|1 2009]

SOFTE

The University of Auckland | New Zealand

«

Quality Assurance
More Tools

Part IT - Lecture 8

Software

Engmeerm

eeeeeeeeeeeeeeeeeeeeee

2009)|

<
m
>
X

SOFTENG 254

The University of Auckland | New Zealand

Ornce wupon a time. . .

SE Software
Engineering
‘ The University of Auckland

Se tearm was motivated and the architect was ﬁnjﬁt.

fvei:}/one was Eua:}/ Wrz'tz'nj code, but no documentation was in J‘Zj/;t
Jhe architect spent J‘[BGJO[GJ‘J n{yﬁ%&, worked with the team in endless ﬁj/;t&.
%nc[then the time came OJF cfefﬁ?}/ment, fér the ﬁr&t customer :9 enjoyment. .

[]
<< ’ , AR FA Y 7 o ol ol) rr o*
aorne re(lmzremenw were]uljzlled, but not alt. |o e

‘C/;anjz'nj code in one Joface made other code fézf[
Jhe sy stem frad Joroﬁfe’ma under reaf Joad, -

FEnd the code was fuff (yp bugs and bloat. Q

o
a

cgga([more at /fttfo.‘/ /s vidhujoshua.blogspot. co. nz/2009/ 05“/ anafyﬂ'&gfiﬁz’fec[—&gﬁWare—proiect. fitm)

:2009)|

SOFTENG 254

The University of Auckland | New Zealand

- Source Code Formatting with Eclipse

Today's Outline

JavaDoc
The ANT Build Tool

‘LSE

Software

Engineering

‘ The University of Auckland

2009)|

<
m
>
Py

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

‘ The University of Auckland

‘LSE

JavaDoc

The guy who knows about computers
/S the last person you want to have
creating documentation for people
who don 't understand computers.

(Adam Osborne)

i 2009

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

JavaDoc ‘LSE

Tool that generates HTML documentation from Java source code
Industry standard for documenting Java APIs

Idea: developers put special comments starting with /** that
contain documentation in front of classes, fields and methods

JavaDoc comments are structured by JavaDoc tags, which are
keywords that begin with an @ sign

‘The University of Auckland

/**
* Divides two integer numbers
@author Christof Lutteroth
@param x Dividend
@param y Divisor
@return x divided by y
@throws ArithmeticException i1f y==

* % ok o ¥

*/
int div(int x, int y) { return x/y; }

i 2009

SOFTENG 254

The University of Auckland | New Zealand

JavaDoc Tags ‘LSE

Software

Engineering

‘The University of Auckland

@author name

Specifies developer name

@version number

Add version number to a class or method

@param name description

Add description for a method parameter

@return description

Add a description for the method return
value

@throws className
description

Describes an exception that a method
might throw (synonym to @exception)

@see reference

Adds a reference to something else

@since text

Add a comment since when a
class/field/method exists

@deprecated

Marks a method as deprecated

folink
package. classtmember

label}

Add a link to the documentation of some
other class/field/method

2009)|

<
m
>
Py

SOFTENG 254

The University of Auckland | New Zealand

JavaDoc in Eclipse

Eclipse has auto-insertion feature

for JavaDoc comments

1. Move cursor into line before

type/method/field

2. type /** and press enter

Generating the documentation
1. From the menu: Project -»

Generate Javadoc...
2. Select location of
jJavadoc.exe

3. Select folder for
documentation;

typically /doc in project folder

4. Many other settings about
appearance of documentation...

5. Click finish

Software

Engineering

‘ The University of Auckland

‘LSE

& Generate Javadoc @

Javadoc Generation

al
Select bypes For Javadoc generation. J

1 L

Javadoc cornmand:

o (carane.

Select bypes For which Javadoc will be generated:

#-[]ie Flagmaker
]2 GUITest
#[]l= JetTest
#-[E]l= UMLTest

Create Javadoc For members wikh visibiliey:
) Private) Package) Protected () Public

Public: Generate Javadoc For public classes and members.,

(*) Use standard Doclet

Destination: “hrishworkspace\IMLTestdoc

{3 Use Cuskom Doclet

(7 Mext = H Finish H Cancel

2009)|

<
m
>
Py

SOFTENG 254

The University of Auckland | New Zealand

View JavaDoc in Eclipse ‘LSE

Software

Engineering

‘ The University of Auckland

In JavaDoc view when identifiers are selected by
double-clicking on them

identifier

on identifier

Mruhlems Declaratior -
. T . 1
nt A.div(int x, int) int -:111.1(int =, int ¥) { re

Diwvides twa integer numbers

Parameters:
® Dvidend
y Divizor
Returns:
¥ divided by y
Throws:
ArithmeticException if y==0
Author:
Christof Lutterath

int AdnAing X, int y)

Divides two integer
nlmbers

Parameters:

¥ Dividend

v Divisar
Returns:

¥ divided by y

In tooltip when hoovering mouse pointer over

In help view under section "Java help" when cursor is

@ Help X &

Related Topics

= fAbout Java Editor

The Java editor provides wou with Jaws
suppark,

Java help:

[Davadoc Far & divfink, ink 1
See also:

B Java editor Concepks

E lava editor reference

B Opening a Java editor

E Using content assisk

:2009)|

SOFTENG 254

The University of Auckland | New Zealand

Software

Englneermg
ckland

The ANT Build Tool

f‘“‘i"; ,l

\

PACHE ANT>

Ants can carry more than
50 times their body weight.

:2009)|

SOFTENG 254

The University of Auckland | New Zealand

javac
SVN
update
Javadoc

Software
Engineering

‘ The University of Auckland

The Build Process ‘LSE

The generation of end-user artefacts (executable programs,
documentation, packaged files) from developer artefacts
(source code, models, ...)

- Can involve many complex steps
* Getting latest stable source code from a VCS (e.g. SVN)
» Compilation of source code files, linking (e.g. javac)
* Running tests (e.g. JUnit)
* Generation of documentation (e.g. JavaDoc)
* Packaging (e.g. jar)
+ Deployment (e.g. copying package to a server with ftp)
+ Clean up (e.g. deleting old or redundant files)
- Different build processes for different product variants

(e.g. "enterprise” and "home" versions)

10

Build process example

i 2009

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

‘The University of Auckland

Build Tools ‘LSE

Build tools automate the build process
- Build process is documented/specified in a build script
- Much faster than manual build

- Helps to perform builds exactly the same each time
(less mistakes)

- Can be used to manage different build processes

- Helps close the gap between the development,
intfegration, test, and production environments

Orchestrate the build process;
usually invoke other tools for doing the work

Can be triggered by other tools,
e.g. for nightly builds or continuous integration

° IIH»@
e

11

:2009)|

SOFTENG 254

The University of Auckland | New Zealand

Targets and Dependencies ‘LSE

Software

Engineering

The different steps in a build process are called targets
("building a target” refers to the outcome of a step)

Usually there are dependencies between targets, e.g.
- Get latest version before compiling source code
- Compile source code before packaging

Targets have to be built following the dependencies

Tarze’r dependencies are transitive
(if A—»B and B—C then A—()

Build process can be optimized by executing targets only when
necessary (e.g. recompile class only if . java file has changed)

Example: dependency between targets in C++ project

X—Yy = x depends on'y

‘ The University of Auckland

12

i 2009

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

‘The University of Auckland

The ANT Build Tool ‘LSE

Platform-independent, open-source scripting tool for
automating build processes

Uses XML files to describe the build process and its
dependencies (default script name: build.xml)

Implemented in Java and primarily intended for use with
Java; de facto standard

Solves portability problems of older build tools (e.g.
make)

- ANT provides built-in functionality for many tasks

- Built-in functions are guaranteed to behave (nearly)
identically on all platforms

An ANT script defines a project with targets
- Targeft: set of tasks you want to be executed
- Task: piece of code that can be executed

When starting ANT, you can select the target(s) to be
executed
13

:2009)|

SOFTENG 254

The University of Auckland | New Zealand

‘LSE

Projects and Targets

Software

Engineering

= <project> is the top level element; has three optional
attributes:

— name: the name of the project
— default: the default target (when no target is chosen)
— basedir: the base directory for relative paths
e <target> attributes:
— name: the name of the target (mandatory)
— depends: list of targets that it depends on (optional)
— description: short target description (optional)

‘Tlle Un

iversity of Auckland

In the example: A is executed first, then B, then C, and finally D

<?xml version="1.0"7>

<project name="'DependencyDemo''>
<target name="'A""/>
<target name="'B"" depends="A'"/>
<target name="'C" depends="A'"/>
<target name="'D" depends="B,C'/>

</project>

14

2009)|

<
m
>
Py

SOFTENG 254

The University of Auckland | New Zealand

Software
Engineering

‘The University of Auckland

Tasks ‘LSE

Task: piece of code that can be executed and can have multiple
attributes (arguments) and sub-tags

ANT comes with over 80 built-in tasks; many more available

Invoking a task: _
<name attributel="'valuel" attribute2="value?2" .. />

<?xml version="1.0"7>
<project name="'Hello" default="'compile'>
<target name="‘compile' description=""compile .java files'>
<mkdir dir="classes'/>
<javac srcdir="_" destdir="classes'/>
</target> <!-- This 1s an XML comment -->
<target name="jar" depends="'compile"
description="'create a jar fTile for the application'>
<jar destfile="hello.jar">
<fileset dir="classes" iIncludes="**/*_class"/>
<manifest>
<attribute name="Main-Class" value=""HelloProgram'/>
</manifest> </jar> </target>
</project>

15

2009)|

<
m
>
Py

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

More Tasks

‘ The University of Auckland

‘LSE

File tasks: <copy file tofile>, <delete File>,
<mkdir dir>, <touch file>, <get src dest>

Java tasks: <java classname>, <javac srcdir destdir>,
<javadoc sourcefiles destdir>, <junit .>

Packaging: <jar destfile basedir>, <zip destfile
basedir>, <unzip src dest>

Misc tasks: <echo message>, <exec command>, <mail ..>
Add your own tasks with <taskdef name classname>:

public class MyPrintTask extends Task {
private String msg;
// setter for attribute ""message"
public void setMessage(String msg) { this.msg = msqg; }

public void execute() throws BuildException {
System.out.printin(msg);

Y}

16

i 2009

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

Properties ‘ASE

Property: case-sensitive name associated with a value
- immutable: once it is set it cannot be changed

- may be used in the value of task attributes by placing the
property name between ${ and } in the attribute value

= <property name="foo.x" value="bar"/> sets the property
foo.Xx to the value bar (for files: location instead of value)

Many built-in properties, e.g. basedir, ant_file,
jJava.class.path, os.name, os.version, file.separator

Targets can be conditionally executed with special attributes:
— 1T executes target only if a property is set
— unless: executes target only if property is not set

‘The University of Auckland

<?xml version="1.0"7>
<project name="MyProject'>
<property name="‘classdir" location="classes'' />
<target name="‘compile'>
<javac srcdir="_" destdir="${classdir}'"/> </target>
<target name="‘workaround-code' 1f=""system-has-bug'/>
<target name=''normal-code" unless="'system-has-bug'/>

</project> 17

4

:2009)|

SOFTENG 254

The University of Auckland | New Zealand

ANT and Eclipse

1. Create a text file build.xml in
the main folder of your project

2. Open Ant view and add the build
file by dragging it into the view

3. Double-click target to execute it

B Console X Javadoc | Problems | Declaration | Properties | Errar Log

SE Software
Engineering
‘ The University of Auckland

m C.java
B, JRE Swstem L

5@ build, el
N .

W v B 0O X %K
= & el
=88 compile [default]
¥ mkdir classes

<% javarc
=@ jar
[=-% ¥ jar hello.jar
< ¥ fileset
=% * manifest
£ ¥ Main-Class

X % Gkl ot - =0

<terminated = AntTest build, xml [Ant Build] C:\Program Files) Javaijrel. 5. 0_06tbintjavaw, exe (Sep 20, 2006 11:27:25 &M
Buildfile: C:hDokumente und Einstellundgenh Chrishworkspaceh AntTescibuild. xml

compile:

BEUILD 3IUCCEISFUL
Total time: Z seconds

[mkdir] Created dir: C:\Dokuwente und Einstellungen’ Chris) workspace' AintTesthclasses
[dawvac] Compiling 3 source f£iles to C:yDokumente und Einstellungenh Chrish workspace' AntTesthclasses

B Console X Javadoc | Problems | Declaration | Properties | Errar Log i % Ex a8 | = - =0
<kerminated > AntTest build,xml [Ant Build] <:\Program Files\Jawvaljrel . 5,.0_0&\bintjavaw, exe (Sep 20, 2006 11:30:34 AM)

Buildfile: C:hZDokuwente und EinstellungenhChrishworkspace' intTestibuild. xml -
compile:

EUILD SUCCEZSIFUL

Total time: 657 milliseconds v

i 2009

SOFTENG 254

The University of Auckland | New Zealand

Software
Engineering

‘The University of Auckland

Best Practices ‘LSE

. Use Simple Targets

- Each target should do a single well defined job

- Targets that do foo much make the build harder to
maintain and should be split up into multiple targets
with dependencies between them

. Standardize Target Names

Makes it easier to understand and switch between build
files

. Use Properties for Configurability

Properties should be defined for:
- Any information that needs to be configured
- Any information that might change

- Any information that is used in more than one place
19

|1 2009]

SOFTE

The University of Auckland | New Zealand

«SE So{tware

Source Code Formatting
with Eclipse

Man is a strange animal.
He generally cannot read the
hanawriting on the wall
until his back is up against it.
(Adlai E. Stevenson)

20

2009)|

<
m
>
Py

SOFTENG 254

The University of Auckland | New Zealand

Source Code Formatting

with Eclipse

Software

Engineering

‘LSE

‘ The University of Auckland

* Most projects use a coding style standard (e.g. see XP practice)
* Helps to read code, e.g. indentation follows code structure
» Choose/define/customize a coding style profile with

Window -> Preferences -> Java -> Code

& Preferences |Z|@@

type Filker bext

General
Ank
Green
Help
Install{Update
= Java

Appearance

Euild Path

= Code Style

Code Templates

Organize Impoarks
Compiler
Debug
Editor
Installed JREs
Junit
Properties Files Edito
Visual Editar
Plug-in Development
Run/Debug
Sangam Preferences
ayncshare Preferences
Team

< >

=

Configure Project Specific SM

Formatter

Select a profile:

Java Conventions [builk-in]

Preview:
S ~

* b zample source file for the code formatter)

w

package mypackage;

import Jjava.util.LinkedList:

public class MyvInt3tack {
private final LinkedList f5tack:

public MyIntS3tack()] {
f3tack = new LinkedList(]:
i

v
< >

[Resture Defaulks] l Apply]

I ok] [Zancel]

tyle -> Formatter

Show / change
— coding style profile

Apply coding style profile
to editor by selecting code
and choosing Source->Format

Source QA==

Toggle Comment
| Add Block Commgnt
i Remove Block Comment

aenerate Elemgnt Comment
1

Shift Right
| shift Left
| Correct Indentation

. Format Element %

21

:2009)|

SOFTENG 254

The University of Auckland | New Zealand

Source Code Formatting

with Eclipse

SE Software
Engineering
‘ The University of Auckland

Full control over

8 e Indentation

*
Indentation size: class Example | ° Placemen.l- Of braces

int[] mwyirray = { 1, 2, 3, 4, .

- Whitespace

Alignment of fields in class declarations .
[Align fields in calumis String someString = "Hella": ¢ Bl(lnk llnes
Indent double =Double = 3.0; o T\JEBVV Iir]eafg

[] peclarations within class bodsy

& Edit Profile ‘'my standard’

Indentation |Braces White Space | Blank Lines || Mew Lines | Conkral Staterments | Line Wrapping || Cormments

Gaeneral sekkings Presview:

Tab policy: Mixed fEE

>
[]

[]use tabs anly For leading indentations

Tab size:

int thelInt = 1;

void fooi(int a, int b, int c,

e - Control statements

Declarations within enum constants case 0O: B

Declarations within annotation dedaration Other.doFool]: ° Ll ne w r'Clp p | ng
break;
Statements within method/constructor body

default:
Statements within blocks Other.doBaz (] : ¢ CO mmenTS

Declarations within enum declaration

[] statements within ‘switch' body b
¥
Statements within 'case’ bady
[+] break’ statements void bar (List w] {
; for (int i = 0: i <« 10: i-¥
Empty |
[JEmpty lines ¢ I >
':?:' QK] l Cancel 2 2

i 2009

SOFTENG 254

The University of Auckland | New Zealand

. Sof
%&Todws Summary ‘ASE Otmgff

\
SF NN

Documentation tools like JavaDoc generate API
documentation from source code annotations

Build tools like Ant automate the build process

- Manage different build configurations
with build scripts

- Tasks are pieces of code defining what is done

- Targets define sets of tasks that belong together
- Targets can depend on other targets

- Properties can be used to configure a build script

+ Source code formatting can be used to enforce

coding style guides automatically

23

i 2009

SOFTENG 254

The University of Auckland | New Zealand

Software
Engineering

‘The University of Auckland

Quiz ‘LSE

How does JavaDoc generate an API documentation
from source code?

What are the advantages of using a build tool?

How do build scripts work? Explain targets, tasks
and properties.

24

