|| 05/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

o

Software

Englneerm

Quality Assurance
Coding Principles

Part IT - Lecture 12

eeeeeeeeeeeeeeeeeeeeee

05/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering
‘The University of Auckland

‘LSE

3 “Lost Radio Contact Leaves

Pilots On Their Own”

(2004)
http://[spectrum.ieee.org/aerospace/aviation/|
ost-radio-contact-leaves-pilots-on-their-own

SOME RIGHTS RESERVED

Andy Potter

“Radiation Deaths linked to

AECL Computer Errors”
(1985)

http://www.ccnr.org/fatal dose.html

05/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Today's Outline

- Common Java Mistakes
- Java Coding Guidelines
- Refactoring

‘LSE

Software
Engineering
‘ The University of Auckland

05/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software
Engineering

‘ The University of Auckland

‘LSE

Common Java Mistakes

CONGRATULATIONS!
Yol HAVE JUST
DISCOVERED A

CoOMPLETELY NEW

To err is human,
but to really foul things up

you need a computer.
(Paul Ehrilich)

05/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Accessing

Soft
Non-Static Members from " Enginering

Engineering

(LSE

‘The University of Auckland

Static Methods

Non-static members belong to objects

Static members belong to a class

If you don't have an object you cannot access a hon-static member
= this refers to the object on which a non-static method is called

public class Demo {
public Int x = 1;
public void m(Q) { }
public static void main
(String[] args) {
int y = Xx;
mQ);
Object o = this;
¥

05/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

Mistyped Method Name ‘LSE
|) 7\ e J°
when Overriding

Java supports method polymorphism through overriding

- A superclass A defines a method m

- A subclass B of A can define its own m, overriding the
definition in A

- The type of the object on which m is called decides which
version of m is used (the one of A or the one of B)

Problem: when method definition in subclass uses method name
different from method in superclass, overriding does not work

‘The University of Auckland

C\IIMH+AIM° ~ IMA+|AAIJ Anhf‘lﬁ'+ I\h+ ﬁhllhfl' 2 ¥V a hAIMh:'AV! lllhlf!lﬂl.lﬁh
SQYmpion. a meinod aoceorn i yei Ccdiied, no compilier warmiiny

Found by tracing control flow of a program or use @0verride

public class Demo extends WindowAdapter {
// This should be “windowClosed” 111
public void windowClose(WindowEvent e) { :
_) after closing
System.exi1t(0); :
13 wmdow!!!6

Program
does not stop

05/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

Overriding with Different ‘LSE
Semantics
Make sure that any method that you override preserves the

semantics of the original

Otherwise: possibly strange behaviour in program parts that
seemed to work all right

Example: using NZ together with German GST code;
incompatible semanticsl!!
public class Product {
public double grossPrice;
public double netPrice() {
return 1.125*grossPrice; // in NZ: 12.5% GST

‘The University of Auckland

i

public class Food extends Product {
public double netPrice() {
// 1In Germany: only 7% GST on food
return 1.07*grossPrice;

i

05/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Insufficient Software

Engineering

‘The University of Auckland

(LSE

In Java: many exceptions must either be caught or declared
Sometimes people catch them without actually handling them
Problem: when the exception is thrown, it is not apparent

The problem that caused the exception might cause trouble later

Evrcrontinan LdanAlinAa
l-/\b(alJ | |U|| I |U||Ull||y

public double reciprocal (double x) {
double y = 0;
try {
y = 1/x; // ArithmeticException for x==
} catch (Exception e) {} // no handling

return y; // returns 0 for x==
. 4

05/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software
Engineering

‘The University of Auckland

More Common Errors ‘LSE

1. Don't confuse == with equals
2. Array indices start with O (— off-by-one error)

3. Distinguish primitive types, reference types and immutable
reference types (call-by-value vs. call-by-reference)

4. Most common error: Nul lPointerException

- Either improper object initialization (quite easy to find)
- Or method that returns null

(check the return value or use exceptions instead of
returning null)

NullPointerException| | ClassCastException ArithmeticException
Object o = null; Integer 1 = (Integer) [Int x = 4/0;
o.getClass(); "hello";

ArrayStoreException IndexOutOfBoundsException

Object x[] = new String[3];| |Object x[] = new String[3];
X[O0] = new Integer(0); X[3] = "hello™;

9

SE Software
Engineering
‘ The University of Auckland

05/10/2012 “

SOFTENG 254

Coding Style

AN

10

The University of Auckland | New Zealand

05/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

‘The University of Auckland

Naming Conventions ‘LSE

Begin class and interface names with uppercase letter
e.g. Demo, Panel, GridbagLayout

Begin member names, method parameters and local variables
with lowercase letter, e.qg. getMax, start

Use CamelCase, i.e. a new word in a name is "separated” by an
uppercase letter, e.g. getMainPanel

Package names are lowercase, e.g. java.awt.color

. static final constants should be all uppercase with words

separated by underscores ("_"), e.g. MIN_WIDTH

Type parameter names for generics should be a single capital
letter, e.g. LiSt<T>

Sometimes other conventions:
Name prefix for interfaces, e.g. 1ICollection
Name prefix for private variables, e.g. _size

11

05/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

Other Coding Guidelines ‘LSE

‘The University of Auckland

Comment your code, particularly when doing something that
is not straightforward

- Comment at the beginning of a class/method/variable
What is the class/method/variable for?

- Also comment some statements
- Empty line between logical groups of statement

Code should be machine-independent,

e.g. do not use absolute filenames in source code because
different computers have different folders

(e.g. "c:\myfolder\myfile.txt")

Use filenames relative to the application folder instead
(e.g. "subfolder\myfile._txt")

Handle error conditions (e.g. throw and handle Exceptions)
Use asserts to make sure errors do not propagate 12

05/10/2012 “

SOFTENG 254

Reracrorivg

IMPROVING THE DESIGN
oF ExistivG Copg

The University of Auckland | New Zealand

Software

Engineering

‘ The University of Auckland

‘LSE

Refactoring

There's always room
for improvement, you know
- /t's the biggest room
/n the house
(L. H. Leber)

13

05/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software
Engineering

‘The University of Auckland

Refactoring ‘LSE

"The art of improving the design of existing code safely”

- Rewriting source code in order to improve its design or
readability ("cleaning it up"; as we know it from XP%

Refactoring may change HOW the code works but NOT
WHAT it does ler'eserving semantics)

- Neither fixes bugs nor adds new functionality
- Changes may be very small or large (several files)

- Encourages exploratory programming, rewriting of code,
higher code quality

Test cases help to ensure changes preserve semantics

Refactoring literature describes indicators for common
design problems ("smells”) and possible solutions
("refactorings”)

- Fowler, Martin (1999). Refacfamhngmpmwhg the
Design of Existing Code. Addison-Wesley.

- Wake, William C. (2003). Refactoring Workbook.
Addison-Wesley. 14

05/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

Simplicity

‘ The University of Auckland

‘LSE

KISS ("Keep it Short and Simple"), Occam's razor and Einstein:
"everything should be made as simple as possible, but no simpler"

Simplicity is an important principle for refactoring:
can we rewrite the code so that it is simpler?
Avoid unnecessary complexity, e.g.
- Remove dead/unnecessary code
- Use clear and simple names (in XP: system metaphor)
- Not more coding than necessary (especially in XP)
Coding for humans: clarity, readability, understandability
“Clever hacks" are not worth it, they confuse people
Maintainability more important than performance
- "Premature optimization is the root of all evil”
- Moore's law vs. incredibly high software maintenance costs

15

05/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

Smell: Long Method ‘LSE

Symptom: many lines of code (LOC) in a single method
(>> 10 LOC as a heuristic)

Cause: a programmer keeps on writing in a single method

Solution: find coherent groups of statements, extract
meaningful methods

Payoff: better readability, clearer structure, chances for
abstraction and reuse

Loss of performance is usually negligible

‘The University of Auckland

void m(Q) {
double[] data = {4.2, 6.4, 1.5, 9, 10.1};
double avg = O;
for(double x : data) avg += X;

avg /= data.length; double avg(double[] d)

double var = 0O;
for(double x - data) var += (x-avg) * (x-avg);

var /= data.length; double var(double[] d)

7 16

05/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

‘The University of Auckland

Smell: Large Class ‘LSE

Symptoms: large number of instance variables, methods or LOC
Causes:

- Class gets "overweight” by incrementally adding more and
more functionality without following a clear design

- The underlying concept was misunderstood and is in fact a
conglomerate of many concepts

Problem: class looses its clear shape; it does not embody a single
concept with a well-defined function anymore

Solutions:
- Extract classes embodying their own concepts
- Extract subclasses that implement specialized functionality
- Extract interfaces that clearly define feature subsets

Payoff: simplicity & clarity of the parts, chances for abstraction
& reuse

Example: GUI is merged with underlying data model and/or

application logic -

05/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software
Engineering

‘The University of Auckland

Smell: Magic Number ‘LSE

Symptoms: a constant value (“literal”) appears in a method,
possibly at several locations

Cause: value is used ad hoc when it is needed; no further use
anticipated

Problems:
- Hard to maintain
- Easy to introduce bugs through incomplete changes

Solution: replace literals with symbolic constants (static final)
or enums: enum Gender { MALE, FEMALE }

Examples:
- Mathematical/physical constants (pi, e, conversion factors, ...)
- Identification numbers (special data elements, errors, ...)
- Configuration settings (e.g. file names, program behavior)

18

05/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

Duplicated Code @)k

Symptoms:
- Two code fragments look (nearly) identical
- Two code fragments do (nearly) the same
Causes:

- Several programmers working independently
(duplication might not be obvious or is not anticipated)

- Pro%mmmer's copy, paste & adapt code that almost fits their
needs

Solution: extract method
- If duplica‘lres just d/o the same: choose and substitute the
crimmnonian Alaanmi+hm fAn monAas
DUIJCl 1VI UIBUI Hru \vi nicli HC}
- If duplicates in sibling classes: pull up method and fields into
superclass; form template method
Examples:

- Small auxiliary tasks (e.g. sorting numbers, finding elements)
are solved ad hoc

- Overlapping requirements cause similar UI or logic

‘The University of Auckland

19

05/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

‘ The University of Auckland

Template Methods ‘LSE

Algorithm is mostly the same for several related types (siblings)
but varies in the details

Idea: describe the common, general steps of the algorithm in a
method of the superclass (template method); put the details
into helper methods of the subclasses

abstract class Game { class Chess
int numPlayers; extends Game
abstract void makeTurn(int player); || { .
abstract int getWinner(); Chess() {
final void play(Q { numPlayers = 2;
while(getWinner()==0) }
for(int p=1;p<=numPlayers;p++) void makeTurn
makeTurn(p); (int p) { . }
System.out.printin(
“"Player "+getWinner(Q+" wins"); int getWinner()
+ {3}
+ 7} 20

05/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

"Ask What Kind" Anti-Pattern

Software

Engineering

SE
(Simulated Inheritance) ‘L

Symptom: method uses switch or several ifs (possibly with
instanceof) to distinguish between different kinds of objects

Cause: related but different concepts are not represented by
different classes, lack of method polymorphism

Solution:
- Represent the different kinds by different subclasses

- Implement subclass-specific behavior by overriding methods
in the subclasses

- Subclass-specific method is invoked
automatically ("don't ask what kind")

‘The University of Auckland

class C {
String type;
void m(Q) {
1f(type.equals("A™)) m1(Q);
1f(type.equals(''B")) m2();
3

4

05/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

‘The University of Auckland

Refactoring in Eclipse ‘LSE

Select source code, Mave.. A+ S+
1 -rh Change Method Signature, .., Alt+ShiFE+C

right CIIC.k anq use Refacfa/" submenu | e eeds jraiig

Refactoring with preview of changes xtract Interfare,.

(individual changes can be vetoed) Extract Superclass...

Ise supertype Where Possible, ..
Pull Up, ..
Push Do,

When method name is selected:
Rename, Inline, Pull Up, Push Down,
Introduce Indirection, Change Method Signature, ...

When field name is selected:
Rename, Pull Up, Push Down, Encapsulate Field,
Generalize Declared Type, ...

When class name is selected:
Rename, Move, Extract Interface, Extract Superclass,
Use Supertype Where Possible, ...

When statements are selected: Extract Method
When expression is selected: Extract Constant

Nice summary of Eclipse refactoring 22
http://www.cs.umanitoba.ca/~eclipse/13-Refactoring.pdf

05/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software
%%TO dCly'S SummC"”Y «SE o snooting
SIESEANUN -

\
- Watch out: there are common Java errors.
Avoiding them can save days of debugging.

- Coding Style guidelines are used/enforced by all serious
projects (for code readability)

- Refactoring: "The art of improving the design of existing
code safely”

References:

David Reilly. Top Ten Errors Java Programmers Make
http://www.javacoffeebreak.com/articles/toptenerrors.html

Oracle. Code Conventions for the Java Programming Language.
http://www.oracle.com/technetwork/java/codeconv-138413.html

Martin Fowler. http://refactoring.com/

23

05/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software
Engineering

‘The University of Auckland

Quiz ‘LSE

Why is it important to handle exceptions when they
are caught?

What does refactoring mean for the functionality in
a program?
Why do we have naming conventions?

24

