
Software Development
Methodologies

Version Control 1

SOFTENG 750 2013-03-17

Version Control Systems

http://www.youtube.com/watch?v=5FEHlsRuWKI
Visualization of activity on the Haiku git repository (2012) - Thanks to Justin Stressman

*

Subversion - SVN
(Recap)

Subversion (SVN)

● Centralized open-source VCS
● Supports merging (recommended) as well as locking
● Complete file/folder structure is versioned
● Revision names are sequential

natural numbers (0, 1, 2, …)
● Works with HTTP server:

WebDAV/DeltaV protocol
makes it possible to read
repository with just a
web browser:
https://subversion.sfac.auckland.ac.nz/
svn/softeng750_2013_teamXY/

Basic SVN Operations

● Checkout: create a working copy of a repository
● Choose local folder for working copy
● Enter the URL of the repository
● Choose the revision to check out

(HEAD revision is latest one)

● Update: update your working copy to the latest revision
● If no newer revision exists: no effect
● If you have changed your working copy:

latest revision is automatically merged into your working copy
● Textual merging conflicts have to be resolved manually

● Commit: write local changes to the repository
● Fails if your local revision is out of date; update first
● Creates a new revision on success

*

TortoiseSVN
Check if somebody else has
modified files or has acquired lock;
also for stealing locks
Tell SVN that conflict in files has
been resolved

 =Unmodified
 =U changed
it
(needs commit)
 =Conflict
 =U have lock
(release later)
 =U deleted it
 =U added it

Use these instead of normal ones!!!
Also updates version info.
Create cheap copy of a folder.

Switch to the version in a cheap
copy (like updating to it).
Merge revision range of branch
into other branch.
Creating a file containing the local
changes or use it to update working
copy.
Right-click & drag
= copy/move & update version info

Resolving Conflicts

● After updating SVN might tell you someone committed a
change that conflicts with your local changes

● Resolving the conflict means deciding how to merge the
conflicting changes

● Supported by editor
that shows conflicting
changes and gives
options to resolve it
(e.g. use only one
of two changes)

● When conflict is
resolved, you must
tell SVN *

Branches

● Trunk / default / master branch
○ Main line of development: everything converges there

● Release branch
○ Whenever you release software, create a release branch
○ Shortly before release, only bugfixes into

release branch ("feature freeze")
○ Customer Feedback (e.g. bug reports)

will relate to release branch
● Experimental branch

○ For unstable code (e.g. new features or rework)
○ To avoid interference with regular development
○ Merge into trunk once stable

● Maintenance branch
○ Created to maintain an old release

Branching / Tagging

● Creates a copy of a folder in your repository
● Branch: the copy will be used for further development
● Tag: the copy is just for archival and will remain unchanged
● Usually three main folders: /trunk , /branches , /tags

How to do it:
1. Select folder to copy from

(right-click on it, use menu)
2. In the dialog:

select new folder to copy to
3. Select revision of that folder

(usually HEAD)
4. Enter log message
5. Update parent folder of branch

or tag to load it in the local working
copy

*

Subversion Tips

● Don’t forget to add your files/folders to the repo
● Delete and rename only using SVN operations
● If two SVN clients are running at the same time,

there might be errors like “working copy locked”
● If something is wrong with working copy,

use cleanup command
● If nothing else helps, delete local working copy and

check out a new one
● Various other clients available,

e.g. Subclipse plugin for Eclipse

*

*

Version Control
Best Practices

1. One Change at a Time

Complete one change at a time and commit it
● If you committing several changes together

you cannot undo/redo them individually
● Sometimes individual changes are needed
● Sometimes individual changes need to be excluded

Continuous integration (see also XP practice)
● If you make several changes conflicts are much more likely
● Merging simple changes is much easier

Backup: If you don’t commit and your hard disk crashes…
● Your repository is your backup system
● Even if the repo is destroyed, other developers will probably

have their own local copy

2. Don’t Break the Build

Only commit changes that preserve system integrity
● No “breaking changes” that make

compilation or tests fail

Test-driven development (see also XP practice)
● Write tests for every change
● Run tests before committing (at least some of them)

Productivity (think of others)
● All other developers will download your changes
● Any problem that was introduced will suddenly be

everyone’s problem

3. Only the Source

Commit only source files
● I.e. files that are actually necessary for

your software (including documentation)
● Not generated files (e.g. .class, .exe)
● Not temporary files (e.g. irrelevant data or log files)
● Source files are often textual and generated files binary
● Adding files should be a conscious decision!

Why?

● Unnecessary files waste space
(other people need to download them
when checking out / updating)

● Most binary files are unmergeable
(easily lead to conflicts that can’t be resolved manually)

4. Use the Log

Write a log entry for each change
● What has been changed and why
● Like a short blog post (Twitter style or more)
● Easier to find good and bad changes

*

Revision Time Author Description

4 1am CodeCowboy Added the files

5 1pm CodeCowboy More code

6 2pm CodeCowboy Minor change
Revision Time Author Description

4 1am CodeSheriff Added files from our old repo at http…

5 1pm CodeSheriff Added Order.sort() for sorting OrderItems

6 2pm CodeSheriff Bugfix for #67: initialized variable

Dear
diary

5. Communicate

Communicate with the other developers

Before changing existing code

● See who else is working on it / has worked on it
● Ask that person about your change before

committing (possibly show them a patch)

Before starting something new
● Discuss with co-developers and agree on a design
● Make design proposal, point out design alternatives

● Always follow the project guidelines & specifications

*

Version Control
Best Practices

1. Complete one change at a time and commit it
○ If you committing several changes together

you cannot undo/redo them individually
○ If you don’t commit and your hard disk crashes…

2. Don’t break the build
○ Test your changes before committing

3. Commit only the source files (e.g. not .class files)
4. Use the log by writing a summary for each commit

○ What has been changed and why
5. Communicate with the other developers

○ See who else is working on a part before changing it
○ Discuss and agree on a design
○ Follow the project guidelines & specifications

Dear
diary

Documenting Requirements

...people don't know what
they want and are willing to
go through hell to get it.
(Don Marquis)

Requirements
Spreadsheet Example

Using a Bug Tracker
(Example: Trac)

Today’s Summary

1. Always use a VCS when doing software development
2. Stick to best practices to get the most out of your VCS

(and have a good team experience)
3. Document and manage the product requirements

(your customer will love you for it)

Milestone 3 (Deadline: Lab on Thursday)
1. Requirements breakdown (product backlog)
2. First iteration plan (sprint backlog)

with task breakdown, allocation & estimates

Quiz

1. What are the steps of working with
a SVN repository?

2. When should a branch be created
and how?

3. Explain 3 best practices of version
control and describe what could
happen if they are not followed.

4. How would you document product
requirements?

International Obfuscated C Code Contest (ioccc.org) - deckmyn 2012
A music notation program. A music font is encoded in the whitespaces of the code.

