|| 21/09/2012 “

NG 254

SOFTE

The University of Auckland | New Zealand

o

Software

Englneerm

Quality Assurance
Version Control 1

Part IT - Lecture 6

eeeeeeeeeeeeeeeeeeeeee

21/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Today's Outline

- Version Control
* Managing Concurrency

‘LSE

Software

Engineering

‘ The University of Auckland

21/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

& . Have always

Version Control

used version
control/

Has never
used version
control/

(LSE

Software

Engineering

‘The University of Auckland

Engineering
‘The University of Auckland

21/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Version Control ‘LSE

Common problems in a software project:
- A change heeds to be undone
- Old code that was overwritten would be useful again

- Several developers work on the same program part
simultaneously

- How do I get the latest version of the code?

_/

ion: a Version Control System
- Manages a common repository for I artefacts
- Controls concurrent access

- Creates new version for each change (redo/undo
possible)

- Helps to merge several contributions fo same part

21/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Version Control System ‘LSE

Netvlvork

) e |<
Ol e 1<
Ol <

Developers work on their local working copies

Software

Engineering

‘The University of Auckland

Developers synchronize their working copy with the repository

Repository usually uses delta encoding for the versions
Two ways to avoid conflicts: locking and merging

21/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software
Engineering

‘The University of Auckland

Product Space and ‘LSE
Version Space
Product space: What is versioned? How is the data organized?

Just files: each file has a version number which is increased
when the file is changed (e.g. CVS)

Files and folders: the whole file-folder structure has a single

version number which is increased for any change done to any
file/folder (e.g. SVN)

Other data models, e.g. PD model in PDStore (instances, links)

Version Space: How is it versioned? How are versions organized?

Version identifiers:
e.g. serial numbers (1, 2, 3, ...), dates (e.g. 20060901), ...

Version history:
How are versions ordered? Parent-version / child-version
Versions with several parents? -> Merging
Versions with several children? -> Branching

21/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

Delta Encoding ‘LSE

Storing every version of a file takes up a lot space
Idea: just store differences between versions

Differences (“deltas” / "diffs") can be calculated
automatically with various algorithms

Deltas can be recorded in a separate file and used to update
files (e.g. for "patches")

‘ The University of Auckland

Version 1: Version 2:

1 class X { class X {

2 // todo | ‘ int mnQ {

3 void mQO { j‘> - <: return O;

4} L

> 7 7 b d 7
Delta:

Line 2: delete
Line 3: “int” for ’void”
Line 4: 1nsert “return O;”[7 7

21/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

The Unified Diff Format (LSE Software

Standard format for
exchanging patches
understood by most VCS

Example:

remove comment and
insert “return;”
Line-oriented:

only full line insertions
and full line deletions

No line parts or moving

‘ The University of Auckland

Index: X.java <——— Filename

-—— X.java (revision 6094)
+++ X.java (working copy)
@@ -1,5 +1,5 @@ .

class X { Old and new
— // todo \ version IDs

void mQ)
+ return; List of text chunks:

\ -OldStart #lines
¥

+NewStart #lines
+ for line add, - for line delete 7

Some leading and trailing lines for each chunk for
“fuzzy" patching (applying patch to version where it

does not fit exactly)

21/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

Branches & Tags ‘LSE

‘The University of Auckland

Branches: different copies of a project which are developed
simultaneously; "self-maintained lines of development”
(/branches)

One main branch (/trunk)

Maintenance branches: used for maintaining old versions
which are still widely used (e.g. commercial OS)

Experimental branches: used for trying out new features
before merging them into the trunk

Personal developer branches: for people trying out their
own ideas

. particular marked versions of the project (/tags)

Can be used to refer to and recreate an old version
Actually also like a copy of the project at a particluar point
In time

Difference to branches: usually not changed any more

21/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

1.

w

Software

Engineering

Version Control ‘LSE

‘The University of Auckland

Best Practices

Complete one change at a time and commit it

- If you committing several changes together you cannot
undo/redo them individually

- If you don't commit and your hard disk crashes...

- Continuous integration (see XP)

Only commit changes that preserve system integrity

- No "breaking changes” that make compilation or tests fail
Commit only source files (e.g. not .class files)

Write a log entry for each change

- What has been changed and why

Communicate with the other developers

- See who else is working on a part before changing it

- Discuss and agree on a design

- Follow the project guidelines & specifications -

21/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

‘ The University of Auckland

‘LSE

Managing Concurrency

11

21/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

Concurrent File Access: ‘LSE
"Lost Update” Problem

When sharing f”es d€V€|0P€r'5 1 Two users read the same fite 2 They bath begin to edit their copies
can accidentally overwrite Repository Repository

each others changes ;2 j
Reod Read —

Consider two developers
working on the same file

L }
Two approaches for solving @ @

‘ The University of Auckland

Th |S : Harry Sally Harry Sally
= IQ“eseryed checkouts Harry publishes his version first Sally accidentally overwrites Harry's version
(locki ng") 3 Repository 4 Repasitory
L s
- Unreserverd checkouts
(\\ mer'g i ngll)
Hf'n':e—j L Write

Many old version control

systems support only locking @

(e.g. RCS, SCCS) Harry Sally Harry Sally
Newer systems offer merging
Images taken from

Both approaches have ‘ @@ \ the SVN Book

disadvantages
(see resources page

)12

21/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

Locking

‘ The University of Auckland

SE
(Reserved Checkouts) ‘L

Only One person Can edi-‘- a 1 Harry “locks” file A, then copies 2 While Havry edits, Sally's lock

file at a time ooy sty
Before getting write A D
access developer has to e T
acquire the lock of the [et o

file) ﬁ

Attempts to get lock while ™" i -

someone else has it fail 3 cenios 4 dtheiomtienon

Sally has to wait for Harry Rmﬁ HE”

to release the lock . *T !&

Access to files is serialized | 1

Workflow: ¥

lock-modify-unlock bary 53"? "a"r soly
13

o~

—

o

N

~~

>

S

~~

—

™

<

L0

N

) 1 Tevo users copy the same file
L 2

n Repository
o]

)

A

I—ﬁ'-ﬁ'rd HE'I:?-E'T

Harry Sally
5 Harry compares the fafest version
fiv his owm
Repository

fead

I_ [
%

Harry Sally

The University of Auckland | New Zealand

Merging
(Unreserved Checkouts)

2 They bath begin to edit their copies 3 Safly publishes her version first
Repository Repasitory

B

L Write
- ™. L [=

Harry Sally Harry Sally

7 The merged version is published

Repository

6 A new merged version is created
Repository
- ™
— Wn’re—I

= | o
A [

Harry Sally Harry Sally

[/

‘LSE

- Everybody can modify their working copy whenever they want

* But own changes have to be merged with changes of others before
they can be written to repository (copy-modify-merge)

Software

Engineering

‘ The University of Auckland

4 Harry gels on “oul-of-dafe” error

Repository
-
Write *I

Harry Sally

8 Moy both wsers have each

athers” changes
Repository
ﬁ
Read
Harry Sally

21/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Merging Example

Software
Engineering

‘ The University of Auckland

‘LSE

Developer A
makes a
change

T i

class Test {

String mQ) { Developer B
return '"test'';

makes a
change

class Test {
String s = "'test";
String m(Q {
return s;

¥}

4

class Test {
String m(String t) {
return t;

+ 3

~<::\\§ﬂ?£951/;;;7

class Test {
String s = ""test'’;
String m(String t) {

T

Conflict: return s; or return t; ?2??

15

21/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

Merging: Textual and ‘LSE
Semantic Conflicts

Textual conflicts

- Changes of different developers are very close or overlapping
each other (“overlap”)

- Merge tool cannot automatically combine them
- Merge tool detects such conflicts & reports them to the user

- Version control system will refuse to write a file with
unresolved textual conflicts to the repository

Semantic conflicts (logical conflicts)

- Changes are semantically incompatible, but may not be
overlapping (e.g. in different files)

- Eg. develoEer' A changes method signature of method m,
developer B inserts method calls to m using the old signature

- Non-overlapping semantic conflicts are not detected by a
generic merge algorithml!!

- Can be avoided by following specifications and communicating
with others

Both textual and semantic conflicts have to be resolved by the
user

‘The University of Auckland

16

21/09/2012‘

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

‘The University of Auckland

Locking vs. Merging ‘LSE

Arguments against locking and

1. Administrative problems: people forget releasing
their locks; frequently administrators have to do it

2. Unnecessary serialization: very counter-productive

- Locking prevents people from editing different
parts of the same file

- Inreality conflicts occur rarely and can be
resolved without problems

- Conflicts usually indicate lack of communication
* Developers have not agreed on a proper design

* With mutual agreement on design conflicts are
usually straightforward to merge

3. False sense of security: locking does not prevent
semantic conflicts of distribufed changes (i.e. in
different files)

17

21/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Locking vs. Merging ‘ASE Osgnising

Arguments and against merging

1. "Unmergeable” files: a generic merging tool does not
work for all file types

- For some formats (e.g. for Java class files)
generic merging leads to many conflicts

- Conflicts can be very hard to resolve (e.g. for
binary formats)

- One of two conflicting changes get lost (because
they cannot be merged)

2. Tradition: an organization might have always used a
locking VCS

18

21/09/2012 “

G 254

SOFTEN

The University of Auckland | New Zealand

. Sof
%&Todws Summary ‘ASE Oﬂmg};?

\
SF NN

* A Version Control System manages the
different versions of all artefacts in a project

- Many local working copies and one shared
repository

- Compressed with delta encoding
* Prevents lost updates through locking or merging

- Supports automatic merging and detects
textual conflicts

- Cannot detect non-textual sematic conflicts
- Conflicts always have to be resolved manually

19

21/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software
Engineering

‘The University of Auckland

Quiz ‘LSE

What is delta encoding? Give an example.

What is the difference between locking and

| merging? When should each of it be used?

What is a semantic conflict? Why can it be a
problem?

20

