|| 28/09/2012 “

NG 254

SOFTE

The University of Auckland | New Zealand

o

Software

Engmeerm

Quality Assurance
Reflection

Part IT - Lecture 9

eeeeeeeeeeeeeeeeeeeeee

28/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

What do they have in
common?
@ ﬂzjz’c mirror on the wall. . .

... who is the fézz're&t OJC them all?

‘LSE

Software

Engineering

‘The University of Auckland

popculturegeek.com

28/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Today's Outline

Reflection
The Java Reflection API
MetadJ

‘LSE

Software

Engineering

‘ The University of Auckland

SE Software
Engineering
‘ The University of Auckland

28/09/2012 “

SOFTENG 254

Reflection

By three methods we may learn wisdom:
First, by reflection, which is noblest,
Second, by imitation, which is easiest,

and third by experience, which is the bitterest.
(Confucius)

‘ © \ 4

SilverStack

The University of Auckland | New Zealand

28/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

Reflection ‘LSE

[The Uni v of Auckland

The ability of a program to observe and possibly modify
its own structure and behavior.

Two kinds of reflection

- Structural: reflection on data structures & code

- Behavioral: reflection on program behavior

Two basic operations

- Introspection: observe program

- Intercession: modify it

Can be static (before runtime) or dynamic (during
runtime)

- Can be dangerous ...

28/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Metaobject Protocols (MOPs) ‘LSE

Software

Engineering

‘ The University of Auckland

The way reflection is done in OO languages

Internal program entities (e.g. types) are represented as
metaobjects, which are instances of metaclasses

Metaobjects are like normal objects, but they serve a special
purpose
The way we handle these metaobjects, i.e. the way methods have

to be called in order to do a reflection task, is the metaobject
protocol

In'rr'ospec'ring the system means getting metaobjects

T AAAAAAAAAAAAAA ln I'J ln A llﬂ -l-lnnr‘n
J-lllCl beblUll nicario lHUI we LU” lllUUIIY II|CII| ana lllur\b 1T1IVoC

modifications affect the system (sometimes this is done
automatically)

Metaobjects

28/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

Introspection of ‘LSE
Data Structures

Data structures are usually a static concept
- They are defined before compilation
- They stay unchanged during runtime

Sometimes we want a program to be able to work with unknown
data structures

- It might get an object, not knowing the exact class
- A system might allow dynamic loading of classes
Solution: use introspection
- Get metaobject for the class of the unknown object
- Metaobject gives us a description of the unknown object’s

‘ The University of Auckland

class
Class Object T = new Foo();
String getName() Class ¢ = T.getClass();
Field[] getFields() System.out.printin(
Method[] getMethods() c.getName());
Constructor[] getConstructors() sterminated:> Test [7

Inla]

28/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software
Engineering

‘The University of Auckland

Introspection of Code ‘ASE

Only supported in few languages
Possibility to look into method bodies and see all the statements

Program code is usually represented ("reified") as abstract
syntax tree (AST)

Metaclasses for different statements, expressions, ...
Pseudo-code

cla§s Foo {_ Object ¥ = new Foo();
int inc(int x) { Method m = f.getClass()
return x + 1; .getMethod(*"inc™);
+ 1] | statement[] stmts =
. < m.getBody(); I il
LVa“ame Metaobjects !
name = X"
< Return Sltatemtegt[]}
IntConstant | _ EXpPr Femen
value =1 8
J

28/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software
Engineering

‘The University of Auckland

Intercession ‘LSE

Data structures / program code can be modified during runtime

Can be done, for example, simply through modification of
metaobjects

Rare feature because it can be dangerous (confusing and unsafe)

Invariants like types and program code usually important for us
to understand complex systems Before

class Foo {

Pseudo-code

Object ¥ = new Foo(Q); int Inc(int X? t
return x+1;
Method m = f.getClass() 1}
.getMethod('Inc'"); 7
Statement[] stmts = m.getBody(); After
Return rstmt = (Return) stmts|[O0]; class Foo {
Plus pexpr = (Plus) rstmt.expr; int inc(int x) {
pexpr.expr2 = new IntConstant(99); return x+99;
7 |}

28/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

The Java Reflection API

Software

Englneermg

of Auckland

10

28/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

Reflection in Java

ckland

» Java does not support full dynamic reflection
* Only some introspection

- Introspection of types 5
- Introspection of method signatures b N
- Introspective access to types and methods

» Instantiation

* Field access (read and write)

* Method invocation

For safety: exceptions are thrown when something
doesn't work (e.g. NoSuchFieldException,
NoSuchMethodException, SecurityException)

11

28/09/2012 |

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

Java Reflection Example:

‘ The University of Auckland

‘LSE

Introspection

import java.lang.reflect.™;

public class Test {
public static void main(String[] args) {

Object o = new Integer(l);
Class ¢ = o.getClass();
System.out.printin(c.getName()); // java.lang.Integer
System.out.printin(

c.getSuperclass().getName()); // java.lang.Number
System.out.printin(

c.getPackage() .-getName()); // java.liang
for(Field T : c.getFields())

System.out.printin(f); // .. int .. MIN_VALUE , ..
for(Method m - c.getMethods())

System.out.printin(m); // .. int .. hashCode()
for(Constructor ct : c.getConstructors())

System.out.printin(ct); // .. Integer(int)

28/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

Java Reflection Example:
Introspective Access I

public class Foo {
public void hello(Q) {
System.out.printin("hello!"");

‘LSE

‘ The University of Auckland

¥ i

import java.lang.reflect.™;

public class Test {
public static void main(String[] args) {

try {
Class ¢ = Class.forName(''Foo");
Method m = c.getMethod("hello", null);
m. invoke(c.newlnstance(), null);

} catch(Exception e) {
e.printStackTrace();

}
¥ oi

13

28/09/2012 |

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

Java Reflection Example:
Introspective Access 11

public class Foo { public Int x; }

‘LSE

‘ The University of Auckland

import java.lang.reflect.™;

public class Test {
public static void main(String[] args) {

try {
Class ¢ = Class.forName(''Foo");
Field fieldx = c.getField('x");
Object foo = c.newlnstance();
fieldx.set(foo, 99);
System.out.printin(fieldx.get(foo));

} catch(Exception e) {
e.printStackTrace();

}
L 14

28/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Class Class<T>

‘LSE

Software

Engineering

‘The University of Auckland

static Class<?> forName(String className)

String getName()
String getSimpleName()
Class<? super T> getSuperclass()

Field[] getDeclaredFields()

Field[] getFields(Q)

Field getDeclaredField(String name)
Field getField(String name)

Constructor<T> getConstructor(Class...
Method getMethod(String name, Class...

T newlnstance()

boolean 1sArray()
boolean i1sInterface()
boolean 1sPrimitive()

paramTypes)
paramTypes)

15

28/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Class Field

Software

Engineering

‘LSE

‘ The University of Auckland

and Class Method

Class Field

— String getName()

— Class<?> getType()

— Object get(Object obj)

— 1nt getInt(Object obj)

— boolean getBoolean(Object obj)

— void set(Object obj, Object value)

Class Method

— String getName()

— Class<?>[] getParameterTypes()

— Class<?> getReturnType()

— Object 1nvoke(Object obj, Object... args)

16

28/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Metad

‘LSE

Software

Engineering

‘ The University of Auckland

17

28/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

MetaT «SE Sogtware

+ Reflective interpreter for Java-like language
* Research prototype written by Rémi Douence and

Mario Sidholt
http://www.emn.fr/x-info/sudholt/research/metaj/

» Common challenge of reflective languages: .,

+ Offers complete dynamic structural & behavioral

reflection: you can change classes, code, and even the
interpreter itself

* In other words: nearly everything can be changed by

a program
However: if you change the wrong thing you crash

balancing act between power and safety

18

28/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

Example: Dynamic Reflection
with MetaJ

class Pair { String fst; String snd; }

‘LSE

‘ The University of Auckland

class PrintablePair extends Pair {

String toString() {
return "(" + fst + ', " + snd + '),

¥ 3

class Main {
void main() {
Pair p = new Pair('1"™, "2');
Class metaClass = reify(Pair); // Introspection
IT (metaClass.getExtendsLink() == null)
System.out.printIn("'Pair has no superclass!!!');
Instance metalnstance = reify(p); 7/ Intercession
metalnstance. instanceLink = PrintablePair;
System.out.printin(p.toString());

¥ 3

19

28/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

MetaJ's Metaclasses

‘ The University of Auckland

‘LSE

class Class {
Class extendsLink; // superclass
DataList datalList; // Tield list
MethodList methodList;
Instance iInstantiate() { ... } // "new" operator

}

class Method {
private StringlList args; // parameter names
private Exp body; // method body
Data apply(Environment argskE, Instance 1) {

return this.body.eval(argsE);

20

28/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Safety Issues ‘LSE

class Pair {
String fst; String snd;

String toString() {
return "(" + fst + ', " + snd +)",
| I

class NotAPailr {
int fst;

}

class Main {
void main() {

Pair p = new Pair("1', "2');
Instance metaPair = reify(p);
metaPair.instanceLink = NotAPailr;
p.fst = 99;
System.out.printIn(p.toString());

)

Software

Engineering

‘ The University of Auckland

21

28/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

Behavioral Reflection

‘ The University of Auckland

‘LSE

Not only the running program can be modified (structural
reflection), but also the runtime system (behavioral reflection)

In Metad: the interpreter itself can be changed
"Reflective Towers" meta-architecture

Unchangeable base interpreter which interprets the program

Possibility to insert a new intermediate interpreter between
the base interpreter and the program

Intermediate interpreter can
be ar'bi’rr'ar'ili modified with
reflection (like program) Program

Can change the operational
semantics of the language

Base interpreter interprets
the intermediate interpreter
on top of it which in turn
interprets the program

We can insert as many
intermediate interpreters
as we like (fower of interpreters)

2

28/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

. Sof
%&Todws Summary ‘LSE Osgnising

SEEANN

- Reflection is the ability of a program to observe and
possibly modify its own structure and behavior
- Introspection and intercession

- OO languages use metaobject protocols (MOPs)
with metaclasses and metaobjects

» Java only supports some introspection and
introspective access to methods and fields

* Other languages (e.g. MetaJ) of fer full reflection

However: reflection can be dangerous (lead to hard-
to-find bugs)

23

28/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

Quiz ‘LSE

What are the two basic operations of reflection?
What do they do?

‘The University of Auckland

What kind of reflection is Java capable of?

Why can reflection be dangerous?

24

