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Once upon a time…
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…a project was started in a fortress, to automate some business process.
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p j f p
The team was motivated and the architect was bright.
Everyone was busy writing code, but no documentation was in sight.
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 Eve y e wa b y w iti g e, b t e tati wa i ight
The architect spent sleepless nights, worked with the team in endless fights.
And then the time came of deployment for the first customer’s enjoyment
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And then the time came of deployment,  for the first customer s enjoyment…
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Changing code in one place made other code fall.
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And the code was full of bugs and bloat.
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Today’s Outline
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• JavaDoc
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 • The ANT Build Tool
• Source Code Formatting with Eclipse
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JavaDoc
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JavaDoc

kl
an

d 
| N

ew
 Z

e

The guy who knows about computers
is the last person you want to have
creating documentation for people
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who don't understand computers. 

(Adam Osborne)

Th
e 

U
ni

v

4



JavaDoc
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9 • Tool that generates HTML documentation from Java source code
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• Industry standard for documenting Java APIs
• Idea: developers put special comments starting with /** that 

contain documentation in front of classes  fields and methods
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 contain documentation in front of classes, fields and methods
• JavaDoc comments are structured by JavaDoc tags, which are 

keywords that begin with an @ sign
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/** 
* Divides two integer numbers

kl
an

d 
| N

ew
 Z

e

* @author Christof Lutteroth
* @param x Dividend
* @param y Divisor
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* @return x divided by y
* @throws ArithmeticException if y==0
*/
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int div(int x, int y) { return x/y; } 



JavaDoc Tags
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@author name Specifies developer name
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@version number Add version number to a class or method
@param name description Add description for a method parameter
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@return description Add a description for the method return 
value

@thro s className Describes an exception that a method 
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@throws className 
description

Describes an exception that a method 
might throw (synonym to @exception)

@see reference Adds a reference to something else
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@since text Add a comment since when a 

class/field/method exists
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@deprecated Marks a method as deprecated
{@link 
package class#member

Add a link to the documentation of some 
other class/field/method
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JavaDoc in Eclipse
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• Eclipse has auto-insertion feature 

for JavaDoc comments
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for JavaDoc comments
1. Move cursor into line before 

type/method/field
2 t  /** d ss t
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 2. type /** and press enter

• Generating the documentation
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g
1. From the menu: Project -> 

Generate Javadoc…
2 Select location of 
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javadoc.exe

3. Select folder for 
documentation;
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k documentation;
typically /doc in project folder

4. Many other settings about 
appearance of documentation
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View JavaDoc in Eclipse
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1. In JavaDoc view when identifiers are selected by 
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double-clicking on them

2. In tooltip when hoovering mouse pointer over 
identifier
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 identifier
3. In help view under section "Java help" when cursor is 

on identifier
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on identifier
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The ANT Build Tool
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The ANT Build Tool
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Ants can carry more than
50 times their body weight  
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k 50 times their body weight. 
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The Build Process
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9 The generation of end-user artefacts (executable programs, 

documentation, packaged files) from developer artefacts 
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documentation, packaged files) from developer artefacts 
(source code, models, …)
– Can involve many complex steps

• Getting latest stable source code from a VCS (e.g. SVN)
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 Getting latest stable source code from a VCS (e.g. SVN)
• Compilation of source code files, linking (e.g. javac)
• Running tests (e.g. JUnit)
• Generation of documentation (e g  JavaDoc)
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Generation of documentation (e.g. JavaDoc)
• Packaging (e.g. jar)
• Deployment (e.g. copying package to a server with ftp)

Clean up (e g  deleting old or redundant files)
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– Different build processes for different product variants

(e.g. “enterprise” and “home” versions)

ve
rs

ity
 o

f A
uc

k

SVN
SVN

update

javac

jar .jar
.java
files

.class
files

html
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Build Tools
00
9 • Build tools automate the build process

B ild  i  d t d/ ifi d i   b ild i t
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– Build process is documented/specified in a build script
– Much faster than manual build
– Helps to perform builds exactly the same each time
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 Helps to perform builds exactly the same each time
(less mistakes)

– Can be used to manage different build processes
– Helps close the gap between the development  
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– Helps close the gap between the development, 
integration, test, and production environments

• Orchestrate the build process;
usually invoke other tools for doing the work
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• Can be triggered by other tools,

e.g. for nightly builds or continuous integration
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Targets and Dependencies
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• The different steps in a build process are called targets

(“building a target” refers to the outcome of a step)
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( g g p)
• Usually there are dependencies between targets, e.g.

– Get latest version before compiling source code
– Compile source code before packaging
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 Compile source code before packaging
• Targets have to be built following the dependencies
• Target dependencies are transitive

(if A→B and B→C then A→C)
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(if A B and B C then A C)
• Build process can be optimized by executing targets only when 

necessary (e.g. recompile class only if .java file has changed)
• Example: dependency between targets in C++ project
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calc
x→y = x depends on y

ve
rs

ity
 o

f A
uc

k

main.o math.o
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The ANT Build Tool
00
9 • Platform-independent, open-source scripting tool for 

automating build processes
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automating build processes
• Uses XML files to describe the build process and its 

dependencies (default script name: build.xml)
I l d i  J d i il  i d d f   i h 
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 • Implemented in Java and primarily intended for use with 
Java; de facto standard

• Solves portability problems of older build tools (e.g. 
k )
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p y p ( g
make)
– ANT provides built-in functionality for many tasks
– Built-in functions are guaranteed to behave (nearly) 
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identically on all platforms

• An ANT script defines a project with targets
Target: set of tasks you want to be executed 
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– Task: piece of code that can be executed

• When starting ANT, you can select the target(s) to be 
t d
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Projects and Targets
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• <project> is the top level element; has three optional 

attributes: 
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– name: the name of the project
– default: the default target (when no target is chosen)
– basedir: the base directory for relative paths
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 basedir: the base directory for relative paths
• <target> attributes:

– name: the name of the target (mandatory)
depends: list of targets that it depends on (optional)
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– depends: list of targets that it depends on (optional)
– description: short target description (optional)

• In the example: A is executed first, then B, then C, and finally D
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<?xml version="1.0"?>
<project name="DependencyDemo"> 
<target name="A"/>

D
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k <target name= A />
<target name="B" depends="A"/>
<target name="C" depends="A"/>
<target name="D" depends="B C"/>

B C
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<target name= D  depends= B,C />
</project> A



Tasks
00
9 • Task: piece of code that can be executed and can have multiple 

attributes (arguments) and sub-tags
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• ANT comes with over 80 built-in tasks; many more available 
• Invoking a task:

<name attribute1="value1" attribute2="value2" … />
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<?xml version="1.0"?>
<project name="Hello" default="compile"> 
<target name="compile" description="compile .java files"> 
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<mkdir dir="classes"/> 
<javac srcdir="." destdir="classes"/> 

</target>  <!-- This is an XML comment -->
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<target name="jar" depends="compile" 
description="create a jar file for the application"> 
<jar destfile="hello.jar"> 

ve
rs

ity
 o

f A
uc

k j j
<fileset dir="classes" includes="**/*.class"/> 
<manifest> 
<attribute name="Main-Class" value="HelloProgram"/> 
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</manifest> </jar> </target>

</project>



More Tasks
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9 • File tasks: <copy file tofile>, <delete file>, 

kdi di  h fil  d
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<mkdir dir>, <touch file>, <get src dest>
• Java tasks: <java classname>, <javac srcdir destdir>, 

<javadoc sourcefiles destdir>, <junit …>
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• Packaging: <jar destfile basedir>, <zip destfile 
basedir>, <unzip src dest>

• Misc tasks: <echo message>, <exec command>, <mail …>
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M c ta  g , , 
• Add your own tasks with <taskdef name classname>:
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public class MyPrintTask extends Task {
private String msg;
// setter for attribute "message"
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k // setter for attribute message
public void setMessage(String msg) { this.msg = msg; } 
public void execute() throws BuildException {
System.out.println(msg);
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System.out.println(msg);
} }



Properties
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• Property: case-sensitive name associated with a value

– immutable: once it is set it cannot be changed
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– may be used in the value of task attributes by placing the 

property name between ${ and } in the attribute value 
• <property name="foo.x" value="bar"/> sets the property 

 h  l  (f  f l  d f )
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foo.x to the value bar (for files: location instead of value)

• Many built-in properties, e.g. basedir, ant.file, 
java.class.path, os.name, os.version, file.separator
T   b  d ll d h l b
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• Targets can be conditionally executed with special attributes:
– if: executes target only if a property is set
– unless: executes target only if property is not set
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<?xml version="1.0"?>
<project name="MyProject">
<property name="classdir" location="classes"/>
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<target name="compile">
<javac srcdir="." destdir="${classdir}"/> </target>

<target name="workaround-code" if="system-has-bug"/>
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<target name="normal-code" unless="system-has-bug"/>

</project>



ANT and Eclipse
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1. Create a text file build.xml in 
YEAR

20
 2

54

the main folder of your project
2. Open Ant view and add the build 
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file by dragging it into the view
3. Double-click target to execute it
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Best Practices
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9 1. Use Simple Targets
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– Each target should do a single well defined job 
– Targets that do too much make the build harder to 
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maintain and should be split up into multiple targets 
with dependencies between them

2 Standardize Target Names

ea
la

nd

2. Standardize Target Names
Makes it easier to understand and switch between build 
files
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3. Use Properties for Configurability
Properties should be defined for: 

A  i f i  h  d   b  fi d 
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– Any information that might change 

An  inf m ti n th t is us d in m  th n n  pl c  
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– Any information that is used in more than one place 
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Source Code Formatting
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with Eclipse
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Man is a strange animal.
He generally cannot read the 

handwriting on the wall 
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k handwriting on the wall 
until his back is up against it. 

(Adlai E. Stevenson)
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Source Code Formatting
ith Eclips
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with Eclipse
• Most projects use a coding style standard (e.g. see XP practice) 

H l  t  d d   i d t ti  f ll  d  t t
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• Helps to read code, e.g. indentation follows code structure
• Choose/define/customize a coding style profile with 

Window -> Preferences -> Java -> Code Style -> Formatter
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Show / change
coding style profile
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Apply coding style profile 
to editor by selecting code

and choosing Source->Format
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Source Code Formatting
ith Eclips
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with Eclipse
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Full control over
• Indentation

Pl t f b
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 • Placement of braces
• Whitespace
• Blank lines
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Blank lines
• New lines
• Control statements
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• Line wrapping
• Comments
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Today’s Summary
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• Documentation tools like JavaDoc generate API 
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g
documentation from source code annotations

• Build tools like Ant automate the build process
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– Manage different build configurations 
with build scripts
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– Tasks are pieces of code defining what is done
– Targets define sets of tasks that belong together
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– Targets can depend on other targets
– Properties can be used to configure a build script
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• Source code formatting can be used to enforce 
coding style guides automatically
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Quiz
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1. How does JavaDoc generate an API documentation 
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g
from source code?
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2. What are the advantages of using a build tool?
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3. How do build scripts work? Explain targets, tasks 
and properties.

kl
an

d 
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e 

U
ni

v

24


