
/2
01
2

 2
54

26
/0
9/

Quality Assurance
Version Control

S
O

FT
E

N
G

 Version Control

ea
la

nd Part II - Lecture 7

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

1

Today’s Outline
/2
01
2

y
 2

54
26
/0
9/

• Subversion (SVN)
V i C t l B t P ti

S
O

FT
E

N
G

 • Version Control Best Practices
• Distributed Version Control

ea
la

nd
kl

an
d

| N
ew

 Z
e

ve
rs

ity
 o

f A
uc

k
Th

e
U

ni
v

2

/2
01
2

 2
54

26
/0
9/

S
O

FT
E

N
G

Subversion (SVN)

ea
la

nd

Subversion (SVN)

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

3

Subversion (SVN)
/2
01
2

()

• Centralized open-source VCS; started in 2000

 2
54

26
/0
9/

p
• Developed as replacement for the Concurrent

Versions System (CVS) which started 1986

S
O

FT
E

N
G

• Subversion filesystem versions files and folders
("three dimensional" filesystem)

ea
la

nd

• Each change creates new
revision of the whole
fil /f ld st t

kl
an

d
| N

ew
 Z

e file/folder structure
• Revision names are sequential

natural numbers (0 1 2)

ve
rs

ity
 o

f A
uc

k natural numbers (0, 1, 2, …)

Th
e

U
ni

v

4

Subversion Features
/2
01
2 • Supports merging (recommended) as well as locking

 2
54

26
/0
9/ • Changes are transactions

– Atomic: completely or not at all
Ch n is ith c mmitt d nd b c m s th l t st

S
O

FT
E

N
G

 Change is either committed and becomes the latest
revision, or is aborted

– Interrupted commits do not corrupt repository

ea
la

nd

Interrupted commits do not corrupt repository
• Complete file/folder structure is versioned,

including renames and file metadata

kl
an

d
| N

ew
 Z

e

• Delta encoding and merge algorithms work also with
binary data
C t ti l t h i t d t i

ve
rs

ity
 o

f A
uc

k • Costs are proportional to change size, not data size
• Works with HTTP server: WebDAV/DeltaV protocol

makes it possible to read repository with just a web

Th
e

U
ni

v

5

makes it possible to read repository with just a web
browser

Basic SVN Operations
/2
01
2

p
• Checkout: create a working copy of a repository

 2
54

26
/0
9/ – Choose local folder for working copy

– Enter the URL of the repository
– Choose the revision to check out (HEAD revision is latest one)

S
O

FT
E

N
G

 Choose the revision to check out (HEAD revision is latest one)

• Update: update your working copy to the latest revision
If i i i ff

ea
la

nd

– If no newer revision exists: no effect
– If you have changed your working copy:

latest revision is automatically merged into your working copy

kl
an

d
| N

ew
 Z

e y g y g py
– Textual merging conflicts have to be resolved manually

• Commit: write local changes to the repository

ve
rs

ity
 o

f A
uc

k • Commit: write local changes to the repository
– Fails if your local revision is out of date; update first
– Creates a new revision on success

Th
e

U
ni

v

6

TortoiseSVN
/2
01
2 Check if somebody else has
modified files or has acquired

=Unmodified
=U changed it

(needs commit)

 2
54

26
/0
9/ lock; also for stealing locks

Tell SVN that conflict in files
has been resolved

(needs commit)
=Conflict
=U have lock

(l l t)

S
O

FT
E

N
G

 has been resolved(release later)
=U deleted it
=U added it

Use these instead of normal ones!!!
Also updates version info.

ea
la

nd

Create cheap copy of a folder.

Switch to the version in a cheap
 (l k d)

kl
an

d
| N

ew
 Z

e copy (like updating to it).
Merge revision range of branch
into other branch.

ve
rs

ity
 o

f A
uc

k

Creating a file containing the local
changes or use it to update working
copy

Th
e

U
ni

v

7

copy.
Right-click & drag
= copy/move & update version info

Add, Delete, Rename,
R v rt

/2
01
2

Revert
Add file/folder to the repo

 2
54

26
/0
9/

p
• All new files/folders need to be added

explicitly to the repo

S
O

FT
E

N
G

• Only add source files (e.g. not .class files)
– Other files are generated from them

ea
la

nd

g
– Take up space and are hard to merge

kl
an

d
| N

ew
 Z

e

For deleting and renaming files/folder in the repo use
the SVN commands (don’t delete/rename directly)

ve
rs

ity
 o

f A
uc

k

Revert local changes in a file/folder if you want to go

Th
e

U
ni

v

g y g
back to the last version you got from the repo
(i.e. throw away local modifications) 8

Resolving Conflicts
/2
01
2

g

• After updating SVN might tell you someone committed

 2
54

26
/0
9/

p g g y
a change that conflicts with your local changes

• Resolving the conflict means deciding how to merge the

S
O

FT
E

N
G

conflicting changes
• Supported by editor

h h fli i

ea
la

nd

that shows conflicting
changes and gives
options to resolve it

kl
an

d
| N

ew
 Z

e options to resolve it
(e.g. use only one
of two changes)

ve
rs

ity
 o

f A
uc

k g)
• When conflict is

resolved, you must

Th
e

U
ni

v

y
tell SVN

9

Branching / Tagging
/2
01
2

g gg g

• Creates a copy of a folder in your repository

 2
54

26
/0
9/

py y p y
• Branch: the copy will be used for further development
• Tag: the copy is just for archival and will remain unchanged

S
O

FT
E

N
G

How to do it:

ea
la

nd

1. Select folder to copy from
(right-click on it, use menu)

2 In the dialog:

kl
an

d
| N

ew
 Z

e 2. In the dialog:
select new folder to copy to

3. Select revision of that folder

ve
rs

ity
 o

f A
uc

k 3. Select rev s on of that folder
(usually HEAD)

4. Enter log message

Th
e

U
ni

v

5. Update parent folder of branch or tag to load it
in the local working copy 10

Setting Up a Project in a
SVN R p sit r

/2
01
2

SVN Repository
1. Use repository explorer to connect to repo and use

 2
54

26
/0
9/

p y p p
context menu to create a
folder for your project

S
O

FT
E

N
G

2. Checkout your own local working copy of
of that folder
(use above URL

ea
la

nd

(use above URL
+ your folder name)

3 Add your files and/or create a branch of existing

kl
an

d
| N

ew
 Z

e 3. Add your files, and/or create a branch of existing
resources in the repo if your project is based on them

4 Open the project in Eclipse

ve
rs

ity
 o

f A
uc

k 4. Open the project in Eclipse
– Choose your folder as workspace
– Import the project into the workspace

Th
e

U
ni

v Import the project into the workspace
11

Subversion Tips
/2
01
2

p

1. Don’t forget to add your files/folders to the repo

 2
54

26
/0
9/

g y p
2. Delete and rename only using SVN operations
3. If two SVN clients are running at the same time,

S
O

FT
E

N
G

 f g m m ,
there might be errors like “working copy locked”

4. If something is wrong with working copy, use

ea
la

nd

g g g py
cleanup command

5. If nothing else helps, delete local working copy and

kl
an

d
| N

ew
 Z

e

check out a new one

ve
rs

ity
 o

f A
uc

k

Various other clients available,
e.g. Subclipse plugin for Eclipse

Th
e

U
ni

v

12

/2
01
2

 2
54

26
/0
9/

S
O

FT
E

N
G

Version Control
B t P ti

ea
la

nd

Best Practices

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

13

1. One Change at a Time
/2
01
2

g

Complete one change at a time and commit it

 2
54

26
/0
9/ • If you committing several changes together

you cannot undo/redo them individually
– Sometimes individual changes are needed

S
O

FT
E

N
G

 – Sometimes individual changes are needed
– Sometimes individual changes need to be excluded

ea
la

nd

• Continuous integration (see also XP practice)
– If you make several changes conflicts are much more likely

kl
an

d
| N

ew
 Z

e

– Merging simple changes is much easier

• If you don’t commit and your hard disk crashes

ve
rs

ity
 o

f A
uc

k • If you don t commit and your hard disk crashes…
– Your repository is your backup system
– Even if the repo is destroyed, other developers will

Th
e

U
ni

v p y p
probably have their own local copy

14

2. Don’t Break the Build
/2
01
2

• Only commit changes that preserve

 2
54

26
/0
9/

y g p
system integrity
– No “breaking changes” that make

il ti t sts f il

S
O

FT
E

N
G

 compilation or tests fail

• Test driven development (see also XP practice):

ea
la

nd

• Test-driven development (see also XP practice):
– Write tests for every change
– Run tests before committing (at least some of them)

kl
an

d
| N

ew
 Z

e Run tests before committing (at least some of them)

• Think of others:

ve
rs

ity
 o

f A
uc

k h nk of others
– All other developers will download your changes
– Any problem that was introduced will suddenly be

Th
e

U
ni

v y p y
everyone’s problem

15

3. Only the Source
/2
01
2

y

Commit only source files

 2
54

26
/0
9/

y
• I.e. files that are actually necessary for

your software (including documentation)
N d f l ()

S
O

FT
E

N
G

 • Not generated files (e.g. .class, .exe)
• Not temporary files (e.g. irrelevant data or log files)

ea
la

nd Why?
• Unnecessary files waste space

kl
an

d
| N

ew
 Z

e • Unnecessary files waste space
(other people need to download them
when checking out / updating)

ve
rs

ity
 o

f A
uc

k

g p g
• Most binary files are unmergeable

(easily lead to conflicts that can’t be resolved manually)

Th
e

U
ni

v

16

4. Use the Log
/2
01
2

g

Write a log entry for each change Dear diary

 2
54

26
/0
9/

g y g
• What has been changed and why
• Like a short blog post (Twitter style or more)

S
O

FT
E

N
G

• Easier to find good and bad changes

Revision Time Author Description

ea
la

nd

Revision Time Author Description
4 1am CodeCowboy Added the files
5 1pm CodeCowboy More code

kl
an

d
| N

ew
 Z

e p y
6 2pm CodeCowboy Minor change

Revision Time Author Description

ve
rs

ity
 o

f A
uc

k p
4 1am CodeSheriff Added files from our old repo at http…
5 1pm CodeSheriff Added Order.sort() for sorting OrderItems

Th
e

U
ni

v

17
6 2pm CodeSheriff Bugfix for #67: initialized variable

5. Communicate
/2
01
2

Communicate with the other developers

 2
54

26
/0
9/

p
• Before changing existing code

– See who else is working on it / has worked on it

S
O

FT
E

N
G

 g
– Ask that person about your change before

committing (possibly show them a patch)

ea
la

nd

g p y p

• Before starting something new

kl
an

d
| N

ew
 Z

e g g
– Discuss with co-developers and agree on a design
– Make design proposal, point out design alternatives

ve
rs

ity
 o

f A
uc

k g p p , p g

• Always follow the project guidelines & specifications

Th
e

U
ni

v ways fo ow th proj ct gu n s & sp c f cat ons
18

Version Control
Best Practices (Overview)

/2
01
2

Best Practices (Overview)
1. Complete one change at a time and commit it

 2
54

26
/0
9/ – If you committing several changes together

you cannot undo/redo them individually
– If you don’t commit and your hard disk crashes

S
O

FT
E

N
G

 – If you don t commit and your hard disk crashes…
2. Only commit changes that preserve system integrity

– No “breaking changes” that make compilation or tests fail

ea
la

nd

g g p
3. Commit only source files (e.g. not .class files)
4. Write a log entry for each change

kl
an

d
| N

ew
 Z

e

– What has been changed and why
5. Communicate with the other developers

– See who else is working on a part before changing it

Dear diary

ve
rs

ity
 o

f A
uc

k – See who else is working on a part before changing it
– Discuss and agree on a design
– Follow the project guidelines & specifications

Th
e

U
ni

v

19

p j g p

/2
01
2

 2
54

26
/0
9/

S
O

FT
E

N
G

Distributed
V i C t l

ea
la

nd

Version Control

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

20

Distributed
V rsi n C ntr l

/2
01
2

Version Control
Every developer has their own local repository

 2
54

26
/0
9/ (a.k.a. “decentralized version control”)

1. Developers work on their working copy

S
O

FT
E

N
G

2. Developers commit changes of the working copy to
their own local repository first

ea
la

nd

3. Changes can be exchanged between repositories
(“pushed” and “pulled”)

kl
an

d
| N

ew
 Z

e

Local
Repository

Working
Copy

ve
rs

ity
 o

f A
uc

k

Network

Th
e

U
ni

v

21
Local

Repository
Working

Copy

Push and Pull
/2
01
2

Push
• Once developers have committed versions on their

 2
54

26
/0
9/ local repository, they can push them to another repo

• Versions are pushed from local branches
into corresponding remote branches

S
O

FT
E

N
G

 into corresponding remote branches
• Like “commit” from one repo to another
Pull

ea
la

nd

• Latest versions are pulled from remote branches
and put into the corresponding local branches

• Like “update” from one repo to another

kl
an

d
| N

ew
 Z

e • Like update from one repo to another

Local
R it

Working
CA

ve
rs

ity
 o

f A
uc

k Repository

Network

CopyA

Th
e

U
ni

v

22
Local

Repository
Working

Copy
B

Today’s Summary
/2
01
2

y y

• Subversion (SVN) is a popular centralized VCS

 2
54

26
/0
9/ – Supports merging and locking

– Checkout, commit, update
V i t l b t ti d f h &

S
O

FT
E

N
G

 • Version control best practices are good for harmony & success:
One Change at a Time, Don’t Break the Build, Only the Source,
Use the Log, Communicate

ea
la

nd

• Distributed version control systems give every developer their
own repository (version control can be done locally)

kl
an

d
| N

ew
 Z

e

References:
B. Collins-Sussman, B.W. Fitzpatrick, C.M. Pilato. Version Control

ve
rs

ity
 o

f A
uc

k , p ,
with Subversion. 2008. http://svnbook.red-bean.com/

TortoiseSVN Manual: http://tortoisesvn.net/support

Th
e

U
ni

v

23

Quiz
/2
01
2

Q

1. What are the steps of working with a SVN

 2
54

26
/0
9/

p g
repository?

S
O

FT
E

N
G

2. Explain 3 best practices of version control and
describe what could happen if they are not followed.

ea
la

nd 3. What is the main characteristic of distributed

kl
an

d
| N

ew
 Z

e

version control systems?

ve
rs

ity
 o

f A
uc

k
Th

e
U

ni
v

24

