obvious way.

We ask whether there is a truth assignment to the inputs that
causes the value of the output to be 1.
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Reduction to Circuit-SAT

Given an arbitrary problem X in NP, we can reduce it to
Circuit-SAT. The proof is complicated (not given here) but
the main idea is not.

Every algorithm for a decision problem that takes a fixed size
input can be represented by a circuit whose value on a given
input is the correct output for the algorithm on that input.
The execution of the algorithm is modelled by the circuit.

If the algorithm has polynomially bounded running time, then
the circuit size is also polynomially bounded.

Given a polynomial-time certifier B for X, we convert it to a
circuit with polynomial input size and use the black box for
Circuit-SAT to solve X.
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Circuit-SAT reduction example

Given a graph G, does it contain an independent set of size 2?
We encode the input via the adjacency matrix M .

We have one source for each edge (encoded as a constant
based on M) and one input for each node.

Build a circuit that checks that at least two nodes have been
chosen. Build another than checks that we don’t choose both
ends of each edge. Then concatenate these with ∧.

The size of the circuit is polynomial in n, the number of
nodes.
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k-colouring a graph

Given a graph G, can we assign a colour to each vertex so
that no two adjacent vertices have the same colour, using only
k colours?

If k = 2, this is possible if and only if G is bipartite, and the
question can be decided (either way) in linear time by
breadth-first search.

If k ≥ 3, it is an NP-complete problem, as we shall show.

First note that if H is a complete graph on l vertices, then H
requires l colours.
Given an instance of 3-colouring, form such an H (with k − 3
vertices) and add an edge from every vertex of G to every
vertex of H.

G is 3-colourable if and only if the bigger graph is
k-colourable. So k-colouring is NP-complete if 3-colouring is.

It remains to show that 3-colouring is NP-complete.
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Reduction from 3-SAT to 3-colouring, I

Given an instance of 3-SAT, create a graph G with nodes:

vi and v̄i for each variable xi occurring
special nodes T, F,B

and edges:

joining each vi and v̄i

joining T and F
joining each other node to B.

Every 3-colouring of this corresponds to a truth assignment.
We need to extend this graph so that only satisfying
assignments yield valid 3-colourings.
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Reduction from 3-SAT to 3-colouring, II

For each clause, create a small graph H that attaches to G at
the three terms in the clause, and at the nodes T, F, B so
that if all terms in the clause are false, no 3-colouring
extending in to H is possible. In other words, a valid
3-colouring yields at least one true term in the clause.

H can be found fairly easily, and has 6 vertices. Attach one
for each clause, independently.

3-colourings of this graph correspond exactly to satisfying
assignments of the given set of clauses.
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Subset sum problem

Given a set of integers X = {x1, . . . , xn}, and target integer
W , does there exist a subset of X whose sum equals W?

This is a special case of (the decision version of) the knapsack
problem.

A dynamic programming solution runs in time O(nW ). This
is exponential in the input size, since the input is considered
to be given in binary expansion.

The problem is clearly in NP (just perform the addition). We
reduce 3-SAT to it, to show that it is NP-complete.
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Subset sum problem reduction

Given an instance of 3-SAT with n variables and k clauses, we
encode it into the subset sum framework as follows (easily
understood by writing a table).

For each variable xi, i = 0 . . . n− 1 occurring in a term
somewhere, create variables yi and zi, initially zero.

Add 10i to yi and zi.
If xi occurs in clause Cj , add 10n+j to yi; if x̄i occurs in
clause j, add 10n+j to zi.

For each clause Cj , create variables gj , hj with value 1.

The target is a decimal whose lowest n digits are all 1 and
whose next k digits are all 3. A solution to subset sum gives a
satisfying assignment.
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NP and co-NP

Consider a decision problem such that if the answer is no,
there is a polynomial sized certificate. The complement (swap
yes and no) of this problem is in NP.

Call the set of such problems co-NP. Example: testing an
integer n for primality. If not, can verify that there are x, y
with xy = n in polynomial time.

Consider the intersection NP ∩ co−NP . It consists of
problems that have a fast verifier, no matter what the answer.
Primality is known to be one.

Primality has recently been shown to lie in P. It is unknown
whether there are problems in NP ∩ co−NP that are not in
P.

It is known that integer factorization is in NP ∩ co−NP , but
it is not known to be in P . Important cryptographic
algorithms are based on the assumption that it is not.
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P and NP Randomized algorithms

Why use randomization?

Protect against bad worst case input from a malicious
adversary.

Algorithms are often conceptually simpler and easier to
implement than deterministic ones.

Find multiple solutions to a given problem.

Break symmetry between competing agents, reducing conflict.

Find a solution when there are many, but no clear structure to
them.
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P and NP Randomized algorithms

Monte Carlo Algorithms

Monte Carlo algorithms

If the runtime on a given instance is deterministic and the
answer is correct with bounded probability, we have a Monte
Carlo algorithm.

A MC algorithm for a decision problem is biased if one of the
answers (yes/no) is always correct when given. In other
words, for example, P (Y |N) ≡ P(says Y given answer is N)
= 0, P (N |N) = 1, P (Y |Y ) = p, P (N |Y ) = 1− p.

Examples: fingerprinting (verification of identities); primality
testing.
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Monte Carlo Algorithms

Fingerprinting

Suppose we have a set U and want to determine whether
elements u, v are equal. It is often easier to choose a
fingerprinting function f and compute whether f(u) = f(v),
in which case we return yes. Such methods are always biased:
P (N |Y ) = 0.

Example: X, Y, Z are n× n matrices, and we want to know
whether XY = Z. Choose a random n bit vector r and
compute XY r and Zr. Can show P (Y |N) ≤ 1/2.

Example: M is a symbolic matrix in variables x1, . . . xn; we
want to know whether det(M) = 0. Choose a finite subset S
of C and choose r1, . . . rn independently and uniformly from
S. Substitute xi = ri for all i and compute the determinant.
Can show P (Y |N) ≤ m/|S| where m is the total degree of
the polynomial det(M).

There are many specific applications of the above examples.
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Monte Carlo Algorithms

Improving biased Monte Carlo algorithms

Let 0 < p < 1. Say a MC algorithm is p-correct if its error
probability is at most 1− p on every instance (sometimes p
depends on the size, but never on the instance itself).

This means P (Y |N) ≤ 1− p, P (N |Y ) ≤ 1− p.

If, say, NO is always right then we can improve our confidence
in the answer by repeating the algorithm n times on the same
instance. This is amplification of the stochastic advantage. If
we ever get NO, report NO. Else report YES. Probability of
error is at most (1− p)n. To reduce this to ε requires number
of trials proportional to lg(1/ε) and to − lg(1− p).
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Monte Carlo Algorithms

Improving unbiased Monte Carlo algorithms

We need p ≥ 1/2. Repeat n (odd) times and return the more
frequent answer. Analysis is more complicated.

Let Xi = 1 if ith run gives correct answer, 0 otherwise. Then
Xi is a Bernoulli random variable and X =

∑n
i=1 Xi is

binomial with parameter p. Probability of error of repeated
algorithm is P (X < n/2). This is just∑

j<n/2

(
n
j

)
pj(1− p)n−j .

Simplifying this could be done, but it is easier to use the
normal approximation: X is approximately normal with mean
np and variance np(1− p) for n large enough. Use table of
normal distribution to work out size of n for given ε. Answer
is proportional to lg(1/ε) and (p− 1/2)−2.
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Monte Carlo Algorithms

Primality testing

We wish to know whether a given positive integer n is prime
(has no proper factor other than 1).

Fermat (1640) proved that if n is prime, and 1 ≤ a ≤ n− 1,
then an−1 ≡ 1 mod n. However if n is composite (not
prime) then this equality may or may not hold.

An obvious idea is: given n, choose a randomly and compute
an−1 mod n (recall that we can do this quickly, using a
divide-and conquer approach). If the answer is not 1, we
report NO (such an a is called a witness).

This gives a biased Monte Carlo algorithm with
P (N |N) = 1, P (Y |N) = 0. What about P (N |Y ), P (Y |Y )?

Unfortunately P (N |Y ) can be made arbitrarily close to 1
(some n have a lot of false witnesses). So this algorithm is
not p-correct for any p > 0.
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Monte Carlo Algorithms

Improving the primality testing algorithm

There is a more complicated test (Miller-Rabin, 1976 - see
textbook) based on Fermat’s result that gives P (N |Y ) ≤ 1/4,
and hence a 3/4-correct algorithm.

There is an even more complicated test
(Agrawal-Kayal-Saxena 2002) that is in fact always correct,
and this gives the first worst-case polynomial-time algorithm
for primality. But it is not as fast in practice as the
randomized algorithm above.



P and NP Randomized algorithms

Monte Carlo Algorithms

Improving the primality testing algorithm

There is a more complicated test (Miller-Rabin, 1976 - see
textbook) based on Fermat’s result that gives P (N |Y ) ≤ 1/4,
and hence a 3/4-correct algorithm.

There is an even more complicated test
(Agrawal-Kayal-Saxena 2002) that is in fact always correct,
and this gives the first worst-case polynomial-time algorithm
for primality. But it is not as fast in practice as the
randomized algorithm above.



P and NP Randomized algorithms

Las Vegas Algorithms

Las Vegas algorithms

Nice properties: can find more than one solution even on same
input; breaks the link between input and worse-case runtime.

Every Las Vegas algorithm can be converted to a Monte Carlo
algorithm: just report a random answer if the running time
gets too long.

Examples:

randomized quicksort and quickselect;
randomized greedy algorithm for n queens problem;
integer factorization;
universal hashing;
linear time MST.
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Las Vegas Algorithms

Improving Las Vegas algorithms

If a particular run takes too long, we can just stop and run
again on the same input. If the expected runtime is fast, it is
very unlikely that many iterations will fail to run fast.

To quantify this: let p be probability of success, s the
expected time to find a solution, and f the expected time
when failure occurs. Then expected time t until we find a
solution is given by t = ps + (1− p)(f + t), so
t = s + (1− p)f/p.

We can use this to optimize the repeated algorithm.
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