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• Subversion (SVN)
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 • Version Control Best Practices
• Distributed Version Control
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Subversion (SVN)
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Subversion (SVN)
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• Centralized open-source VCS; started in 2000
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• Developed as replacement for the Concurrent 

Versions System (CVS) which started 1986
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• Subversion filesystem versions files and folders 
("three dimensional" filesystem)
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• Each change creates new 
revision of the whole 
fil /f ld  st t
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• Revision names are sequential 

natural numbers (0  1  2  )
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Subversion Features
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2 • Supports merging (recommended) as well as locking
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– Atomic: completely or not at all
Ch n  is ith  c mmitt d nd b c m s th  l t st 

S
O

FT
E

N
G

 Change is either committed and becomes the latest 
revision, or is aborted

– Interrupted commits do not corrupt repository
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Interrupted commits do not corrupt repository
• Complete file/folder structure is versioned, 

including renames and file metadata
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• Delta encoding and merge algorithms work also with 
binary data
C t   ti l t  h  i  t d t  i
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k • Costs are proportional to change size, not data size
• Works with HTTP server: WebDAV/DeltaV protocol 

makes it possible to read repository with just a web 
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Basic SVN Operations
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• Checkout: create a working copy of a repository
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– Enter the URL of the repository
– Choose the revision to check out (HEAD revision is latest one)
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 Choose the revision to check out (HEAD revision is latest one)

• Update: update your working copy to the latest revision
If   i i  i   ff
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– If no newer revision exists: no effect
– If you have changed your working copy: 

latest revision is automatically merged into your working copy
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– Textual merging conflicts have to be resolved manually

• Commit: write local changes to the repository
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k • Commit: write local changes to the repository
– Fails if your local revision is out of date; update first
– Creates a new revision on success
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TortoiseSVN
/2
01
2 Check if somebody else has 
modified files or has acquired 

=Unmodified
=U changed it

(needs commit)
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Tell SVN that conflict in files 
has been resolved

(needs commit)
=Conflict
=U have lock

( l  l t )
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 has been resolved(release later)
=U deleted it
=U added it

Use these instead of normal ones!!! 
Also updates version info.
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Create cheap copy of a folder.

Switch to the version in a cheap 
 (l k  d   )
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Merge revision range of branch 
into other branch.
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Creating a file containing the local 
changes or use it to update working 
copy
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Right-click & drag 
= copy/move & update version info



Add, Delete, Rename, 
R v rt
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Revert
Add file/folder to the repo
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• All new files/folders need to be added

explicitly to the repo
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• Only add source files (e.g. not .class files)
– Other files are generated from them
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g
– Take up space and are hard to merge
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For deleting and renaming files/folder in the repo use 
the SVN commands (don’t delete/rename directly)
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Revert local changes in a file/folder if you want to go 
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Resolving Conflicts
/2
01
2

g

• After updating SVN might tell you someone committed 
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a change that conflicts with your local changes

• Resolving the conflict means deciding how to merge the 
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conflicting changes
• Supported by editor 

h  h  fli i  

ea
la

nd

that shows conflicting 
changes and gives
options to resolve it
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(e.g. use only one
of two changes)
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• When conflict is 

resolved, you must 
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Branching / Tagging
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• Creates a copy of a folder in your repository
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• Branch: the copy will be used for further development
• Tag: the copy is just for archival and will remain unchanged
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How to do it:
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1. Select folder to copy from
(right-click on it, use menu)

2 In the dialog: 
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e 2. In the dialog: 
select new folder to copy to

3. Select revision of that folder
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k 3. Select rev s on of that folder
(usually HEAD)

4. Enter log message
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Setting Up a Project in a 
SVN R p sit r
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SVN Repository
1. Use repository explorer to connect to repo and use 
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context menu to create a 
folder for your project
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2. Checkout your own local working copy of
of that folder 
(use above URL 
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(use above URL 
+ your folder name)

3 Add your files  and/or create a branch of existing 
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e 3. Add your files, and/or create a branch of existing 
resources in the repo if your project is based on them

4 Open the project in Eclipse
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k 4. Open the project in Eclipse
– Choose your folder as workspace
– Import the project into the workspace
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Subversion Tips
/2
01
2

p

1. Don’t forget to add your files/folders to the repo
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2. Delete and rename only using SVN operations
3. If two SVN clients are running at the same time, 
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 f g m m ,
there might be errors like “working copy locked”

4. If something is wrong with working copy, use 
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cleanup command

5. If nothing else helps, delete local working copy and 
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check out a new one
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Various other clients available, 
e.g. Subclipse plugin for Eclipse
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Version Control
B t P ti
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Best Practices
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1. One Change at a Time
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g

Complete one change at a time and commit it
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9/ • If you committing several changes together 

you cannot undo/redo them individually
– Sometimes individual changes are needed
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 – Sometimes individual changes are needed
– Sometimes individual changes need to be excluded
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• Continuous integration (see also XP practice)
– If you make several changes conflicts are much more likely
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– Merging simple changes is much easier

• If you don’t commit and your hard disk crashes

ve
rs

ity
 o

f A
uc

k • If you don t commit and your hard disk crashes…
– Your repository is your backup system
– Even if the repo is destroyed, other developers will 
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2. Don’t Break the Build
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• Only commit changes that preserve 
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system integrity
– No “breaking changes” that make 

il ti   t sts f il
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 compilation or tests fail

• Test driven development (see also XP practice): 
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• Test-driven development (see also XP practice): 
– Write tests for every change
– Run tests before committing (at least some of them)
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• Think of others:
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k h nk of others
– All other developers will download your changes
– Any problem that was introduced will suddenly be 
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3. Only the Source
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Commit only source files
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• I.e. files that are actually necessary for

your software (including documentation)
N  d f l  (  )
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 • Not generated files (e.g. .class, .exe)
• Not temporary files (e.g. irrelevant data or log files)
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nd Why?
• Unnecessary files waste space
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(other people need to download them 
when checking out / updating)
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g p g
• Most binary files are unmergeable

(easily lead to conflicts that can’t be resolved manually)
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4. Use the Log
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Write a log entry for each change Dear diary
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• What has been changed and why
• Like a short blog post (Twitter style or more)
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• Easier to find good and bad changes

Revision Time Author Description

ea
la

nd

Revision Time Author Description
4 1am CodeCowboy Added the files
5 1pm CodeCowboy More code
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6 2pm CodeCowboy Minor change

Revision Time Author Description
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k p
4 1am CodeSheriff Added files from our old repo at http…
5 1pm CodeSheriff Added Order.sort() for sorting OrderItems
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5. Communicate
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Communicate with the other developers
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• Before changing existing code

– See who else is working on it / has worked on it
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 g
– Ask that person about your change before 

committing (possibly show them a patch)
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• Before starting something new
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– Discuss with co-developers and agree on a design
– Make design proposal, point out design alternatives
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• Always follow the project guidelines & specifications
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Version Control
Best Practices (Overview)
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Best Practices (Overview)
1. Complete one change at a time and commit it
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9/ – If you committing several changes together 

you cannot undo/redo them individually
– If you don’t commit and your hard disk crashes
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 – If you don t commit and your hard disk crashes…
2. Only commit changes that preserve system integrity

– No “breaking changes” that make compilation or tests fail
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3. Commit only source files (e.g. not .class files)
4. Write a log entry for each change
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– What has been changed and why
5. Communicate with the other developers

– See who else is working on a part before changing it

Dear diary
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k – See who else is working on a part before changing it
– Discuss and agree on a design
– Follow the project guidelines & specifications
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Distributed
V i  C t l
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Version Control

kl
an

d 
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e 

U
ni

v

20



Distributed
V rsi n C ntr l
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Version Control
Every developer has their own local repository
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1. Developers work on their working copy
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2. Developers commit changes of the working copy to 
their own local repository first
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3. Changes can be exchanged between repositories 
(“pushed” and “pulled”)
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Local
Repository

Working
Copy
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Network
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Push and Pull
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Push
• Once developers have committed versions on their
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• Versions are pushed from local branches 
into corresponding remote branches
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 into corresponding remote branches
• Like “commit” from one repo to another
Pull
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• Latest versions are pulled from remote branches
and put into the corresponding local branches

• Like “update” from one repo to another
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e • Like update  from one repo to another

Local
R it

Working
CA
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k Repository

Network

CopyA
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Today’s Summary
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• Subversion (SVN) is a popular centralized VCS

 2
54

26
/0
9/ – Supports merging and locking

– Checkout, commit, update
V i  t l b t ti  d f  h  & 
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 • Version control best practices are good for harmony & success:
One Change at a Time, Don’t Break the Build, Only the Source, 
Use the Log, Communicate
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• Distributed version control systems give every developer their 
own repository (version control can be done locally)
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Quiz
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1. What are the steps of working with a SVN 
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2. Explain 3 best practices of version control and 
describe what could happen if they are not followed.
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nd 3. What is the main characteristic of distributed 
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version control systems?
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