
Software Development
Methodologies

Lecture 5 - Version Control 2

SOFTENG 750 2013-03-25

If VCSs were Airlines...

Lars Söderström

RCS CVS

Thanks to John Goerzen http://changelog.complete.org/archives/698-if-version-control-systems-
were-airlines

Distributed
Version Control

Distributed
Version Control

Every developer has their own local repository
(a.k.a. “decentralized version control”)
1. Developers work on their working copy
2. Developers commit changes of the working copy to their own

local repository first
3. Changes can be exchanged between repositories

(“pushed” and “pulled”)

Local
Repository

Local
Repository

Working
Copy

Working
Copy

Network

Push and Pull
Push

● Once developers have committed versions on their
local repository, they can push them to another repo

● Versions are pushed from local branches
into corresponding remote branches

● Like “commit” from one repo to another
Pull

● Latest versions are pulled from remote branches
and put into the corresponding local branches

● Like “update” from one repo to another

Local
Repository

Local
Repository

Working
Copy

Working
Copy

Network

Branches

● Created by branching off or cloning existing branch
(parent branch and child branch)

● Parent and child have a common history
and can be merged later

● Typically branches will have a common ancestor
(e.g. sometimes all branches start with a trunk)

● Typically new branches are only visible locally
● Need to be explicitly pushed or pulled to be visible

in other repositories
● Having many temporary branches can be confusing

Distributed VCS
Advantages

1. Versioning can be done locally
 (does not depend on central repository)

○ Good if you don’t have Internet connectivity
○ Good if you don’t have access to the main repo
○ Good for bigger changes that involve many steps

2. Branching is easier
○ Easy to clone a repository
○ Branching can be done locally

3. Merging is easier
○ Merging can be done locally
○ Because history of a branch is kept locally,

changes can be easier merged back into ancestor

Distributed VCS
Disdvantages

1. Makes it easier for people not to integrate their work
○ All versioning can be done locally
○ Easier to forget to push
○ Related problem: branches becoming “forks”

2. Memory consumption of local repository
○ Up-to-date local repository contains same data as

remote repository
○ All branches, versions, files

(even old ones)…

Mercurial
(hg)

Mercurial

● Open-source project, started around 2005
● Used for many open-source projects

● Every developer has a repository, which is a folder
● Repo folder contains working copy,

and a subfolder .hg which contains the version data
● Versions are identified locally by natural numbers

and globally by hash values,
e.g. 5c240805ac2d9530b780cbd514574af398c0cdd6

● Good tool support (TortoiseHg)
● Fairly easy to use

Working with Hg
1. Start by cloning existing repo, or creating new one

○ New repo has only “default branch” (like trunk)
○ After cloning you have local copies of all branches

of parent repo
2. Pull to load new versions from parent repo into local repo

○ Does not change
working copy
unless you update

○ Pulled versions are
put in separate branch
from your local versions

3. Modify working copy and commit to create new versions in
your local repo

Hg Pull

Pull regularly to stay up to date.
Have you committed local versions on some branch?
1. If no, you can update to the latest

pulled version
○ Changes in working copy are

merged with pulled version
○ Unless you choose to

“discard local changes”
2. If you have committed local versions

on some branch, they should be
merged with pulled versions on
same branch

Hg Push

Push regularly to integrate your changes.
Have others committed versions on a remote branch that you
have committed to locally?
1. If no, push will succeed and the local

versions will be in the remote repo
2. If yes, i.e. others have committed

versions on a branch you have
committed to locally:
○ You need to merge your versions

with their versions
○ When local branches and corresp.

remote branches are merged,
push succeeds

More Hg Functions

● Backout: undo the changes in a version
● Browse the files as seen in other revisions
● Export changes as patch files
● Note: older versions 1.x of TortoiseHg look different

git

git

● Created by Linus Torvalds
● Open-source project, started around 2005
● Used for many open-source projects
● Generally similar to Mercurial, but different terminology

● Fast cloning, branching and merging
● Lots of things that can be changed by users,

e.g. history can be changed a-posteriori
● Personal experience as compared with Mercurial:

more powerful and faster, but harder to use

● The default branch is called master
● There are different types of branches:

○ Local branches (e.g. master)
○ Remote branches (e.g. origin/master)
○ Tracking branches (Special type of local branches;

local copies of remote branches)

● You always work in a local branch
● You never work in remote branches

(they are somewhere else)
● To work with a remote branch, you need to create a

corresponding tracking branch locally

Git Branches

●git branch newbranch existingbranch

Create new branch from an existing branch
●git branch --track branchx origin/branchx

Create local tracking branch for a remote branch
●git checkout branchname

Make a branch appear in the repo folder
●git pull Merge latest changes from remote branch to

local tracking branch (could ask to resolve conflicts)
●git push Merge latest changes from local tracking branch

to remote branch (complains if not up-to-date)
●git merge source

Merge branch source into the current working copy

Important Operations
on Branches

git clone clut002@genoupe.se.auckland.ac.nz:/var/git/pdstore

cd pdstore // clone the repo and go into it

echo "hello" > newfile.txt

git add newfile.txt // mark the new file for addition

git commit –a

git branch --track ProjectX origin/ProjectX // new tracking
 // branch

git checkout ProjectX // checkout tracking branch

git pull // update tracking branch

git merge master // merge changes of master to here

git push // send changes to remote branch

Example Session

Today’s Summary

Distributed VCSs: every user has a full repository with
versions (not just a working copy)
● Versions are committed to local repository first
● Versions can be pushed from local to remote repository
● Versions can be pulled from remote to local repository
● Both may require merging and conflict resolution

Quiz
1. What is the main difference between centralized and

distributed version control?
2. What does hg pull do?
3. Name two advantages of distributed version control.

International Obfuscated
C Code Contest (ioccc.org)
- Carl Banks 1998
A flight simulator.

