
/2
01
2

 2
54

05
/1
0/

Quality Assurance
Coding Principles

S
O

FT
E

N
G

 Coding Principles

ea
la

nd Part II - Lecture 12

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

1

Horror Stories
/2
01
2

Horror Stories
“Lost Radio Contact Leaves

 2
54

05
/1
0/

Pilots On Their Own”
(2004)

http://spectrum.ieee.org/aerospace/aviation/l

S
O

FT
E

N
G

 http://spectrum.ieee.org/aerospace/aviation/l
ost-radio-contact-leaves-pilots-on-their-own

ea
la

nd

Andy Potter

kl
an

d
| N

ew
 Z

e y

“Radiation Deaths linked to
AECL Computer Errors”

ve
rs

ity
 o

f A
uc

k p
(1985)

http://www.ccnr.org/fatal_dose.html

Th
e

U
ni

v

2

Today’s Outline
/2
01
2

y
 2

54
05
/1
0/

• Common Java Mistakes
J C di G id li

S
O

FT
E

N
G

 • Java Coding Guidelines
• Refactoring

ea
la

nd
kl

an
d

| N
ew

 Z
e

ve
rs

ity
 o

f A
uc

k
Th

e
U

ni
v

3

/2
01
2

 2
54

05
/1
0/

S
O

FT
E

N
G

Common Java Mistakes

ea
la

nd

Common Java Mistakes

kl
an

d
| N

ew
 Z

e

To err is human,
but to really foul things up

you need a computer

ve
rs

ity
 o

f A
uc

k you need a computer.
(Paul Ehrlich)

Th
e

U
ni

v

4

Accessing
Non-Static Members from

/2
01
2

Non Static Members from
Static Methods

• Non-static members belong to objects

 2
54

05
/1
0/ Non-static members belong to objects

• Static members belong to a class
• If you don’t have an object you cannot access a non-static member

S
O

FT
E

N
G

y j y
• this refers to the object on which a non-static method is called
public class Demo {

bli i t 1
public class Demo {

bli i 1

ea
la

nd

public int x = 1;
public void m() { }
public static void main

public int x = 1;
public void m() { }
public static void main

kl
an

d
| N

ew
 Z

e

(String[] args) {
int y = x;
m();

(String[] args) {
Demo d = new Demo();
int y = d.x;

ve
rs

ity
 o

f A
uc

k

Object o = this;
} }

y
d.m();
Object o = d;

} }

Th
e

U
ni

v

5

} }

Mistyped Method Name
h n Ov rridin

/2
01
2

when Overriding
• Java supports method polymorphism through overriding

 2
54

05
/1
0/ – A superclass A defines a method m

– A subclass B of A can define its own m, overriding the
definition in A

S
O

FT
E

N
G

 definition in A
– The type of the object on which m is called decides which

version of m is used (the one of A or the one of B)

ea
la

nd

• Problem: when method definition in subclass uses method name
different from method in superclass, overriding does not work

• Symptom: a method doesn’t get called; no compiler warning

kl
an

d
| N

ew
 Z

e • Symptom: a method doesn t get called; no compiler warning
• Found by tracing control flow of a program or use @Override

public class Demo extends WindowAdapter {

ve
rs

ity
 o

f A
uc

k public class Demo extends WindowAdapter {
// This should be “windowClosed” !!!
public void windowClose(WindowEvent e) {

S t it(0)

Program
does not stop
after closing

Th
e

U
ni

v

6

System.exit(0);
} }

f g
window!!!

Overriding with Different
S m ntics

/2
01
2

Semantics
• Make sure that any method that you override preserves the

semantics of the original

 2
54

05
/1
0/ semantics of the original

• Otherwise: possibly strange behaviour in program parts that
seemed to work all right

• Example: using NZ together with German GST code;

S
O

FT
E

N
G

 • Example: using NZ together with German GST code;
incompatible semantics!!!
public class Product {

ea
la

nd

public double grossPrice;
public double netPrice() {

return 1.125*grossPrice; // in NZ: 12.5% GST

kl
an

d
| N

ew
 Z

e

} }

public class Food extends Product {

ve
rs

ity
 o

f A
uc

k

public double netPrice() {
// in Germany: only 7% GST on food
return 1.07*grossPrice;

Th
e

U
ni

v

7
} }

Insufficient
Exception Handling

/2
01
2

Exception Handling
• In Java: many exceptions must either be caught or declared
• Sometimes people catch them without actually handling them

 2
54

05
/1
0/ • Sometimes people catch them without actually handling them

• Problem: when the exception is thrown, it is not apparent
• The problem that caused the exception might cause trouble later

S
O

FT
E

N
G

public double reciprocal(double x) {
double y = 0;
try {

ea
la

nd

try {
y = 1/x; // ArithmeticException for x==0

} catch (Exception e) {} // no handling
t // t 0 f 0

kl
an

d
| N

ew
 Z

e return y; // returns 0 for x==0
}

…

ve
rs

ity
 o

f A
uc

k …
} catch (Exception e) {

System.err.println(e);
throws new MyException("Input error" e);

Th
e

U
ni

v

8

throws new MyException(Input error , e);
}
…

More Common Errors
/2
01
2 1. Don’t confuse == with equals

2 Array indices start with 0 ( off-by-one error)

 2
54

05
/1
0/ 2. Array indices start with 0 ( off-by-one error)

3. Distinguish primitive types, reference types and immutable
reference types (call-by-value vs. call-by-reference)

S
O

FT
E

N
G

4. Most common error: NullPointerException
– Either improper object initialization (quite easy to find)

Or method that returns null

ea
la

nd

– Or method that returns null
(check the return value or use exceptions instead of
returning null)

kl
an

d
| N

ew
 Z

e

NullPointerException
Object o = null;
o.getClass();

ArithmeticException
int x = 4/0;

ClassCastException
Integer i = (Integer)
"hello";

ve
rs

ity
 o

f A
uc

k

ArrayStoreException
Object x[] = new String[3];

IndexOutOfBoundsException
Object x[] = new String[3];

Th
e

U
ni

v

9

x[0] = new Integer(0); x[3] = "hello";

/2
01
2

 2
54

05
/1
0/

S
O

FT
E

N
G

Coding Style

ea
la

nd

Coding Style

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

10

Naming Conventions
/2
01
2

1. Begin class and interface names with uppercase letter

g
 2

54
05
/1
0/ e.g. Demo, Panel, GridbagLayout

2. Begin member names, method parameters and local variables
with lowercase letter e.g. getMax start

S
O

FT
E

N
G

 with lowercase letter, e.g. getMax, start
3. Use CamelCase, i.e. a new word in a name is “separated” by an

uppercase letter, e.g. getMainPanel
k l

ea
la

nd

4. Package names are lowercase, e.g. java.awt.color
5. static final constants should be all uppercase with words

separated by underscores (" ") e g MIN WIDTH

kl
an

d
| N

ew
 Z

e separated by underscores (_), e.g. MIN_WIDTH
6. Type parameter names for generics should be a single capital

letter, e.g. List<T>

ve
rs

ity
 o

f A
uc

k 7. Sometimes other conventions:
• Name prefix for interfaces, e.g. ICollection
• Name prefix for private variables e g size

Th
e

U
ni

v

11

Name prefix for private variables, e.g. _size

Other Coding Guidelines
/2
01
2

g

• Comment your code, particularly when doing something that

 2
54

05
/1
0/

y p y g g
is not straightforward
– Comment at the beginning of a class/method/variable

Wh t is th l ss/ th d/ i bl f ?

S
O

FT
E

N
G

 What is the class/method/variable for?
– Also comment some statements
– Empty line between logical groups of statement

ea
la

nd

– Empty line between logical groups of statement
• Code should be machine-independent,

e.g. do not use absolute filenames in source code because

kl
an

d
| N

ew
 Z

e g f
different computers have different folders
(e.g. "c:\myfolder\myfile.txt")
Use filenames relative to the application folder instead

ve
rs

ity
 o

f A
uc

k Use filenames relative to the application folder instead
(e.g. "subfolder\myfile.txt")

• Handle error conditions (e.g. throw and handle Exceptions)

Th
e

U
ni

v

12

Handle error conditions (e.g. throw and handle Exceptions)
• Use asserts to make sure errors do not propagate

/2
01
2

 2
54

05
/1
0/

S
O

FT
E

N
G

Refactoring

ea
la

nd

Refactoring

kl
an

d
| N

ew
 Z

e

There's always room
for improvement, you know

ve
rs

ity
 o

f A
uc

k for mprovement, you know
- it's the biggest room

in the house
(L H Leber)

Th
e

U
ni

v

13

(L. H. Leber)

Refactoring
/2
01
2

g
• “The art of improving the design of existing code safely”

R d d d

 2
54

05
/1
0/ – Rewriting source code in order to improve its design or

readability ("cleaning it up"; as we know it from XP)
• Refactoring may change HOW the code works but NOT

S
O

FT
E

N
G

 g y g
WHAT it does (preserving semantics)
– Neither fixes bugs nor adds new functionality
– Changes may be very small or large (several files)

ea
la

nd

Changes may be very small or large (several files)
– Encourages exploratory programming, rewriting of code,

higher code quality
• Test cases help to ensure changes preserve semantics

kl
an

d
| N

ew
 Z

e • Test cases help to ensure changes preserve semantics
• Refactoring literature describes indicators for common

design problems (“smells”) and possible solutions
(“refactorings”)

ve
rs

ity
 o

f A
uc

k (refactorings)
– Fowler, Martin (1999). Refactoring. Improving the

Design of Existing Code. Addison-Wesley.
k ll () f kb k

Th
e

U
ni

v

14
– Wake, William C. (2003). Refactoring Workbook.

Addison-Wesley.

Simplicity
/2
01
2

p y

• KISS ("Keep it Short and Simple"), Occam's razor and Einstein:

 2
54

05
/1
0/ "everything should be made as simple as possible, but no simpler"

• Simplicity is an important principle for refactoring:
can we rewrite the code so that it is simpler?

S
O

FT
E

N
G

 can we rewrite the code so that it is simpler?
• Avoid unnecessary complexity, e.g.

– Remove dead/unnecessary code

ea
la

nd

– Use clear and simple names
– Not more coding than necessary (especially in XP)

C di f h l it d bilit d t d bilit

(in XP: system metaphor)

kl
an

d
| N

ew
 Z

e • Coding for humans: clarity, readability, understandability
“Clever hacks” are not worth it, they confuse people

• Maintainability more important than performance

ve
rs

ity
 o

f A
uc

k Maintainability more important than performance
– “Premature optimization is the root of all evil”
– Moore’s law vs. incredibly high software maintenance costs

Th
e

U
ni

v

15

Smell: Long Method
/2
01
2

g
• Symptom: many lines of code (LOC) in a single method

(>> 10 LOC as a heuristic)

 2
54

05
/1
0/ • Cause: a programmer keeps on writing in a single method

• Solution: find coherent groups of statements, extract
meaningful methods

S
O

FT
E

N
G

 meaningful methods
• Payoff: better readability, clearer structure, chances for

abstraction and reuse
• Loss of performance is usually negligible

ea
la

nd

• Loss of performance is usually negligible
void m() {
double[] data = {4.2, 6.4, 1.5, 9, 10.1};

kl
an

d
| N

ew
 Z

e

double avg(double[] d)

double sum(double[] d)
[] { , , , , };

double avg = 0;
for(double x : data) avg += x;
avg /= data.length;

ve
rs

ity
 o

f A
uc

k

double var(double[] d)

g([])g / g ;
double var = 0;
for(double x : data) var += (x-avg) * (x-avg);
var /= data.length;

Th
e

U
ni

v

16

([])a / data. e gt ;
}

Smell: Large Class
/2
01
2

g
• Symptoms: large number of instance variables, methods or LOC

 2
54

05
/1
0/ • Causes:

– Class gets “overweight” by incrementally adding more and
more functionality without following a clear design

S
O

FT
E

N
G

 y g g
– The underlying concept was misunderstood and is in fact a

conglomerate of many concepts
• Problem: class looses its clear shape; it does not embody a single

ea
la

nd

Problem: class looses its clear shape; it does not embody a single
concept with a well-defined function anymore

• Solutions:
E t t l b d i th i t

kl
an

d
| N

ew
 Z

e – Extract classes embodying their own concepts
– Extract subclasses that implement specialized functionality
– Extract interfaces that clearly define feature subsets

ve
rs

ity
 o

f A
uc

k y
• Payoff: simplicity & clarity of the parts, chances for abstraction

& reuse
• Example: GUI is merged with underlying data model and/or

Th
e

U
ni

v

17

Example: GUI is merged with underlying data model and/or
application logic

Smell: Magic Number
/2
01
2

g
• Symptoms: a constant value (“literal”) appears in a method,

ibl t l l ti

 2
54

05
/1
0/ possibly at several locations

• Cause: value is used ad hoc when it is needed; no further use
anticipated

S
O

FT
E

N
G

• Problems:
– Hard to maintain
– Easy to introduce bugs through incomplete changes

ea
la

nd

Easy to introduce bugs through incomplete changes
• Solution: replace literals with symbolic constants (static final)

or enums: enum Gender { MALE, FEMALE }
E l

kl
an

d
| N

ew
 Z

e • Examples:
– Mathematical/physical constants (pi, e, conversion factors, ...)
– Identification numbers (special data elements, errors, ...)

ve
rs

ity
 o

f A
uc

k (p , ,)
– Configuration settings (e.g. file names, program behavior)

Th
e

U
ni

v

18

Duplicated Code
/2
01
2

p
• Symptoms:

– Two code fragments look (nearly) identical

 2
54

05
/1
0/ – Two code fragments look (nearly) identical

– Two code fragments do (nearly) the same
• Causes:

S l ki i d d tl

S
O

FT
E

N
G

 – Several programmers working independently
(duplication might not be obvious or is not anticipated)

– Programmers copy, paste & adapt code that almost fits their
needs

ea
la

nd

needs
• Solution: extract method

– If duplicates just do the same: choose and substitute the
superior algorithm (or merge)

kl
an

d
| N

ew
 Z

e superior algorithm (or merge)
– If duplicates in sibling classes: pull up method and fields into

superclass; form template method
• Examples:

ve
rs

ity
 o

f A
uc

k • Examples:
– Small auxiliary tasks (e.g. sorting numbers, finding elements)

are solved ad hoc
– Overlapping requirements cause similar UI or logic

Th
e

U
ni

v

19

– Overlapping requirements cause similar UI or logic

Template Methods
/2
01
2

p
• Algorithm is mostly the same for several related types (siblings)

but varies in the details

 2
54

05
/1
0/ but varies in the details

• Idea: describe the common, general steps of the algorithm in a
method of the superclass (template method); put the details

 h l h d f h b l

S
O

FT
E

N
G

into helper methods of the subclasses
abstract class Game {
int numPlayers;

class Chess
extends Game

ea
la

nd

y ;
abstract void makeTurn(int player);
abstract int getWinner();
final void play() {

e te ds Ga e
{ …
Chess() {
numPlayers = 2;

kl
an

d
| N

ew
 Z

e p y() {
while(getWinner()==0)
for(int p=1;p<=numPlayers;p++)
makeTurn(p);

numPlayers 2;
}
void makeTurn
(int p) { }

ve
rs

ity
 o

f A
uc

k a e u (p);
System.out.println(
"Player "+getWinner()+" wins");

}

(int p) { … }

int getWinner()
{ }

Th
e

U
ni

v

20

}
}

{ … }
}

“Ask What Kind” Anti-Pattern
(Simulated Inheritance)

/2
01
2

(Simulated Inheritance)
• Symptom: method uses switch or several ifs (possibly with

instanceof) to distinguish between different kinds of objects

 2
54

05
/1
0/ instanceof) to distinguish between different kinds of objects

• Cause: related but different concepts are not represented by
different classes, lack of method polymorphism

S
O

FT
E

N
G

• Solution:
– Represent the different kinds by different subclasses

Implement subclass specific behavior by overridin methods

ea
la

nd

– Implement subclass-specific behavior by overriding methods
in the subclasses

– Subclass-specific method is invoked
class C {
void m() { generic }

kl
an

d
| N

ew
 Z

e p
automatically (“don’t ask what kind”)

class C {
String type;

}
class A extends C {
void m() { m1 }

ve
rs

ity
 o

f A
uc

k String type;
void m() {
if(type.equals("A")) m1();
if(type equals("B")) m2();

() { m }
}
class B extends C {
void m() { m2 }

Th
e

U
ni

v

21

if(type.equals("B")) m2();
} }

void m() { m2 }
}

Refactoring in Eclipse
/2
01
2

g p
• Select source code,

i ht li k d R f t b

 2
54

05
/1
0/ right-click and use Refactor submenu

• Refactoring with preview of changes
(individual changes can be vetoed)

S
O

FT
E

N
G

• When method name is selected:
Rename, Inline, Pull Up, Push Down,

ea
la

nd

Rename, Inl ne, ull Up, ush Down,
Introduce Indirection, Change Method Signature, …

• When field name is selected:
Rename Pull Up Push Down Encapsulate Field

kl
an

d
| N

ew
 Z

e Rename, Pull Up, Push Down, Encapsulate Field,
Generalize Declared Type, …

• When class name is selected:
Rename Move Extract Interface Extract Superclass

ve
rs

ity
 o

f A
uc

k Rename, Move, Extract Interface, Extract Superclass,
Use Supertype Where Possible, …

• When statements are selected: Extract Method
Wh ssi is s l t d: E t t C st t

Th
e

U
ni

v

22

• When expression is selected: Extract Constant
• Nice summary of Eclipse refactoring

http://www.cs.umanitoba.ca/~eclipse/13-Refactoring.pdf

Today’s Summary
/2
01
2

y y

• Watch out: there are common Java errors.

 2
54

05
/1
0/ Avoiding them can save days of debugging.

• Coding Style guidelines are used/enforced by all serious
j ts (f d d bilit)

S
O

FT
E

N
G

 projects (for code readability)
• Refactoring: “The art of improving the design of existing

code safely”

ea
la

nd

code safely

References:

kl
an

d
| N

ew
 Z

e f
David Reilly. Top Ten Errors Java Programmers Make

http://www.javacoffeebreak.com/articles/toptenerrors.html
Oracle Code Conventions for the Java Programming Language

ve
rs

ity
 o

f A
uc

k Oracle. Code Conventions for the Java Programming Language.
http://www.oracle.com/technetwork/java/codeconv-138413.html

Martin Fowler. http://refactoring.com/

Th
e

U
ni

v

23

Quiz
/2
01
2

Q
1. Why is it important to handle exceptions when they

 2
54

05
/1
0/ are caught?

2. What does refactoring mean for the functionality in

S
O

FT
E

N
G

 g y
a program?

3. Why do we have naming conventions?

ea
la

nd
kl

an
d

| N
ew

 Z
e

ve
rs

ity
 o

f A
uc

k
Th

e
U

ni
v

24

