|| 03/10/2012 “

NG 254

SOFTE

The University of Auckland | New Zealand

«

Quality Assurance
Generators

Part IT - Lecture 10

Software

Engmeerm

eeeeeeeeeeeeeeeeeeeeee

Software

Engineering

(LSE

" ..handle an enormous number of

Generating Code

03/10/2012 “

brands”
(http://www.elektrobit.com)

SOFTENG 254

BcCl - =
®©© P

R. Engelhardt

"A significant decrease of coding errors
due to the extensive use of automatic
code generation. For the Airbus A340

project, up to 70% of the code has
been automatically generated.”
(http://www.esterel-technologies.com)

The University of Auckland | New Zealand

‘The University of Auckland

g variants for different countries and

03/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Today's Outline

Generators
Generator Type Safety
Java Emitter Templates (JET)

‘LSE

Software
Engineering
‘ The University of Auckland

03/10/2012 “

SOFTENG 254

Software

Engineering

‘LSE

‘The University of Auckland

Generators

The University of Auckland | New Zealand

"The machine yes, the machine,
never wastes anybody's time,
never watches the foreman,
never talks back”

(Carl Sandburg)

03/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

Generators

‘LSE

Generators are programs that can generate certain artefacts

They automate the creation of artefacts that have a well-
understood, very regular structure

Generated artefacts usually vary with generator input
Examples:
- Compiler: generates binary code from source code
- JavaDoc: generates HTML from source code comments
- Some UML tools: generating source code from class diagram
- Servlets: generating HTML pages
- Java Server Pages (JSP): generating Servlets

‘ The University of Auckland

Input
(Parameter) jl> - jl> Output
5

03/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

Generative Programming ‘LSE

‘The University of Auckland

There are programming "routine tasks” that are always similar
Only slight variation depending on some parameters

Generative programming tries to automate these tasks with
parameterized program generators for different kinds of
program parts

Program generators are meta-programs: programs that deal with
other programs or themselves

Meta-programming can be sophisticated and potentially unsafe
Different approaches to generative programming:

- External tools: stand-alone programs that usually perform a
particular program generation task (e.g. compiler, compiler-
generator)

- Generative language features: constructs for generation
integrated into a programming language
Usually transformation of new high-level constructs in lower-
level ones (often simply called 'macros’)

03/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

Common Patterns
& Applications

@
Class extensions

Input: class to be extended & additional information
Output: subclass with additional functionality

E.g. clone, hashcode, equals, print, serialize, copy

Proxies
Input: type and methods/fields to be hidden
Output: subclass with modified semantics

E.g. monitoring, remoting, resource management, access control

Wrappers
Input: types, methods, fields to be wrapped

Dirtnii+ wranner rlace wmith aAnnranrinte interfare
Vl.lll-ll-ll' LA'A urlrlpl WCiIVAJDUIS VWIITIT uPFl VP' IUATS 1HTTSOI1 | WG

E.g. integration of legacy components

Interfaces
Input: interface description
Output: different kinds of interfaces

E.g. DB interface, GUI, web interface, API

‘ The University of Auckland

03/10/2012 “

Software
Engineering

‘The University of Auckland

Templates ‘LSE

Code that generates code can be confusing

Example: constructing an Abstract Syntax Tree (AST) for the
generated code

SOFTENG 254

JavaClass ¢ = new JavaClass(''GeneratedClass");
c.extends = X;
c.fields.add(new Field(TYPE_INTEGER, "myVar'));

4
- Hard to see what is actually created
Better approach: templates
class GeneratedClass extends 0x@0 {
Integer myVar;
+
4

The University of Auckland | New Zealand

- Output is given in its natural form
- At places where output varies, we insert generator code

(e.g. Ox0) 8

03/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

r)

Example: ‘LSE

Getter&Setter Generator

Software

Engineering

‘ The University of Auckland

- Java convention: classes provide getter- and setter-
methods for access of member variables

» Can be useful, e.g. for observer pattern
- Simple getters and setters are purely routine work
+ We can automate it with a generator:

class Person {
String name;
int age;

}

class PersonWithGetterSetter {

String name;
int age;
String getName() { return name; }
void setName(String v) {

name = Vv;
by
int getAge() { return age; }
void setAge(int v) { age = v; }

9

4

03/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

Example:

‘ The University of Auckland

SE
Remote Method Calls ‘L

Call methods of objects on other computers as if they were local
Requires new class: client stub
- For object representing the remote object locally
- Has same signature as remote object (i.e. same interface)
- But different method implementation:
1. Send method call request and parameters to server
2. Wait and receive method return value

In Java: client stubs and other classes are generated by
external generator tool RMIC (Remote Method Invocation
Compiler)

Other classes
Class)) | required for
remoting
10

4

Software

Engineering

Stub Generator ‘LSE

Example: remote matrix multiplication

‘The University of Auckland

03/10/2012‘

class Matrix implements Matrixlnterface {

Matrix multiply(Matrix m) { ... }
¥

SOFTENG 254

Pseudo-code: —_ =

class MatrixStub implements MatrixInterface {
Url remoteObject;

Matrix multiply(Matrix m) {
send(remoteObject, REQUEST FOR_MULTIPLY, m);
return (Matrix) receive(remoteObject);

}

The University of Auckland | New Zealand

}

03/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

[The Uni

Aims of Code Generation ‘LSE

More efficient development
- Adaptability and reuse
- Control complexity
Clearer structure (e.g. templates)

Better handling of multiple variants
(e.g. parameterization)

. Avoid development mistakes by reducing human

involvement where it is unnecessary

. More efficient usage through adaptability and

adaptivity (e.g. dynamic reflection)

. Performance gain at runtime through adapted

components (e.g. generation of optimized code)

y of ckland

12

Za || 03/10/2012 “

The University of Auckland | New Zealand

«SE Sogtware
Generator Type Safety
Safety doesn't happen
by accident.

03/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Generator Type Safety ‘LSE

Type systems can detect potential
execution errors statically

Generators are meta-programs
with new sources of execution
errors: generator ftype errors

Software

Engineering

‘ The University of Auckland

int m(String s) {
inty =s + 1;
m(y,3);
return s;

}

>

v

- parts of the generator program that can potentially generate

malformed code

- which in turn may cause execution errors

Need new kind of type system for detecting parts in generators
that can potentially generate ill-typed code (generator type

system)

Generator type safety: property of a generator not to be able

to generate ill-typed code

Unfortunately generator type safety is usually not guaranteed...

14

03/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Generator Type Errors ‘LSE

Software

Engineering

‘ The University of Auckland

By type-checking generator output we may detect

generator type errors

class C(String ID) {
String @ID@ = 1;
}

Always generates ill-typed code

But some generator type errors only produce ill-typed
code for some parameters, not for others

class C(String 1D) {
int x;
int 0I1D0;

+

I4

Works fine for most IDs
but not for “x"

(lexical collision)

This makes it more difficult to find generator type

errors

15

03/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Generator Type Errors ‘LSE

class C(String I1D) {

void m(Q) {
iInt 0ID0 = 1;
X++

¥ o3

class C(Class T) {
0T@ x = new Button();

}

class C(String X) {
@if(X.Equals('hello™)) {
String y = "world";

}

void m(Q {
Console.WriteLine(y);
r }

4

Software

Engineering

‘ The University of Auckland

1. Output only correct
iff 1D equals "x"

2. Output only correct
iff T supertype of
Button

3. Output only correct
iff X equals "hell0"

16

03/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Generator Type Errors ‘LSE

class C(Type T) {
OTe x = 1;
+

class C(Type S, Type T) {
@foreach(F 1n S.GetFields()) {
@F .FieldType@ @F.FreldName(@;

¥
void m() {
@foreach(F 1n T.GetFields())
{
Console._WriteLine(
this.0F_.FieldName@);

1.

Software

Engineering

‘ The University of Auckland

Only correct iff
1 element of
type T

Only correct iff
T's field names

are subset of
S's field names

E.g.if T==S

17

|| 03/10/2012 “

NG 254

SOFTE

The University of Auckland | New Zealand

«

Java Emitter Templates
(JET)

Software

Engmeerm

llllllllllllllllllllllll

18

03/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Java Emitter Templates

(JET)

Generator technology based on templates
Part of the Eclipse Modeling Framework (EMF)
JSP-like syntax (actually a subset of JSP)

Idea:

‘LSE

1. Developer creates dpar'ame‘rer'ized templates

(text files that en

with jet)

Software

Engineering

‘ The University of Auckland

2. Each template is transformed into a generator class
(template implementation class)

3. Generator classes can be used to generate something,

e.g. source code

Can be used to generm‘e any kind of text file (not just

e)

Java source co

JET
Template

Arguments

Generator
Class

.

Generated
Output

19

03/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

Using JET in Eclipse @)SE

Ensure EMF is installed (find it under Modeling); use update
site for your Eclipse version, e.g.
http://download.eclipse.org/releases/ juno

1. Create a new Java project

2. Convert the Project to a JET Project & i saus mitter tempistes
Right-click it in the package P ememseriy S
explorer; New -> Other...
Select "Convert Projects to JET..", Next —
Select your project; Finish | o

Now the project has a "templates” folder == [EES
B} templates

3 TO Conflgure \TET 4B, JRE Swskern Library [t
Right-click project in package explorer; Properties
Select "JET Settings”

Choose folders for templates
and Java source code

‘ The University of Auckland

Template Containers | templates

Source Conkainer

20

03/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

‘The University of Auckland

"Hello world” Generator ‘LSE

Create a JET Template File
1. From the menu choose File -> New -> File

: =125 JETTest
2. Select the templates directory as parent folder; &
call the file helloworld.txtjet 12 JetTest?

3. After OK error message pops up: "The jet directive is missing...";
this is normal, just close it

4. Edit helloworld.txtjet

Hello, world!

<%@ jet package="‘hello" class=""HelloWorldTemplate'"™ %> J

As sooh as you save, package hello with
template implementation class
HelloWorldTemplate is generated

=4 hello

+-)| HelloworldTernplate. java

Convention: suffix of template is suffix of output +"jet"
E.g. -txt -> .txtjet, .java -> . javajet, .xml -> _xmljet

03/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Using the "Hello world"

Software

Engineering

‘ The University of Auckland

Generator

Excerpt from HelloWorldTemplate:

protected final String TEXT_1 = NL + "Hello, world!";

public String generate(Object argument)

{
final StringBuffer stringBuffer = new StringBuffer();

stringBuffer.append(TEXT _1);
return stringBuffer.toString();

}

Create a new class in package hello that uses it:

public class Test {
public static void main(String[] args) {
HelloWorldTemplate t = new HelloWorldTemplate();
String result = t.generate(null);
System.out.printin(result);

Jaw

+ o}

<terminated > Test (1)1 [1
227
Hello, world!

03/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

%&Today's Summary ‘LSE

SEEANN
Generators are programs that can generate certain
artefacts

Generative programming tries to generate program parts,
e.g. class extensions, proxies, wrappers, interfaces

With templates generator output can be given in its
natural form

Generator type errors are parts of the generator
program that can potentially generate malformed code

Java Emitter Templates (JET) are a popular generator
technology for Eclipse

Software

Engineering

‘The University of Auckland

Reference:

Eclipse JET Tutorial. http://www.eclipse.org/articles/Article-
JET/jet tutoriall.html

23

03/10/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

Quiz ‘LSE

What can generators be used for? Name five
examples.

‘The University of Auckland

What is a generator type error? Give a definition.

Can you give pseudo-code examples for three
different generator type errors?

24

