
/2
01
2

 2
54

17
/1
0/

Quality Assurance
Coding Principles II

S
O

FT
E

N
G

 Coding Principles II

ea
la

nd Part II - Lecture 13

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

1

Today’s Outline
/2
01
2

y
 2

54
17
/1
0/

• Modularity
I f ti Hidi

S
O

FT
E

N
G

 • Information Hiding

ea
la

nd
kl

an
d

| N
ew

 Z
e

ve
rs

ity
 o

f A
uc

k
Th

e
U

ni
v

2

/2
01
2

 2
54

17
/1
0/

S
O

FT
E

N
G

Modularity

ea
la

nd

Modularity

kl
an

d
| N

ew
 Z

e

LEGO is not a toy.
It’s a way of life.

ve
rs

ity
 o

f A
uc

k y
(Mike Smith)

Th
e

U
ni

v

3

Modularity
/2
01
2

y
• Complex systems can usually be divided into simpler pieces

called modules

 2
54

17
/1
0/ called modules

• Module: self-contained component of a system
– Has a well-defined interface to other modules

S t it i t f f it i l t ti

S
O

FT
E

N
G

 – Separates its interface from its implementation
– Usually corresponds to a set of data types and code,

similar to Java packages
M d l t (i t th t d f d l)

ea
la

nd

• Modular systems (i.e. systems that are composed of modules)
are easier to understand, develop and maintain
– When dealing with a module the details of other modules can

be ignored (separation of concerns)

kl
an

d
| N

ew
 Z

e be ignored (separation of concerns)
– Modules can be developed independently
– Better isolation between modules can prevent failure in one

module to cause failure in other modules

ve
rs

ity
 o

f A
uc

k module to cause failure in other modules
– Modules can be exchanged by other modules
– Modules can be reused in several systems

Th
e

U
ni

v

4

Component Frameworks
/2
01
2

p
• Component frameworks support

the development and connection
Multimedia stream processing

 2
54

17
/1
0/ the development and connection

of modules
– Format for specifying module

interfaces

S
O

FT
E

N
G

 interfaces
– Functionality for loading,

connecting and running
modules

ea
la

nd

modules
• Module interconnection languages

allow to specify the module
interconnections in a system on a Image processing with Blender

kl
an

d
| N

ew
 Z

e interconnections in a system on a
high level
– Programming-in-the-small:

coding a module

Image processing with Blender

ve
rs

ity
 o

f A
uc

k coding a module
– Programming-in-the-large:

assembling a system with
d l

Th
e

U
ni

v

5

modules

Separation of Concerns
/2
01
2

p
• How to deal with complexity in a system?

S ti f (S C)

 2
54

17
/1
0/ • Separation of concerns (SoC)

– Separate issues (break down large problems
into pieces) and concentrate on one at a time
B k i t di ti t f t

S
O

FT
E

N
G

 – Break a program into distinct features
that overlap in functionality as little as possible

– Concern: a piece of a program, usually a feature or a
particular program behavior

ea
la

nd

particular program behavior
• Can be achieved in various ways

– Traditionally approached through modularity
I OO t i t l d th d

kl
an

d
| N

ew
 Z

e – In OO: separate concerns into classes and methods
– In UIs: separate content from presentation and presentation

from application logic
S i O i t d A hit t (SOA) lit f ti lit

ve
rs

ity
 o

f A
uc

k – Service-Oriented Architecture (SOA): split up functionality
into different (web-) services

– Aspect-Oriented Programming (AOP): separate concerns into
"aspects"

Th
e

U
ni

v

6

aspects

Cohesion and Coupling
/2
01
2

p g
• Rule for the design of modules: “low coupling, high cohesion”

A d l h ld b hi hl h i

 2
54

17
/1
0/ • A module should be highly cohesive

– It should form a meaningful, self-contained unit
– The parts in the module fit and work together closely

S
O

FT
E

N
G

• Between modules there should be low coupling
– Little dependencies between modules
– A module is independent from the internal

ea
la

nd

p
implementation of another module

– Changing the implementation of one module
does not require changing other modules

kl
an

d
| N

ew
 Z

e

– The interaction between modules is restricted
(through a stable interface)

– Each module should be understandable without having to
d t d th d t il f th d l

ve
rs

ity
 o

f A
uc

k understand the details of other modules
• Cohesion and coupling are usually related:

low coupling goes with high cohesion and vice versa
I OO l ss ti s b t l ss s (l li) if

Th
e

U
ni

v

7

• In OO: less connections between classes (low coupling) if we
group related methods of a class together (high cohesion)

Coupling in OO Programming
/2
01
2

p g g g

Coupling is increased between two classes A

 2
54

17
/1
0/ and B if:

– A has an attribute that has type B
– A calls a method of B

class A extends B {
B b1;
B m1(B b2) {

S
O

FT
E

N
G

 – A calls a method of B
– A has a method which uses B

(return type, parameter or local var)

B m1(B b2) {
B b3 = b1.m2(b2);
return b3;

}

ea
la

nd

– A is a subclass of (or implements) B
Disadvantages of high coupling include:

H d t d t d l i

}
}

kl
an

d
| N

ew
 Z

e – Hard to understand a class in
isolation

– Change of one class often

ve
rs

ity
 o

f A
uc

k g
forces changes in other classes

– Hard to reuse or test a class
because dependent class must also be

Th
e

U
ni

v

8

because dependent class must also be
available

Spaghetti Code
vs Modular System

/2
01
2

vs. Modular System
Spaghetti Code

 2
54

17
/1
0/ • Haphazard connections, probably grown

over time
• No visible cohesive groups

S
O

FT
E

N
G

 • No visible cohesive groups
• High coupling: high interaction between

random parts 10 parts, 13 connections

ea
la

nd

• Understand it all or nothing

M d l S t

kl
an

d
| N

ew
 Z

e Modular System
• High cohesion within modules
• Low coupling between modules

ve
rs

ity
 o

f A
uc

k Low coupling between modules
• Modules can be understood separately
• Interaction between modules is well-

l

Th
e

U
ni

v

9
understood and thoroughly specified 10 parts, 13 connections,

3 modules

Layered Architecture
/2
01
2

y

• Example: Windows OS

 2
54

17
/1
0/

p
• Layered architecture:

– Modules stacked
t h th

S
O

FT
E

N
G

 onto each other
– Often each level

can only access the

ea
la

nd

can only access the
one below it

• Lowest level talks

kl
an

d
| N

ew
 Z

e

directly to hardware
• The higher, the more

abstraction from

ve
rs

ity
 o

f A
uc

k abstraction from
concrete hardware

Th
e

U
ni

v

10

Separate Subsystems:
Libraries and “Engines“

/2
01
2

Libraries and Engines
AI Collision

Detection

 2
54

17
/1
0/

Scripting

Detection

S
O

FT
E

N
G

Physics
E i

p g
Engine

Animation
E i • Example: game

ea
la

nd

Engine Engine • Example: game
• Common problem:

making them

kl
an

d
| N

ew
 Z

e

Rendering
Engine

Scene
Manager

Sound
Engine

g
work together

ve
rs

ity
 o

f A
uc

k

Input

ggg

Th
e

U
ni

v

11

Input
Subsystem

Separate Subsystems:
P r ll l Pr c ss s

/2
01
2

Parallel Processes
• Example: Google

M i d t l d

 2
54

17
/1
0/ • Massive data load

requires massive
parallelism

S
O

FT
E

N
G

 p m
• Several modules

working together
tl d

ea
la

nd

concurrently and
asynchronously

• Scalable

kl
an

d
| N

ew
 Z

e Scalable
architecture

• Modules can be

ve
rs

ity
 o

f A
uc

k

optimized
independently

Th
e

U
ni

v

12

/2
01
2

 2
54

17
/1
0/

S
O

FT
E

N
G

Information Hiding

ea
la

nd

Information Hiding

kl
an

d
| N

ew
 Z

e

Out of sight,
out of mind.

ve
rs

ity
 o

f A
uc

k
Th

e
U

ni
v

13

Information Hiding
/2
01
2
g

• Hide information that does not need to be
i ibl i d t l / d l /

 2
54

17
/1
0/ visible in order to use a class/module/program

• Too much information can be confusing:
what is important for usage and what not?

S
O

FT
E

N
G

• Too much information can lead to undesired
dependencies
– If internals are visible & accessible, someone might

ea
la

nd

If nternals are v s ble & access ble, someone m ght
use/change them (e.g. create a “hack” to use something in an
unintended manner)

– If internals are changed then external code that relies on

kl
an

d
| N

ew
 Z

e If internals are changed then external code that relies on
them might not work anymore

• Allowing only restricted access gives us more flexibility
Class/module/program can be (ex)changed without breaking

ve
rs

ity
 o

f A
uc

k – Class/module/program can be (ex)changed without breaking
other parts

– Many design decisions can be hidden and the system design
 l ith t ll si

Th
e

U
ni

v

14

can evolve without collapsing

Scope
/2
01
2

p
• Where we declare a variable determines where it can be

d (i it)

 2
54

17
/1
0/ accessed (i.e. its scope)

• Scope of instance variables > scope of local variables in methods
> scope of local variables in statement blocks

S
O

FT
E

N
G

• The scope of a variable should be as small as possible
• If a variable can be accessed where it should not be accessed:

confusion and mistakes

ea
la

nd

confus on and m stakes
class C {
public int x;
private int y;

class C {
public int x;

kl
an

d
| N

ew
 Z

e private int y;
private int z;
void m() {
y = 0;

void m() {
int y = 0;

ve
rs

ity
 o

f A
uc

k y = 0;
for(z=0; z<10; z++)
y += z;

return y;

int y = 0;
for(int z=0; z<10; z++)
y += z;

return y;

Th
e

U
ni

v

15

return y;
} }

return y;
} }

Access Modifiers
/2
01
2 Can be used to control access to groups of parts

1. public:
bl h

 2
54

17
/1
0/ accessible everywhere

2. protected or no modifier (“default”):
ibl i h k

S
O

FT
E

N
G

 accessible in the same package

3. private:
l ibl f i hi h l

ea
la

nd

only accessible from within the class
in which they are declared

G l l l if (f)

kl
an

d
| N

ew
 Z

e General rule: expose parts only if necessary (same as for scope)

Limitations of access modifiers:

ve
rs

ity
 o

f A
uc

k

• Only for pre-defined groups
• Access rights only depend on who (what other class) wants

access, not how they actually need to use it (e.g. only 1 method)

Th
e

U
ni

v

16

The Concept of Interfaces
/2
01
2

p

There are different kinds of interfaces

 2
54

17
/1
0/ • User Interfaces

– Not just for software: any kind of tool
– Usually it may change

S
O

FT
E

N
G

 Usually it may change,
sometimes it must not change

• APIs: important for programs that use them
• Java interfaces: important for classes that use other classes

ea
la

nd

• Java interfaces: important for classes that use other classes
through them

/

kl
an

d
| N

ew
 Z

e

The intention is always the same:
• The interface defines and restricts

how something can be used

User/
Client

I t f

ve
rs

ity
 o

f A
uc

k g
• Users/clients perform operations

only through the interface
• If the internal implementation changes Implementation

Interface

Th
e

U
ni

v

17

If the internal implementation changes,
the users/clients do not have to change

Implementat on

Java Interfaces
/2
01
2

• Access modifiers can only control access depending on who uses

 2
54

17
/1
0/ a class/method/field

• With interfaces we can restrict access in a more flexible
manner:

S
O

FT
E

N
G

 manner:
– A class can implement several interfaces
– Use a different interface depending on Client

ea
la

nd

• who uses it (which other class)
• what it is used for

H ft i i t f

Client
Class

1 2 3

kl
an

d
| N

ew
 Z

e • However: often using interfaces
vs. accessing a class directly is a
conscious decision

Interface A
Interface B

ve
rs

ity
 o

f A
uc

k

– Programmers need to know that
they should use interfaces

– Programmers need to know
Implementation

Class

Th
e

U
ni

v

18

– Programmers need to know
which interfaces to use 1 or 2 or 3 ?

Interfaces Example
/2
01
2
p

public class USSEnterprise
implements Maintenance, SafeControl, FullControl {

 2
54

17
/1
0/ public void navigate(Point dest) { … }

public void warpJump(Point dest) { … }
public int checkSystems() { … }

S
O

FT
E

N
G

public void selfDestruct() { … }
}

i t f i t {

ea
la

nd

interface Maintenance {
public int checkSystems();

}

kl
an

d
| N

ew
 Z

e

interface SafeControl extends Maintenance {
public void navigate(Point dest);
public void warpJump(Point dest);

ve
rs

ity
 o

f A
uc

k public void warpJump(Point dest);
}

interface FullControl extends SafeControl {

Th
e

U
ni

v

19

public void selfDestruct();
}

Interfaces Example
/2
01
2
p

Maintenance e = new USSEnterprise();

Scotty accessing the system:

Acc ss c n b

 2
54

17
/1
0/ Maintenance e = new USSEnterprise();

int status = e.checkSystems();

Spock accessing the system:

Access can be
safely restricted
by accessing
h h

S
O

FT
E

N
G

SafeControl e = new USSEnterprise();
e.warpJump(new Point(103, 789));

Spock accessing the system: through an
appropriate
interface.

ea
la

nd

e.selfDestruct(); This won’t compile!!!

Borg accessing the system:

kl
an

d
| N

ew
 Z

e

USSEnterprise e = new USSEnterprise();
e.selfDestruct(); // Boooom!

Borg accessing the system:

ve
rs

ity
 o

f A
uc

k

• Choose an appropriate interface to access a class
• Accessing a class directly may lead to dependencies and other

Th
e

U
ni

v

20

g y y p
mistakes that could have been detected by the compiler

Enforcing Usage of
Interfaces with Factories

/2
01
2

Interfaces with Factories
protected class USSEnterprise
implements Maintenance SafeControl FullControl {

 2
54

17
/1
0/ implements Maintenance, SafeControl, FullControl {

protected USSEnterprise() {} … }

public class EnterpriseFactory {

S
O

FT
E

N
G

public static Maintenance getMaintenance() {
return (Maintenance) new USSEnterprise();

}

ea
la

nd

public static FullControl getFullControl(String pw) {
if(pw.equals("please"))
return (FullControl) new USSEnterprise();

kl
an

d
| N

ew
 Z

e

else throw new RuntimeException("Alarm!!!");
}
// similar for SafeControl

ve
rs

ity
 o

f A
uc

k

Now access only possible through interfaces:

}

Th
e

U
ni

v

21
Maintenance e = EnterpriseFactory.getMaintenance();
int status = e.checkSystems();

Today’s Summary
/2
01
2

y y

• Modularity means that a system is composed of

 2
54

17
/1
0/

y y p
self-contained parts (modules) with well-defined
interfaces

S
O

FT
E

N
G

– Can be achieved by “separation of concerns”
– Rule of thumb: “low coupling, high cohesion”

ea
la

nd

• Information hiding means that only the information
is visible that is actually necessary to use something

kl
an

d
| N

ew
 Z

e

– Access is only possible through well-specified
interface
I l t ti i t l hidd d b

ve
rs

ity
 o

f A
uc

k – Implementation internals are hidden and can be
(ex)changed without breaking the system

Th
e

U
ni

v

22

Quiz
/2
01
2

Q

1. What advantages do modular systems offer?

 2
54

17
/1
0/

g y

2. Why do we want modules to be lowly coupled?

S
O

FT
E

N
G

 y m y p

3. What is the purpose of interfaces?

ea
la

nd

3. What is the purpose of interfaces?

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

23

