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Modularity
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Modularity
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LEGO is not a toy.
It’s a way of life.
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Modularity
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• Complex systems can usually be divided into simpler pieces 

called modules
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• Module: self-contained component of a system
– Has a well-defined interface to other modules

S t  it  i t f  f  it  i l t ti
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 – Separates its interface from its implementation
– Usually corresponds to a set of data types and code, 

similar to Java packages
M d l  t  (i  t  th t  d f d l ) 
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nd

• Modular systems (i.e. systems that are composed of modules) 
are easier to understand, develop and maintain
– When dealing with a module the details of other modules can 

be ignored (separation of concerns)
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e be ignored (separation of concerns)
– Modules can be developed independently
– Better isolation between modules can prevent failure in one 

module to cause failure in other modules
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k module to cause failure in other modules
– Modules can be exchanged by other modules
– Modules can be reused in several systems
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Component Frameworks
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• Component frameworks support 

the development and connection 
Multimedia stream processing
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– Format for specifying module 

interfaces

S
O

FT
E

N
G

 interfaces
– Functionality for loading, 

connecting and running 
modules

ea
la

nd

modules
• Module interconnection languages 

allow to specify the module 
interconnections in a system on a Image processing with Blender
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e interconnections in a system on a 
high level
– Programming-in-the-small: 

coding a module

Image processing with Blender
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– Programming-in-the-large: 

assembling a system with 
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Separation of Concerns
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• How to deal with complexity in a system?
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– Separate issues (break down large problems 
into pieces) and concentrate on one at a time
B k   i t  di ti t f t  
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 – Break a program into distinct features 
that overlap in functionality as little as possible

– Concern: a piece of a program, usually a feature or a 
particular program behavior
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particular program behavior
• Can be achieved in various ways

– Traditionally approached through modularity
I  OO  t   i t  l  d th d
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e – In OO: separate concerns into classes and methods
– In UIs: separate content from presentation and presentation 

from application logic
S i O i t d A hit t  (SOA)  lit  f ti lit  
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k – Service-Oriented Architecture (SOA): split up functionality 
into different (web-) services 

– Aspect-Oriented Programming (AOP): separate concerns into 
"aspects"
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Cohesion and Coupling
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• Rule for the design of modules: “low coupling, high cohesion”
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– It should form a meaningful, self-contained unit
– The parts in the module fit and work together closely
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• Between modules there should be low coupling
– Little dependencies between modules
– A module is independent from the internal 
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p
implementation of another module

– Changing the implementation of one module 
does not require changing other modules
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– The interaction between modules is restricted 
(through a stable interface)

– Each module should be understandable without having to 
d t d th  d t il  f th  d l
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• Cohesion and coupling are usually related: 

low coupling goes with high cohesion and vice versa
I  OO  l ss ti s b t  l ss s (l  li ) if  
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• In OO: less connections between classes (low coupling) if we 
group related methods of a class together (high cohesion)



Coupling in OO Programming
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Coupling is increased between two classes A
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– A has an attribute that has type B
– A calls a method of B

class A extends B {
B b1;
B m1(B b2) {
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 – A calls a method of B
– A has a method which uses B

(return type, parameter or local var)

B m1(B b2) {
B b3 = b1.m2(b2); 
return b3;

}
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nd

– A is a subclass of (or implements) B
Disadvantages of high coupling include:

H d t  d t d  l  i  

}
}
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e – Hard to understand a class in 
isolation

– Change of one class often 
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forces changes in other classes

– Hard to reuse or test a class 
because dependent class must also be 
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Spaghetti Code
vs  Modular System
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Spaghetti Code
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over time
• No visible cohesive groups
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 • No visible cohesive groups
• High coupling: high interaction between 

random parts 10 parts, 13 connections
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• Understand it all or nothing

M d l  S t
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e Modular System
• High cohesion within modules
• Low coupling between modules
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k Low coupling between modules
• Modules can be understood separately
• Interaction between modules is well-
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Layered Architecture
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• Example: Windows OS
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– Modules stacked 
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 onto each other
– Often each level 

can only access the 
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can only access the 
one below it

• Lowest level talks 
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directly to hardware
• The higher, the more 

abstraction from 
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k abstraction from 
concrete hardware
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Separate Subsystems:
Libraries and “Engines“
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Libraries and Engines
AI Collision

Detection
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Scripting

Detection
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Physics
E i

p g
Engine

Animation
E i • Example: game
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Engine Engine • Example: game
• Common problem: 

making them 
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Rendering
Engine

Scene
Manager

Sound
Engine

g
work together
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Input
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Separate Subsystems:
P r ll l Pr c ss s

/2
01
2

Parallel Processes
• Example: Google

M i  d t  l d 

 2
54

17
/1
0/ • Massive data load 

requires massive 
parallelism
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 p m
• Several modules 

working together 
tl  d 
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concurrently and 
asynchronously

• Scalable 
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architecture

• Modules can be 
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optimized 
independently
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Information Hiding
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Information Hiding
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Out of sight, 
out of mind.
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Information Hiding
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• Hide information that does not need to be 
i ibl  i  d  t    l / d l /
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0/ visible in order to use a class/module/program

• Too much information can be confusing: 
what is important for usage and what not?
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• Too much information can lead to undesired 
dependencies
– If internals are visible & accessible, someone might 

ea
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nd

If nternals are v s ble & access ble, someone m ght 
use/change them (e.g. create a “hack” to use something in an 
unintended manner)

– If internals are changed then external code that relies on 
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them might not work anymore

• Allowing only restricted access gives us more flexibility
Class/module/program can be (ex)changed without breaking 
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k – Class/module/program can be (ex)changed without breaking 
other parts

– Many design decisions can be hidden and the system design 
 l  ith t ll si
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Scope
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• Where we declare a variable determines where it can be 
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• Scope of instance variables > scope of local variables in methods 
> scope of local variables in statement blocks

S
O

FT
E

N
G

 

• The scope of a variable should be as small as possible
• If a variable can be accessed where it should not be accessed: 

confusion and mistakes
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nd

confus on and m stakes
class C {
public int x;
private int y;

class C {
public int x;
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e private int y;
private int z;
void m() {
y = 0;

void m() {
int y = 0;
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k y = 0;
for(z=0; z<10; z++)
y += z;

return y;

int y = 0;
for(int z=0; z<10; z++)
y += z;

return y;
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return y;
} }

return y;
} }



Access Modifiers
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2 Can be used to control access to groups of parts

1. public: 
bl  h
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2. protected or no modifier (“default”): 
ibl  i  h   k
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 accessible in the same package

3. private: 
l  ibl  f  i hi  h  l  
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only accessible from within the class 
in which they are declared

G l l    l  if  (   f  )
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Limitations of access modifiers:
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• Only for pre-defined groups
• Access rights only depend on who (what other class) wants 

access, not how they actually need to use it (e.g. only 1 method)
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The Concept of Interfaces
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There are different kinds of interfaces

 2
54

17
/1
0/ • User Interfaces

– Not just for software: any kind of tool
– Usually it may change
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 Usually it may change,
sometimes it must not change

• APIs: important for programs that use them
• Java interfaces: important for classes that use other classes 
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• Java interfaces: important for classes that use other classes 
through them

/
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The intention is always the same:
• The interface defines and restricts

how something can be used

User/
Client

I t f
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• Users/clients perform operations 

only through the interface
• If the internal implementation changes  Implementation

Interface
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If the internal implementation changes, 
the users/clients do not have to change

Implementat on



Java Interfaces
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• Access modifiers can only control access depending on who uses 
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• With interfaces we can restrict access in a more flexible 
manner:
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 manner:
– A class can implement several interfaces
– Use a different interface depending on Client
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• who uses it (which other class)
• what it is used for

H  ft  i  i t f  

Client
Class

1 2 3
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e • However: often using interfaces 
vs. accessing a class directly is a 
conscious decision

Interface A
Interface B
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– Programmers need to know that 
they should use interfaces

– Programmers need to know 
Implementation

Class
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– Programmers need to know 
which interfaces to use 1 or 2 or 3 ?



Interfaces Example
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public class USSEnterprise
implements Maintenance, SafeControl, FullControl {
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0/ public void navigate(Point dest) { … }

public void warpJump(Point dest) { … }
public int checkSystems() { … }
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public void selfDestruct() { … }
}

i t f i t {
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interface Maintenance {
public int checkSystems();

}
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interface SafeControl extends Maintenance {
public void navigate(Point dest);
public void warpJump(Point dest);
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k public void warpJump(Point dest);
}

interface FullControl extends SafeControl {
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public void selfDestruct();
}



Interfaces Example
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Maintenance e = new USSEnterprise();

Scotty accessing the system:

Acc ss c n b  
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int status = e.checkSystems();

Spock accessing the system:

Access can be 
safely restricted 
by accessing 
h h  
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SafeControl e = new USSEnterprise();
e.warpJump(new Point(103, 789));

Spock accessing the system: through an 
appropriate 
interface. 
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e.selfDestruct(); This won’t compile!!!

Borg accessing the system:

kl
an

d 
| N

ew
 Z

e

USSEnterprise e = new USSEnterprise();
e.selfDestruct();  // Boooom!

Borg accessing the system:
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• Choose an appropriate interface to access a class
• Accessing a class directly may lead to dependencies and other 

Th
e 

U
ni

v

20

g y y p
mistakes that could have been detected by the compiler



Enforcing Usage of 
Interfaces with Factories
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Interfaces with Factories
protected class USSEnterprise
implements Maintenance SafeControl FullControl {
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protected USSEnterprise() {}   … }

public class EnterpriseFactory {
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public static Maintenance getMaintenance() {
return (Maintenance) new USSEnterprise();

}
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public static FullControl getFullControl(String pw) {
if(pw.equals("please"))
return (FullControl) new USSEnterprise();
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else throw new RuntimeException("Alarm!!!");
}
// similar for SafeControl
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Now access only possible through interfaces:

}
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Maintenance e = EnterpriseFactory.getMaintenance();
int status = e.checkSystems();



Today’s Summary
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• Modularity means that a system is composed of
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self-contained parts (modules) with well-defined 
interfaces
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– Can be achieved by “separation of concerns”
– Rule of thumb: “low coupling, high cohesion”
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• Information hiding means that only the information 
is visible that is actually necessary to use something
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– Access is only possible through well-specified 
interface
I l t ti  i t l   hidd  d  b  

ve
rs

ity
 o

f A
uc

k – Implementation internals are hidden and can be 
(ex)changed without breaking the system
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Quiz
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1. What advantages do modular systems offer?
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2. Why do we want modules to be lowly coupled?
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3. What is the purpose of interfaces?
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3. What is the purpose of interfaces?
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