
00
9

YEAR

20
 2

54

Quality Assurance
More Tools

S
O

FT
E

N
G

 More Tools

ea
la

nd Part II - Lecture 8

kl
an

d 
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e 

U
ni

v

1



Once upon a time…
00
9

p

…a project was started in a fortress, to automate some business process.
YEAR

20
 2

54

p j f p
The team was motivated and the architect was bright.
Everyone was busy writing code, but no documentation was in sight.

S
O

FT
E

N
G

 Eve y e wa b y w iti g e, b t e tati wa i ight
The architect spent sleepless nights, worked with the team in endless fights.
And then the time came of deployment for the first customer’s enjoyment

ea
la

nd

And then the time came of deployment,  for the first customer s enjoyment…

S i t f lfill d b t t ll

kl
an

d 
| N

ew
 Z

e Some requirements were fulfilled, but not all.
Changing code in one place made other code fall.
Th h d l d l l d

ve
rs

ity
 o

f A
uc

k The system had problems under real load,
And the code was full of bugs and bloat.

Th
e 

U
ni

v

Read more at http://vidhujoshua.blogspot.co.nz/2009/05/analysis-of-failed-software-project.html 2



Today’s Outline
00
9

y

YEAR

20
 2

54

• JavaDoc
Th  ANT B ild T l

S
O

FT
E

N
G

 • The ANT Build Tool
• Source Code Formatting with Eclipse

ea
la

nd
kl

an
d 

| N
ew

 Z
e

ve
rs

ity
 o

f A
uc

k
Th

e 
U

ni
v

3



00
9

YEAR

20
 2

54
S

O
FT

E
N

G
 

JavaDoc

ea
la

nd

JavaDoc

kl
an

d 
| N

ew
 Z

e

The guy who knows about computers
is the last person you want to have
creating documentation for people

ve
rs

ity
 o

f A
uc

k g p p
who don't understand computers. 

(Adam Osborne)

Th
e 

U
ni

v

4



JavaDoc
00
9 • Tool that generates HTML documentation from Java source code

YEAR

20
 2

54

• Industry standard for documenting Java APIs
• Idea: developers put special comments starting with /** that 

contain documentation in front of classes  fields and methods

S
O

FT
E

N
G

 contain documentation in front of classes, fields and methods
• JavaDoc comments are structured by JavaDoc tags, which are 

keywords that begin with an @ sign

ea
la

nd

/** 
* Divides two integer numbers

kl
an

d 
| N

ew
 Z

e

* @author Christof Lutteroth
* @param x Dividend
* @param y Divisor

ve
rs

ity
 o

f A
uc

k p y
* @return x divided by y
* @throws ArithmeticException if y==0
*/

Th
e 

U
ni

v

5

/
int div(int x, int y) { return x/y; } 



JavaDoc Tags
00
9

g
@author name Specifies developer name

YEAR

20
 2

54

@version number Add version number to a class or method
@param name description Add description for a method parameter

S
O

FT
E

N
G

 

@return description Add a description for the method return 
value

@thro s className Describes an exception that a method 

ea
la

nd

@throws className 
description

Describes an exception that a method 
might throw (synonym to @exception)

@see reference Adds a reference to something else

kl
an

d 
| N

ew
 Z

e g
@since text Add a comment since when a 

class/field/method exists

ve
rs

ity
 o

f A
uc

k

@deprecated Marks a method as deprecated
{@link 
package class#member

Add a link to the documentation of some 
other class/field/method

Th
e 

U
ni

v

6

package.class#member
label} 

other class/field/method



JavaDoc in Eclipse
00
9

p
• Eclipse has auto-insertion feature 

for JavaDoc comments
YEAR

20
 2

54

for JavaDoc comments
1. Move cursor into line before 

type/method/field
2 t  /** d ss t

S
O

FT
E

N
G

 2. type /** and press enter

• Generating the documentation

ea
la

nd

g
1. From the menu: Project -> 

Generate Javadoc…
2 Select location of 

kl
an

d 
| N

ew
 Z

e 2. Select location of 
javadoc.exe

3. Select folder for 
documentation;

ve
rs

ity
 o

f A
uc

k documentation;
typically /doc in project folder

4. Many other settings about 
appearance of documentation

Th
e 

U
ni

v

7

appearance of documentation…
5. Click finish



View JavaDoc in Eclipse
00
9

p

1. In JavaDoc view when identifiers are selected by 
YEAR

20
 2

54

y
double-clicking on them

2. In tooltip when hoovering mouse pointer over 
identifier

S
O

FT
E

N
G

 identifier
3. In help view under section "Java help" when cursor is 

on identifier

ea
la

nd

on identifier

kl
an

d 
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e 

U
ni

v

8



00
9

YEAR

20
 2

54
S

O
FT

E
N

G
 

The ANT Build Tool

ea
la

nd

The ANT Build Tool

kl
an

d 
| N

ew
 Z

e

Ants can carry more than
50 times their body weight  

ve
rs

ity
 o

f A
uc

k 50 times their body weight. 

Th
e 

U
ni

v

9



The Build Process
00
9 The generation of end-user artefacts (executable programs, 

documentation, packaged files) from developer artefacts 
YEAR

20
 2

54

documentation, packaged files) from developer artefacts 
(source code, models, …)
– Can involve many complex steps

• Getting latest stable source code from a VCS (e.g. SVN)

S
O

FT
E

N
G

 Getting latest stable source code from a VCS (e.g. SVN)
• Compilation of source code files, linking (e.g. javac)
• Running tests (e.g. JUnit)
• Generation of documentation (e g  JavaDoc)

ea
la

nd

Generation of documentation (e.g. JavaDoc)
• Packaging (e.g. jar)
• Deployment (e.g. copying package to a server with ftp)

Clean up (e g  deleting old or redundant files)

kl
an

d 
| N

ew
 Z

e • Clean up (e.g. deleting old or redundant files)
– Different build processes for different product variants

(e.g. “enterprise” and “home” versions)

ve
rs

ity
 o

f A
uc

k

SVN
SVN

update

javac

jar .jar
.java
files

.class
files

html

Th
e 

U
ni

v

10

update
javadoc

.html
files

Build process example



Build Tools
00
9 • Build tools automate the build process

B ild  i  d t d/ ifi d i   b ild i t
YEAR

20
 2

54

– Build process is documented/specified in a build script
– Much faster than manual build
– Helps to perform builds exactly the same each time

S
O

FT
E

N
G

 Helps to perform builds exactly the same each time
(less mistakes)

– Can be used to manage different build processes
– Helps close the gap between the development  

ea
la

nd

– Helps close the gap between the development, 
integration, test, and production environments

• Orchestrate the build process;
usually invoke other tools for doing the work

kl
an

d 
| N

ew
 Z

e usually invoke other tools for doing the work
• Can be triggered by other tools,

e.g. for nightly builds or continuous integration

ve
rs

ity
 o

f A
uc

k
Th

e 
U

ni
v

11



Targets and Dependencies
00
9

g p
• The different steps in a build process are called targets

(“building a target” refers to the outcome of a step)
YEAR

20
 2

54

( g g p)
• Usually there are dependencies between targets, e.g.

– Get latest version before compiling source code
– Compile source code before packaging

S
O

FT
E

N
G

 Compile source code before packaging
• Targets have to be built following the dependencies
• Target dependencies are transitive

(if A→B and B→C then A→C)

ea
la

nd

(if A B and B C then A C)
• Build process can be optimized by executing targets only when 

necessary (e.g. recompile class only if .java file has changed)
• Example: dependency between targets in C++ project

kl
an

d 
| N

ew
 Z

e Example  dependency between targets in C  project

calc
x→y = x depends on y

ve
rs

ity
 o

f A
uc

k

main.o math.o

Th
e 

U
ni

v

12main.cpp math.hmath.cpp



The ANT Build Tool
00
9 • Platform-independent, open-source scripting tool for 

automating build processes
YEAR

20
 2

54

automating build processes
• Uses XML files to describe the build process and its 

dependencies (default script name: build.xml)
I l d i  J d i il  i d d f   i h 

S
O

FT
E

N
G

 • Implemented in Java and primarily intended for use with 
Java; de facto standard

• Solves portability problems of older build tools (e.g. 
k )

ea
la

nd

p y p ( g
make)
– ANT provides built-in functionality for many tasks
– Built-in functions are guaranteed to behave (nearly) 

kl
an

d 
| N

ew
 Z

e Built in functions are guaranteed to behave (nearly) 
identically on all platforms

• An ANT script defines a project with targets
Target: set of tasks you want to be executed 

ve
rs

ity
 o

f A
uc

k – Target: set of tasks you want to be executed 
– Task: piece of code that can be executed

• When starting ANT, you can select the target(s) to be 
t d

Th
e 

U
ni

v

13
executed



Projects and Targets
00
9

j g
• <project> is the top level element; has three optional 

attributes: 
YEAR

20
 2

54

– name: the name of the project
– default: the default target (when no target is chosen)
– basedir: the base directory for relative paths

S
O

FT
E

N
G

 basedir: the base directory for relative paths
• <target> attributes:

– name: the name of the target (mandatory)
depends: list of targets that it depends on (optional)

ea
la

nd

– depends: list of targets that it depends on (optional)
– description: short target description (optional)

• In the example: A is executed first, then B, then C, and finally D

kl
an

d 
| N

ew
 Z

e

<?xml version="1.0"?>
<project name="DependencyDemo"> 
<target name="A"/>

D

ve
rs

ity
 o

f A
uc

k <target name= A />
<target name="B" depends="A"/>
<target name="C" depends="A"/>
<target name="D" depends="B C"/>

B C

Th
e 

U
ni

v

14

<target name= D  depends= B,C />
</project> A



Tasks
00
9 • Task: piece of code that can be executed and can have multiple 

attributes (arguments) and sub-tags

YEAR

20
 2

54

• ANT comes with over 80 built-in tasks; many more available 
• Invoking a task:

<name attribute1="value1" attribute2="value2" … />

S
O

FT
E

N
G

 

<?xml version="1.0"?>
<project name="Hello" default="compile"> 
<target name="compile" description="compile .java files"> 

ea
la

nd

<mkdir dir="classes"/> 
<javac srcdir="." destdir="classes"/> 

</target>  <!-- This is an XML comment -->

kl
an

d 
| N

ew
 Z

e g
<target name="jar" depends="compile" 
description="create a jar file for the application"> 
<jar destfile="hello.jar"> 

ve
rs

ity
 o

f A
uc

k j j
<fileset dir="classes" includes="**/*.class"/> 
<manifest> 
<attribute name="Main-Class" value="HelloProgram"/> 

Th
e 

U
ni

v

15

g /
</manifest> </jar> </target>

</project>



More Tasks
00
9 • File tasks: <copy file tofile>, <delete file>, 

kdi di  h fil  d
YEAR

20
 2

54

<mkdir dir>, <touch file>, <get src dest>
• Java tasks: <java classname>, <javac srcdir destdir>, 

<javadoc sourcefiles destdir>, <junit …>

S
O

FT
E

N
G

 

• Packaging: <jar destfile basedir>, <zip destfile 
basedir>, <unzip src dest>

• Misc tasks: <echo message>, <exec command>, <mail …>

ea
la

nd

M c ta  g , , 
• Add your own tasks with <taskdef name classname>:

kl
an

d 
| N

ew
 Z

e …
public class MyPrintTask extends Task {
private String msg;
// setter for attribute "message"

ve
rs

ity
 o

f A
uc

k // setter for attribute message
public void setMessage(String msg) { this.msg = msg; } 
public void execute() throws BuildException {
System.out.println(msg);

Th
e 

U
ni

v

16

System.out.println(msg);
} }



Properties
00
9

p
• Property: case-sensitive name associated with a value

– immutable: once it is set it cannot be changed
YEAR

20
 2

54

g
– may be used in the value of task attributes by placing the 

property name between ${ and } in the attribute value 
• <property name="foo.x" value="bar"/> sets the property 

 h  l  (f  f l  d f )

S
O

FT
E

N
G

 p p y
foo.x to the value bar (for files: location instead of value)

• Many built-in properties, e.g. basedir, ant.file, 
java.class.path, os.name, os.version, file.separator
T   b  d ll d h l b

ea
la

nd

• Targets can be conditionally executed with special attributes:
– if: executes target only if a property is set
– unless: executes target only if property is not set

kl
an

d 
| N

ew
 Z

e g y p p y
<?xml version="1.0"?>
<project name="MyProject">
<property name="classdir" location="classes"/>

ve
rs

ity
 o

f A
uc

k p p y
<target name="compile">
<javac srcdir="." destdir="${classdir}"/> </target>

<target name="workaround-code" if="system-has-bug"/>

Th
e 

U
ni

v

17

g y g /
<target name="normal-code" unless="system-has-bug"/>

</project>



ANT and Eclipse
00
9

p

1. Create a text file build.xml in 
YEAR

20
 2

54

the main folder of your project
2. Open Ant view and add the build 

S
O

FT
E

N
G

 

file by dragging it into the view
3. Double-click target to execute it

ea
la

nd
kl

an
d 

| N
ew

 Z
e

ve
rs

ity
 o

f A
uc

k
Th

e 
U

ni
v

18



Best Practices
00
9 1. Use Simple Targets

YEAR

20
 2

54

p g
– Each target should do a single well defined job 
– Targets that do too much make the build harder to 

S
O

FT
E

N
G

 

maintain and should be split up into multiple targets 
with dependencies between them

2 Standardize Target Names

ea
la

nd

2. Standardize Target Names
Makes it easier to understand and switch between build 
files

kl
an

d 
| N

ew
 Z

e

3. Use Properties for Configurability
Properties should be defined for: 

A  i f i  h  d   b  fi d 

ve
rs

ity
 o

f A
uc

k – Any information that needs to be configured 
– Any information that might change 

An  inf m ti n th t is us d in m  th n n  pl c  

Th
e 

U
ni

v

19

– Any information that is used in more than one place 



00
9

YEAR

20
 2

54
S

O
FT

E
N

G
 

Source Code Formatting

ea
la

nd

with Eclipse

kl
an

d 
| N

ew
 Z

e

Man is a strange animal.
He generally cannot read the 

handwriting on the wall 

ve
rs

ity
 o

f A
uc

k handwriting on the wall 
until his back is up against it. 

(Adlai E. Stevenson)

Th
e 

U
ni

v

20



Source Code Formatting
ith Eclips

00
9

with Eclipse
• Most projects use a coding style standard (e.g. see XP practice) 

H l  t  d d   i d t ti  f ll  d  t t
YEAR

20
 2

54

• Helps to read code, e.g. indentation follows code structure
• Choose/define/customize a coding style profile with 

Window -> Preferences -> Java -> Code Style -> Formatter

S
O

FT
E

N
G

 

Show / change
coding style profile

ea
la

nd

Apply coding style profile 
to editor by selecting code

and choosing Source->Format

kl
an

d 
| N

ew
 Z

e and choosing Source->Format

ve
rs

ity
 o

f A
uc

k
Th

e 
U

ni
v

21



Source Code Formatting
ith Eclips

00
9

with Eclipse

YEAR

20
 2

54

Full control over
• Indentation

Pl t f b

S
O

FT
E

N
G

 • Placement of braces
• Whitespace
• Blank lines

ea
la

nd

Blank lines
• New lines
• Control statements

kl
an

d 
| N

ew
 Z

e

• Line wrapping
• Comments

ve
rs

ity
 o

f A
uc

k
Th

e 
U

ni
v

22



Today’s Summary
00
9

y y

• Documentation tools like JavaDoc generate API 
YEAR

20
 2

54

g
documentation from source code annotations

• Build tools like Ant automate the build process

S
O

FT
E

N
G

 

– Manage different build configurations 
with build scripts

ea
la

nd

– Tasks are pieces of code defining what is done
– Targets define sets of tasks that belong together

kl
an

d 
| N

ew
 Z

e

– Targets can depend on other targets
– Properties can be used to configure a build script

ve
rs

ity
 o

f A
uc

k

• Source code formatting can be used to enforce 
coding style guides automatically

Th
e 

U
ni

v

23



Quiz
00
9

Q

1. How does JavaDoc generate an API documentation 
YEAR

20
 2

54

g
from source code?

S
O

FT
E

N
G

 

2. What are the advantages of using a build tool?

ea
la

nd

3. How do build scripts work? Explain targets, tasks 
and properties.

kl
an

d 
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e 

U
ni

v

24


