
Software Development
Methodologies

Lecture 5 - Development Processes
1

The Standish “Chaos”
Report

Reports on statistics about IT
projects (data for 2009)
●32% of all projects succeeded
(delivered on time, on budget, with
required features and functions)
●44% are challenged (late, over
budget and/or with less than the
required features and functions)
●24% have failed (cancelled prior to
completion or delivered and never
used)

http://blog.standishgroup.com/ *

Among the suspected
causes:
poor estimates and poor
planning

http://blog.standishgroup.com/
http://blog.standishgroup.com/

Software Development
Processes

He who fails to plan,
plans to fail
(Proverb)

Software Development
Process (Recap)

Generic plan for a software project

1. What has to be done? (-> tasks/activities/steps)
2. Why do a task? (-> outcomes, produced artifacts)
3. When should it be done? (-> schedule)
4. Who does it? (-> people, roles, responsibilities)
5. How should it be done? (-> methods, standards, tools)

● Many different processes exist
● No single process suitable for every project

(no “one size fits all”)
● Using a process can improve the quality of the product

Adaptive vs.
Predictive Processes (Recap)

● Lightweight, ‘agile’
● Control by feedback
● Many short iterations (weeks)
● Small scale (<10 developers)
● Face-to-face communication
● Code- & people-centric
● Egalitarian

● Problems:
○ Unpredictable
○ Possible lack of discipline
○ Often underregulated:

need to add more rules &
practices

● E.g. XP, Scrum, Kanban

● Heavyweight, ‘traditional’
● Control by planning
● Few long iterations (months)
● Large scale (>30 developers)
● Written documents
● Rule-centric
● Authoritarian

● Problems:
○ Inflexibility
○ Bureaucratic overheads
○ Often overregulated:

need to select only some of the
rules & practices

● E.g. waterfall, RUP

Adaptive Predictive

Factors Influencing
Software Methodologies
1.Quality requirements

2.Complexity & size of requirements

3.Team size

4.Experience of team members

5.Organizational maturity

6.Technology

Difficulties in Choosing
a Development Process
● Many process models discourage mix & match

○ Complete compliance may be required for
certification (e.g. ISO 9000)

○ Claim that only complete compliance reaps
benefit, because method elements are mutually
dependent

● Commercial interests: Some process models are
products or aligned with products & services (e.g.
training, certification, tools)

● Bias: publications are not always objective

Frederick Brooks:
The Mythical Man-Month (1975)

Just adding
manpower to
a project may
not make it
faster.

Communica-
tion between
developers
takes time.

Scrum (Recap)

Scrum Theory
Based on empirical process control theory
1. Transparency: important aspects visible to those

responsible
E.g. common language (definition of "done": tested,
reviewed, documented?), availability of information

2. Inspection: frequently inspect artifacts and progress
Detect unwanted "variances" (but don't interfere with work)

3. Adaptation: make necessary product & process adjustments
ASAP (to avoid waste of work & extra cost)

Scrum provides opportunities for inspection and adaptation:
● Sprint Planning Meeting
● Daily Scrum ("stand-up meeting")
● Sprint Review
● Sprint Retrospective

Scrum Overview

Scrum vs XP:
● Overall process very similar
● Scrum more lightweight: fewer rules & practices
● In particular: no specific engineering practices
● More flexible, but still need to add specific practices for

projects (mix & match) Image by
Lakeworks

Scrum Team
● Self-organizing: team chooses how to do the work
● Cross-functional: all competencies in the team, no

outsiders
● Egalitarian: no special titles or sub-teams

Product Owner (→Requirements, "What?")
● Responsible for maximizing the value of the product
● Manages the Product Backlog (defining and prioritizing

items)
● Decisions must be respected

Scrum Master (→Process, "How?")
● Responsible for ensuring Scrum is understood and enacted
● Facilitates process & communications, coaching developers

E.g. controls interactions with outsiders (distraction or
useful?), troubleshooter

Scrum Artifacts

Product Backlog
● Living document of of requirements: ordered list of

features/enhancements that are likely needed in product
○ Item attributes: description, order, workload estimate, ...
○ Total work remaining to reach a goal can be summed
○ Product Owner responsible for content & availability

● How do you prioritize? more value, less risk, achievable

Sprint Backlog
● Set of Product Backlog items, and plan that defines how

the Backlog items are turned into an Increment
● Increment: better product prototype in usable condition

("done" as defined by the team)

Scrum Events
Sprint (Iteration, < 1 month)
● Long enough to get significant work done
● Short enough to reduce risk of changing requirements

Sprint Planning Meeting
● What will be done this Sprint? (Scoping)
● How will the work get done? (Design & Allocation)

Daily Scrum (daily planning, "stand-up meeting")
● What has been accomplished? What next?

Sprint Review (product management)
● Inspect the Increment and adapt the Product Backlog

Sprint Retrospective (process management)
● Team inspects itself: people, relationships, process, tools

Kanban

Take what you need

Introduction to Kanban
● Scheduling system created that helps to regulate

production
○ Uses signal cards (Kanban="signboard") to signal demand
○ Uses rate of demand to control rate of production

(to enable lean and just-in-time production)
● Developed at Toyota in late 1940s based on supermarkets

○ Supermarket customers buy what they need,
when they need it

○ Customers only take what they need
(future supply is assured)

○ Supermarkets only stock what they may sell
● Pass demand through the supply chain using Kanban

cards
● 1953: Toyota applies Kanban in their main plant

Kanban for
Software Development
Summary: visualize workflow, limit WIP, pull work
1. Visualize the workflow

○ Write tasks on cards and put on a wall
○ Named columns to illustrate workflow stages

2. Limit Work In Progress (WIP):
set maximum number of tasks for each stage

3. Measure lead time: average time to complete one task
Lead time is tracked, predicted & optimized

Start new task
only if free slot
available

TODO Dev Test Release Done!
I G E C A
J H F B
K
L

Kanban and Scrum

● Kanban isn’t a software development process, but can be
used as part of one (e.g. combined with Scrum)

● Kanban is more lightweight than Scrum
○ No prescribed roles
○ No prescribed meetings or planning activities
○ No timeboxed (i.e. with time constraints) iterations
○ Limits WIP per workflow stage

(Scrum limits WIP per iteration)
○ Scrum iterations are less changeable once planned

● What if Scrum iterations are too long / too inflexible?
Kanban can help to deal with fast-changing requirements
and priorities, e.g. in support and maintenance

Kanban Reflections
● Improves visibility of process for team & stakeholders

○ Helps to expose bottlenecks & inefficiencies
○ Bottlenecks block process and people can see this
○ Can help to change behavior and improve collaboration
○ Can encourage process improvements

● Allows for more flexibility:
Easier to react to changing requirements

● But...
○ May encourage team to be too reactive

(lack of long-term vision)
○ Encourages linear workflow (waterfall-style)
○ Does not account for task dependencies

(in its simple form)
○ Does not encourage overall consistency of design

(but may be augmented with other methods)

Today’s Summary

● Scrum is a process framework for agile product
development (similar to XP without specific practices)

● Kanban is a scheduling & process visualization
approach

● Methods such as Scrum and Kanban can (and should)
be adapted and combined (mix & match)

Further Reading:
● Ken Schwaber and Jeff Sutherland. Scrum Guide.

http://www.scrum.
org/storage/scrumguides/Scrum_Guide.pdf

● Henrik Kniberg and Mattias Skarin. Kanban and Scrum.
http://www.infoq.com/minibooks/kanban-scrum-minibook

Quiz
1. What is meant by "cross-functional teams"?
2. What does a Scrum Master do?
3. Describe a possible benefit and a possible risk of Kanban.

#define _ -F<00||--F-OO--;
int F=00,OO=00;main(){F_OO();printf("%1.3f\n",4.
*-F/OO/OO);}F_OO()
{
 --_-_
 --_-_-_-_-_-_-_
 --_-_-_-_-_-_-_-_-_-_
 --_-_-_-_-_-_-_-_-_-_-_-_
 --_-_-_-_-_-_-_-_-_-_-_-_-_
 --_-_-_-_-_-_-_-_-_-_-_-_-_
--_-_-_-_-_-_-_-_-_-_-_-_-_-_
--_-_-_-_-_-_-_-_-_-_-_-_-_-_
--_-_-_-_-_-_-_-_-_-_-_-_-_-_
--_-_-_-_-_-_-_-_-_-_-_-_-_-_
 --_-_-_-_-_-_-_-_-_-_-_-_-_
 --_-_-_-_-_-_-_-_-_-_-_-_-_
 --_-_-_-_-_-_-_-_-_-_-_-_
 --_-_-_-_-_-_-_-_-_-_
 --_-_-_-_-_-_
 --_-_
}
What does this C code do? (ioccc.org) (Answer: calculates Pi)

