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Outline Introduction and Background Analysis of Searching

Heapsort

Selection sort improvement idea

In selection sort, finding the minimum of a[i..n− 1] by
sequential search is slow, and it dominates the running time.
Can we do this operation faster?

Not with the current data structure. What about a different
one?

We want a data structure that allows us to find and extract
the minimum quickly.
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Priority queues

Recall that a priority queue is a container ADT where each
element has a key called its priority. There are operations
allowing us to insert an element, and to find and delete the
element of highest priority.

Queues and stacks are special cases that are more efficiently
done directly.

Priority queues are important in many areas: discrete event
simulation, graph algorithms (later in this course), sorting.

Priority queues can be implemented in many ways: unsorted
list, sorted list, binary heap, binomial heap, . . . .
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Heapsort

Priority queue sort

Suppose we are given an input list. Start with an empty
priority queue Q and:

successively insert all elements into Q, using the sorting keys
as the priority;
successively remove the highest priority element until Q is
empty.

This gives a sorting algorithm that is obviously correct.
Performance:

If we implement Q using an unsorted list, we obtain selection
sort. Insertion takes O(1) time but deletion time is Θ(n).
If we use a sorted list to implement Q, we obtain insertion
sort. Insertion takes Θ(n) time but deletion is O(1).
We can do better with an implementation in which insertion
and deletion each take time in O(log n). The simplest is the
binary heap.
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Priority queue sort pseudocode

algorithm pqsort (list a)
Q← pqbuild(a)
t =list()
while not Q.empty

t.add(delete(Q))
return t
end
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Priority queue: binary heap implementation

A heap is a binary tree that

is complete (every level except perhaps the last is full and the
last level is left-filled)
has the partial order property (on every path from the root,
the keys decrease).

A heap can implement a priority queue as follows.

Keys are stored in nodes.
To insert a node, create a new leaf at the bottom level as far
left as possible. Swap it upward until no swap is required.
To delete the maximum, remove the root. Put the rightmost
leaf in the root position. Swap it downward (choosing the
larger child each time) until no swap is required.

A heap is sometimes called a tournament.
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Array representation of binary heap

A binary heap can be represented implicitly (without pointers)
in an array.

Each node corresponds to an array index (starting with 1).
The children of the node corresponding to index k are in
positions 2k (left) and 2k + 1 (right). The keys are stored
directly in the array.

To insert a key x, put it in position n + 1 and swap as above.

To delete the root, swap a[1] with a[n], and swap as above.
Note that deleted elements end up at the end of the array.
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Heapsort analysis

Building a heap using n successive insertions takes time in
O(n log n) since the tree has height in O(log n).

Deleting the root n times, restoring the heap property each
time, takes time in O(n log n).
Thus heapsort is a worst-case Θ(n log n) sorting algorithm,
like mergesort. It is not stable, but it is in-place.

Detailed average-case analysis is more difficult, but the best
and worst case are not very different.
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Heapsort variants

We can build the heap by repeatedly adding elements to the
empty heap. However, for sorting we only need the heap
property at the end.

One way is to build a complete binary tree without the heap
property. Then recursively heapify the left and right subtrees,
and then let the root swap down to the right position.
The recursion T (n) = 2T (n/2) + lg n describes the running
time of the latter method: solution is Θ(n).
This method can be rewritten to avoid recursion
(“bottom-up”) and to work in place in the array
implementation.
There is also a way to delete the maximum that is about twice
as fast on average: it involves swapping down a long way and
then swapping back up if necessary. See me for more details.
There is still serious research being done on better priority
queue implementations.
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Summary of sorting algorithms

Table: Characteristics of sorting methods

Method Worst Average Best Stable? In-place?

Insertion n2 n2 n Yes Yes
Selection n2 n2 n2 No Yes
Shellsort ?? ?? n No Yes
Mergesort n log n n log n n log n Yes No
Quicksort n2 n log n n log n No Almost
Heapsort n log n n log n n log n No Yes

Running times give asymptotic order only. Shellsort analysis
depends on the increments used, and is difficult. Quicksort needs a
stack of size Θ(log n) for the recursion.
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Selection

Fix r with 1 ≤ r ≤ n. We want to find the element with rth
key from an input list (the rth order statistic). Should be
easier than sorting!

Building a priority queue and extracting is probably too much
work even if r = 1, certainly if r = n/2.

One approach is to use the quicksort idea. At each stage we
only need to make a recursive call on one half of the array
because we know where the pivot is relative to the desired
element.

The recurrence for the average number of comparisons has
the form E(n) = n + 1

n

∑n−1
i=0 E(p). This has a solution that

is Θ(n). See textbook for details.

The worst case is still quadratic; there is another
divide-and-conquer algorithm that is worst-case linear, but
more complicated (see COMPSCI 320).
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Extra: sorting analysis - where to from here?

Basic calculations that we have performed give the worst and
average case running time, which is enough to rule out certain
algorithms as being competitive for large input.

More precise analysis (such as covered in COMPSCI 720)
allows us to choose parameters (such as quicksort cutoff,
pivot selection strategies) to optimize performance, and to
make finer comparisons between algorithms.

The more detail is required, the more advanced the
mathematical machinery needed. The mathematics involved
in modern research makes heavy use of advanced calculus
techniques even though it is about discrete quantities.

See Flajolet and Sedgewick, Introduction to the Analysis of
Algorithms; Knuth, The Art of Computer Programming; me,
for a research project.
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Table ADT

Recall that a table is a container ADT which supports the
operations of finding a key or reporting that it is not present,
retrieving a record with given key, inserting a record, deleting
a record.

The set of keys need not be totally ordered, but no keys can
be repeated.

A table can perform the tasks done by a priority queue but is
much more general.

There are many implementations: (sorted or unsorted) list,
hash table and (various types of) binary search trees are the
main ones. Also skip lists, jump lists.

Static searching does not perform insertions or deletions (such
as in a telephone book), while dynamic searching allows
insertion and deletion (such as in a database).



Outline Introduction and Background Analysis of Searching

Table ADT

Recall that a table is a container ADT which supports the
operations of finding a key or reporting that it is not present,
retrieving a record with given key, inserting a record, deleting
a record.

The set of keys need not be totally ordered, but no keys can
be repeated.

A table can perform the tasks done by a priority queue but is
much more general.

There are many implementations: (sorted or unsorted) list,
hash table and (various types of) binary search trees are the
main ones. Also skip lists, jump lists.

Static searching does not perform insertions or deletions (such
as in a telephone book), while dynamic searching allows
insertion and deletion (such as in a database).



Outline Introduction and Background Analysis of Searching

Table ADT

Recall that a table is a container ADT which supports the
operations of finding a key or reporting that it is not present,
retrieving a record with given key, inserting a record, deleting
a record.

The set of keys need not be totally ordered, but no keys can
be repeated.

A table can perform the tasks done by a priority queue but is
much more general.

There are many implementations: (sorted or unsorted) list,
hash table and (various types of) binary search trees are the
main ones. Also skip lists, jump lists.

Static searching does not perform insertions or deletions (such
as in a telephone book), while dynamic searching allows
insertion and deletion (such as in a database).



Outline Introduction and Background Analysis of Searching

Table ADT

Recall that a table is a container ADT which supports the
operations of finding a key or reporting that it is not present,
retrieving a record with given key, inserting a record, deleting
a record.

The set of keys need not be totally ordered, but no keys can
be repeated.

A table can perform the tasks done by a priority queue but is
much more general.

There are many implementations: (sorted or unsorted) list,
hash table and (various types of) binary search trees are the
main ones. Also skip lists, jump lists.

Static searching does not perform insertions or deletions (such
as in a telephone book), while dynamic searching allows
insertion and deletion (such as in a database).



Outline Introduction and Background Analysis of Searching

Table ADT

Recall that a table is a container ADT which supports the
operations of finding a key or reporting that it is not present,
retrieving a record with given key, inserting a record, deleting
a record.

The set of keys need not be totally ordered, but no keys can
be repeated.

A table can perform the tasks done by a priority queue but is
much more general.

There are many implementations: (sorted or unsorted) list,
hash table and (various types of) binary search trees are the
main ones. Also skip lists, jump lists.

Static searching does not perform insertions or deletions (such
as in a telephone book), while dynamic searching allows
insertion and deletion (such as in a database).



Outline Introduction and Background Analysis of Searching

List implementations

Sequential search

In a list with no other structure, the only way to find an
element is to check each element.

This takes time in Θ(n) for any reasonable implementation
(such as array or linked list).

We only need to be able to iterate through the elements in
linear time, so even more general structures than lists also
allow for this type of search.
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List implementations

Binary search

In a sorted list where constant time access is possible (such as
an array implementation), we can find a key x as follows.
Start at the middle key, and recursively go left or right if the
key is greater or less than x; stop if we hit x or search
subinterval is empty.

Note: binary search is conceptually easy but surprisingly hard
to program correctly even for professionals (see J. Bentley,
Programming Pearls).

The (worst-case) recurrence is T (n) = 1 + T (bn/2c), with
solution in O(log n).
The execution of this algorithm (looking for all possible keys)
can be described by a decision tree called a (static) binary
search tree. The number of comparisons required to find the
key is the depth of the leaf containing that key.
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Tree implementations

Binary search trees

A binary search tree is a binary tree with keys stored in nodes,
such that the key of each node is ≥ the key of its left child
and ≤ the key of its right child.

A BST implements the Table ADT. To find/insert a key, use
binary search as described above.
To remove a node, we need more work.

An internal node with no children: simply delete.
An internal node with only one child: delete the node, connect
the child to the parent.
An internal node n with two children: find the minimum key
K in the right subtree, delete that node, and replace the key
of n by K.

BSTs are very versatile. They are good for sorting. An inorder
traversal of the tree yields the keys in sorted order. Also,
BSTs model the behaviour of quicksort.
Main problem with BSTs: they can become unbalanced by
insertions and deletions.
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Tree implementations

Analysis of BST operations

The running time of all basic operations is proportional to the
number of nodes visited.

In the worst case, finding/removing/inserting take time in
Θ(h) where h is the height of the tree. Unfortunately the
height can be as large as n− 1 in the worst case.

A BST built by n insertions of random keys has height in
Θ(log n) (see next slide). So randomly grown trees are not
too unbalanced.

However deletions can mess this up, and are hard to analyse.

Conclusion: we need another idea to guarantee good
worst-case performance. We need to rebalance BSTs.
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Tree implementations

Relation between Quicksort and BSTs

After choosing the pivot and partitioning, we can represent
the file as a binary tree: pivot at the root, left subfile on the
left, right subfile on the right. It has the BST property with
respect to the sort keys.

Given the above BST describing the execution of quicksort on
the file, note that the cost of constructing the tree (measured
by key comparisons) is the same as the number of
comparisons used by quicksort in sorting the file.

This is equal to the internal path length, the sum of all depths
of nodes.

Thus the average search cost is Θ(log n) for randomly grown
BSTs with no deletions.
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Tree implementations

Extra: self-balancing binary search trees

There are several classes of BSTs (such as AVL, red-black,
AA) that perform rebalancing operations at crucial times in
order to keep the height close to lg n.

These operations are based on local rotations of the tree.

Analysis of performance is fairly difficult. It is not too hard to
show that AVL trees maintain the right height (see textbook).
Average-case height is not really known.

Java Collection Framework’s TreeMap uses red-black tree
implementation.
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Hashing implementations

Hashing

A hash function is a function h that outputs an integer value
for each key. A hash table is an array implementation of the
table ADT, where each key is mapped via a hash function to
an array index.

The number of possible keys is usually enormously more than
the actual number of keys. Thus allocating an array with
enough size to fit all possible keys would be very inefficient.
So hash functions are not 1-to-1; that is, two keys may be
mapped to the same index (a collision).

We need a collision resolution policy to prescribe what to do
when collisions occur.

We assume the first-come-first served (FCFS) model for
resolving collisions.
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Hashing implementations

Hash functions

There are several desirable properties of a hash function:

it should be computable quickly (constant time).
if keys are drawn uniformly at random, then the hashed values
should be uniformly distributed.
keys that are “close” should have their hash values “spread
out”.

A hash function should be deterministic, but appear
“random” - in other words it should pass some statistical tests
(similar to pseudorandom number generators).

Example: Java String hashcode computes the address of a
string s using integer arithmetic via the formula
s[0] ∗ 31n−1 + s[1] ∗ 31n−2 + ... + s[n− 1].
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Hashing implementations

Collision resolution policies

Open addressing uses no extra space - every element is stored
in the hash table. If it gets overfull, we can reallocate space
and rehash.

Chaining uses an “overflow” list for each element in the hash
table.

When a collision occurs, we can evict the occupant (LCFS),
evict the latecomer (FCFS) or evict the element furthest from
its home location (Robin Hood hashing).

When a collision occurs in open addressing, we can

probe nearby for a free position (linear probing, quadratic
probing);
go to a “random” position by using a second-level hash
function (double hashing);
try a position given by a second, third, . . . hash function (this
plus LCFS gives cuckoo hashing).
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Hashing implementations

Collision resolution via chaining

Elements that hash to the same slot are placed in a list. The
slot contains a pointer to the head of this list.

Insertion can then be done in constant time.

Deletion can be done in constant time with a doubly linked
list, for example.

A drawback is the additional space overhead. Also, the
distribution of sizes of lists turns out to be very uneven.
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Collision resolution via open addressing

Every key is stored somewhere in the array; no extra space is
used.

If a key k hashes to a value h(k) that is already occupied, we
probe (look for an empty space).

The most common probing method is linear probing, which
moves left one index at a time, wrapping around if necessary,
until it finds an empty address. This is easy to implement but
leads to clustering.
Another method is double hashing. Move to the left by a fixed
step size t, wrapping around if necessary, until we find an
empty address. The difference is that t is not fixed in advance,
but is given by a second hashing function p(k).
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Analysis of hashing

We count cost by number of key comparisons/probes.

Insertion has the same cost as an unsuccessful search,
provided the table is not full.

The average cost of a successful search is the average of all
insertions needed to construct the table from empty.

We often use the simple uniform hashing model. That is, each
of the n keys is equally likely to hash into any of the m slots.
So we are considering a “balls in bins” model.

If n is much smaller than m, collisions will be few and most
slots will be empty. If n is much larger than m, collisions will
be many and no slots will be empty. The most interesting
behaviour is when m and n are of comparable size.

Define the load factor to be λ := n/m.
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Analysis of balls in boxes

Define

Q(m,n) =
m!

(m− n)!mn
=

m

m

m− 1
m

. . .
m− n + 1

m
.

Note that Q(m, 0) = 1, Q(m,n) = 0 unless 0 ≤ n ≤ m.

The probability of no collisions when n balls are thrown into
m boxes uniformly at random is Q(m,n). For example,
Q(366, 180) ≈ 0.4486998183× 10−23,
Q(366, 24) ≈ 0.4626535709.

The expected number of balls until the first collision is equal
to E(m) :=

∑
n≤m Q(m,n). Note E(365) ≈ 25.
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Hashing implementations

Statistics for balls in bins: some facts

When do we expect the first collision? This is the birthday
problem. Answer: E(m) ≈

√
πm/2 + 2/3. So collisions

happen even in fairly sparse tables.

When do we expect all boxes to be nonempty? This is the
coupon collector problem. Answer: after about m log m balls.
It takes a long time to use all lists when chaining.

What proportion of boxes are expected to be empty when
m ≈ n? Answer: e−λ. Many of the lists are just wasted space
even for pretty full tables.

When m = n, what is the expected maximum number of balls
in a box? Answer: about (log n)/(log log n). Some of the lists
may be fairly long.

The analysis that gives these results is beyond this course.
See me for references.
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Results for chaining

The worst case for searching is Θ(n), since there may be only
one chain with all the keys.

The average cost for unsuccessful search is the average list
length, namely λ.

The average cost for successful search is then

1
n

n∑
k=1

k

m
=

n + 1
2m

≈ λ/2.

Thus provided the load factor is kept bounded, basic
operations run in constant time on average.
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Results for open addressing

We assume uniform hashing: each configuration of n keys in a
table of size m is equally likely to occur. In other words, the
hash function produces a random permutation of the keys,
and the slots are probed in random order for each key.

Uniform hashing can’t be implemented practically but seems
to be a good model when double hashing is used.

It can be shown that the average cost for insertion under this
hypothesis is Θ(1/(1− λ)) as m→∞.

Linear probing is not well described by the uniform hashing
model (because of the clustering). A more detailed analysis
can be done. The average insertion cost is Θ(1 + 1/(1− λ)2).
If the load factor is bounded away from 1, basic operations
run in constant time; otherwise performance will be very bad.

See me for details of the proofs.
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