|| 17/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

o

Software

Englneermg

Quality Assurance
Coding Principles II

Part IT - Lecture 13

eeeeeeeeeeeeeeeeeeeeee

17/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Today's Outline

* Modularity
* Information Hiding

Software

Engineering

‘ The University of Auckland

17/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

‘LSE

Modularity

LEGO is not a toy.
It’s a way of life.
(Mike Smith)

Software

Engineering

‘ The University of Auckland

17/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

‘The University of Auckland

Modularity ‘ASE

Complex systems can usually be divided into simpler pieces
called modules

Module: self-contained component of a system
- Has a well-defined interface to other modules
- Separates its interface from its implementation *

- Usually corresponds to a set of data types and code,
similar o Java packages

Modular systems (i.e. systems that are composed of modules)
are easier to understand, develop and maintain

- When dealipg with a module the details of other modules can

ve iynoreu \DCPUI QIIUIT U] CLuriccirtT)

- Modules can be developed independently

- Better isolation between modules can prevent failure in one
module to cause failure in other modules

- Modules can be exchanged by other modules
- Modules can be reused in several systems

17/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Component Frameworks ‘LSE

Component frameworks support
the development and connection
of modules

Format for specifying module
interfaces

Functionality for loading,
connecting and running
modules

Module interconnection languages

allow to specify the module

Intferconnections in a system on a

high level
Programming-in-the-small:
coding a module
Programming-in-the-large:
assembling a system with
modules

Software

Engineering
‘ The University of Auckland

Mulhmedla s’rr'eam pr'ocessmg

17/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Separation of Concerns ‘LSE

Software

Engineering

‘ The University of Auckland

Separate issues (break down large problems
into pieces) and concentrate on one at a tfime

Break a program into distinct features
that overlap in functionality as little as possible

Concern: a piece of a program, usually a feature or a
particular program behavior

How to deal with complexity in a system? (o)
Separation of concerns (SoC) // 5
In'

Can be achieved in various ways

Traditionally approached through modularity
In OO: separate concerns into classes and methods

In UIs: separate content from presentation and presentation
from application logic

Service-Oriented Architecture (SOA): split up functionality
into different (web-) services

Aspect-Oriented Programming (AOP): separate concerns into
"aspects"

17/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Cohesion and Coupling

Software

Engineering

‘LSE

‘ The University of Auckland

Rule for the design of modules: "low coupling, high cohesion”
A module should be highly cohesive

It should form a meaningful, self-contained unit
The parts in the module fit and work together closely

Between modules there should be low coupling
- Little dependencies between modules

Cohesion and couplin

A module is independent from the internal
implementation of another module aﬁ
Changing the implementation of one module D €
does not require changing other modules

The interaction between modules is restricted
(through a stable interface)

Each module should be understandable without having to
understand the details of other modules

are usually related:

low coupling goes wi’r% high cohesion and vice versa

In OO: less connections between classes (low coupling) if we
group related methods of a class tfogether (high cohesion) .

17/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Coupling in OO Programming ‘LSE

Coupling is increased between two classes A

Software

Engineering

‘ The University of Auckland

and B if:
- A has an attribute that has type B
- A calls a method of B

- A has a method which uses B
(return type, parameter or local var)

- Ais a subclass of (or implements) B
Disadvantages of high coupling include:

class A extends B {
B bl;
B ml(B b2) {
B b3 = bl.m2(b2);
return b3;

}
}

- Hard to understand a class in
isolation

- Change of one class often
forces changes in other classes

- Hard to reuse or test a class
because dependent class must also be
available

17/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Spaghetti Code
vs. Modular System

Spaghetti Code

Haphazard connections, probably grown
over time

No visible cohesive groups

High coupling: high interaction between
random parts

Understand it all or nothing

Modular System

High cohesion within modules
Low coupling between modules
Modules can be understood separately

Interaction between modules is well-
understood and thoroughly specified

Software

Engineering

‘LSE

‘ The University of Auckland

10 parts, 13 connections

) L3

\\//

Y

10 parts, 13 connec‘ri%ns,
3 modules

Layered Architecture ‘LSE

POSIX 05s/2
- Applicatior Application
N
—
o
g
=
= Work-
o= ; Server i ;
— SL?EFE’; service Securlty: . Win32 | | POSIX 0s/2
— 7
§ Integral subsystems Environment subsystems
9]
& User mode
n
o]
0]

Executive Services

I'l‘O Referel.ﬂce IPC

Manager || wroni Manager | |Manag anager| IManager| (M

Virtual
I;'ﬂrncess PnP

Object Manager

Executive

Kernel mode drivers

Kerel mode

The University of Auckland | New Zealand

T

Hardware Abstraction Layer (HAL)

Software

Engineering

‘ The University of Auckland

Example: Windows OS
Layered architecture:

- Modules stacked
onto each other

- Often each level
can only access the
one below it

Lowest level talks
directly to hardware

The higher, the more
abstraction from
concrete hardware

10

17/10/2012 “

Software

Engineering

‘ The University of Auckland

Libraries and "Engines”

Separate Subsystems: ‘LSE

SOFTENG 254

The University of Auckland | New Zealand

Collision - ; =
Detection A I(‘f., o &
Scripting
Engine
Engine Engine g Example- game

Common problem:
making them
work together

Scene
Manager

11

17/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Sepam’re Subsysfems

Software
Engineering
‘The University of Auckland

Paral Iel Processes

(LSE

- Example: Google

* Massive data load
requires massive
parallelism

- Several modules
working together
concurrently and
asynchronously

- Scalable
architecture

* Modules can be
optimized
independently

12

SE Software
Engineering
‘The University of Auckland

17/10/2012 “

SOFTENG 254

Information Hiding

Out of sight,
out of mind.

13

The University of Auckland | New Zealand

17/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

‘ The University of Auckland

‘LSE

Information Hiding

Hide information that does not need to be
visible in order to use a class/module/program

Too much information can be confusing:
what is important for usage and what not?

Too much information can lead to undesired
dependencies

- If internals are visible & accessible, someone mig hT
use/change them (e.g. create a “hack" to use some’rhmg in an
unintended manner)

- If internals are changed then external code that relies on
them might not work anymore

Allowing only restricted access gives us more flexibility

- Class/module/program can be (ex)changed without breaking
other parts

- Many design decisions can be hidden and the system design
can evolve without collapsing

14

17/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software
Engineering

‘T]le University of Auckland

Scope ‘LSE

Where we declare a variable determines where it can be
accessed (i.e. its scope)

Scope of instance variables > scope of local variables in methods
> scope of local variables in statement blocks

The scope of a variable should be as small as possible

If a variable can be accessed where it should not be accessed:
confusion and mistakes

class C { class C {
public Int X; public Int X;
private iInt y;
private iInt z;

void m() void m(Q) {
y = 0; int y = 0;
for(z=0; z<10; z++) for(int z=0; z<10; z++)
y += Zz; y += z;
return y; return y;
+ 3 } 3

17/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

A Ccess MOd if ier's Engineering
Can be used to control access to groups of parts

1. public:
accessible everywhere

Q

‘ The University of Auckland

SE

2. protected or no modifier ("default"):
accessible in the same package

in which they are declared

— 3. private:
only accessible from within the class ﬂ%

General rule: expose parts only if necessary (same as for scope)

Limitations of access modifiers:
Only for pre-defined groups

Access rights oan depend on who (what other class? wants
access, not how they actually need to use it (e.g. only 1 method)

16

17/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

‘ The University of Auckland

The Concept of Interfaces ‘LSE

There are different kinds of interfaces
User Interfaces
- Not just for software: any kind of tool

- Usuadlly it may change,
sometimes it must not change

APIs: important for programs that use them

Java interfaces: important for classes that use other classes
through them

The intention is always the same: -
*+ The interface defines and restricts
how something can be used
Users/clients perform operations Infeiface
only through the interface
If the internal implementation changes, Implementation

the users/clients do not have to change

17

17/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Java Interfaces

‘LSE

Software

Engineering

‘ The University of Auckland

Access modifiers can only control access depending on who uses

a class/method/field

With interfaces we can restrict access in a more flexible

manner:
- A class can implement several interfaces
- Use a different interface depending on

- who uses it (which other class)
» what it is used for 1

However: often using interfaces
vs. accessing a class directly is a
conscious decision

- Programmers need to know that
they should use interfaces

2

e

Interface A

\ 4

Interface B

- Programmers need to know
which interfaces to use

Implementation| |

Class

1or?2or

3? 18

17/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

‘ The University of Auckland

Interfaces Example

public class USSEnterprise

implements Maintenance, SafeControl, FullControl {
public void navigate(Point dest) { . }
public void warpJump(Point dest) { .. }
public iInt checkSystems() { . } TR
public void selfDestruct() { . }

}

interface Maintenance {
public Int checkSystems();

}

interface SafeControl extends Maintenance {
public void navigate(Point dest);
public void warpJump(Point dest);

+
interface FullControl extends SafeControl {
public void selfDestruct();

} 19

17/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Interfaces Example

Scotty accessing the system:

Software

Engineering

‘LSE

Maintenance e = new USSEnterprise();
Int status = e.checkSystems();

‘ The University of Auckland

‘ Access can be

safely restricted

Spock accessing the system:

by accessing

SafeControl e = new USSEnterprise();
e.warpJump(new Point(103, 789));
e.selfDestruct();

This won't compilelll

through an
appropriate
interface.

/
Borg accessing the system:

USSEnterprise e = new USSEnterprise();

e.selfDestruct(); // Boooom!

Choose an appropriate interface to access a class

Accessing a class directly may lead to dependencies and other
mistakes that could have been detected by the compiler

20

Software

Engineering

Enforcing Usage of

‘ The University of Auckland

Interfaces with Factories

protected class USSEnterprise

implements Maintenance, SafeControl, FullControl {
protected USSEnterprise() {} .. }

publrtc class EnterpriseFactory {
public static Maintenance getMaintenance() {
return (Maintenance) new USSEnterprise();

17/10/2012 “

SOFTENG 254

}
public static FullControl getFullControl(String pw) {

iIf(pw.equals('please'))
return (FullControl) new USSEnterprise();
else throw new RuntimeException("'Alarm!i!ii);

} §
// similar for SafeControl

})
Now access only possible through interfaces:
Maintenance e = EnterpriseFactory.getMaintenance(); ‘

21

The University of Auckland | New Zealand

Int status = e.checkSystems();

17/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

. Sof
%&Todws Summary ‘ASE Osgnising

\
SF NN

* Modularity means that a system is composed of
self-contained parts (modules) with well-defined
interfaces

- Can be achieved by "separation of concerns”
- Rule of thumb: "low coupling, high cohesion”

+ Information hiding means that only the information
is visible that is actually necessary to use something

- Access is only possible through well-specified
interface

- Implementation internals are hidden and can be
(ex)changed without breaking the system

22

17/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

Quiz (et
1. What advantages do modular systems offer?
2. Why do we want modules to be lowly coupled?

3. What is the purpose of interfaces?

23

