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Common problems in a software project:
- A change heeds to be undone
- Old code that was overwritten would be useful again

- Several developers work on the same program part
simultaneously

- How do I get the latest version of the code?

\_/

ion: a Version Control System
- Manages a common repository for I artefacts
- Controls concurrent access

- Creates new version for each change (redo/undo
possible)

- Helps to merge several contributions fo same part
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Developers work on their local working copies
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Developers synchronize their working copy with the repository

Repository usually uses delta encoding for the versions
Two ways to avoid conflicts: locking and merging
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Product Space and ‘LSE
Version Space
Product space: What is versioned? How is the data organized?

Just files: each file has a version number which is increased
when the file is changed (e.g. CVS)

Files and folders: the whole file-folder structure has a single

version number which is increased for any change done to any
file/folder (e.g. SVN)

Other data models, e.g. PD model in PDStore (instances, links)

Version Space: How is it versioned? How are versions organized?

Version identifiers:
e.g. serial numbers (1, 2, 3, ...), dates (e.g. 20060901), ...

Version history:
How are versions ordered? Parent-version / child-version
Versions with several parents? -> Merging
Versions with several children? -> Branching
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Storing every version of a file takes up a lot space
Idea: just store differences between versions

Differences (“deltas” / "diffs") can be calculated
automatically with various algorithms

Deltas can be recorded in a separate file and used to update
files (e.g. for "patches")

‘ The University of Auckland

Version 1: Version 2:

1 class X { class X {

2 // todo | ‘ int mnQ {

3  void mQO { j‘> - <: return O;

4} L

> 7 7 b d 7
Delta:

Line 2: delete
Line 3: “int” for ’void”
Line 4: 1nsert “return O;”[7 7
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The Unified Diff Format (LSE Software

Standard format for
exchanging patches
understood by most VCS

Example:

remove comment and
insert “return;”
Line-oriented:

only full line insertions
and full line deletions

No line parts or moving

‘ The University of Auckland

Index: X.java <——— Filename

-—— X.java (revision 6094)
+++ X.java (working copy)
@@ -1,5 +1,5 @@ .

class X { Old and new
— // todo \ version IDs

void mQ)
+ return; List of text chunks:

\ -OldStart #lines
¥

+NewStart #lines
+ for line add, - for line delete 7

Some leading and trailing lines for each chunk for
“fuzzy" patching (applying patch to version where it

does not fit exactly)
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Branches: different copies of a project which are developed
simultaneously; "self-maintained lines of development”
(/branches)

One main branch (/trunk)

Maintenance branches: used for maintaining old versions
which are still widely used (e.g. commercial OS)

Experimental branches: used for trying out new features
before merging them into the trunk

Personal developer branches: for people trying out their
own ideas

. particular marked versions of the project (/tags)

Can be used to refer to and recreate an old version
Actually also like a copy of the project at a particluar point
In time

Difference to branches: usually not changed any more



21/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

1.

w

Software

Engineering

Version Control ‘LSE

‘The University of Auckland

Best Practices

Complete one change at a time and commit it

- If you committing several changes together you cannot
undo/redo them individually

- If you don't commit and your hard disk crashes...

- Continuous integration (see XP)

Only commit changes that preserve system integrity

- No "breaking changes” that make compilation or tests fail
Commit only source files (e.g. not .class files)

Write a log entry for each change

- What has been changed and why

Communicate with the other developers

- See who else is working on a part before changing it

- Discuss and agree on a design

- Follow the project guidelines & specifications -
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Concurrent File Access: ‘LSE
"Lost Update” Problem

When sharing f”es d€V€|0P€r'5 1 Two users read the same fite 2 They bath begin to edit their copies
can accidentally overwrite Repository Repository

each others changes ;2 j
Reod Read —

Consider two developers
working on the same file

L }
Two approaches for solving @ @

‘ The University of Auckland

Th |S : Harry Sally Harry Sally
= IQ“eseryed checkouts Harry publishes his version first Sally accidentally overwrites Harry's version
( locki ng") 3 Repository 4 Repasitory
L s
- Unreserverd checkouts
(\\ mer'g i ngll)
Hf'n':e—j L Write

Many old version control

systems support only locking @

(e.g. RCS, SCCS) Harry Sally Harry Sally
Newer systems offer merging
Images taken from

Both approaches have ‘ @@ \ the SVN Book

disadvantages
(see resources page

)12
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(Reserved Checkouts) ‘L

Only One person Can edi-‘- a 1 Harry “locks” file A, then copies 2 While Havry edits, Sally's lock

file at a time ooy sty
Before getting write A D
access developer has to e T
acquire the lock of the [ et o

file ) ﬁ

Attempts to get lock while ™" i -

someone else has it fail 3 cenios 4 dtheiomtienon

Sally has to wait for Harry Rmﬁ HE”

to release the lock . *T !&

Access to files is serialized | 1

Workflow: ¥

lock-modify-unlock bary 53"? "a"r soly
13



o~

—

o

N

~~

>

S

~~

—

™

<

L0

N

) 1 Tevo users copy the same file
L 2

n Repository
o]

)

A

I—ﬁ'-ﬁ'rd HE'I:?-E'T

Harry Sally
5 Harry compares the fafest version
fiv his owm
Repository

fead

I_ [
%

Harry Sally

The University of Auckland | New Zealand

Merging
(Unreserved Checkouts)

2 They bath begin to edit their copies 3 Safly publishes her version first
Repository Repasitory

B

L Write
- ™. L [ =

Harry Sally Harry Sally

7 The merged version is published

Repository

6 A new merged version is created
Repository
- ™
— Wn’re—I

= | o
A [

Harry Sally Harry Sally

[/

‘LSE

- Everybody can modify their working copy whenever they want

*  But own changes have to be merged with changes of others before
they can be written to repository (copy-modify-merge)

Software

Engineering
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4 Harry gels on “oul-of-dafe” error

Repository
-
Write *I

Harry Sally

8 Moy both wsers have each

athers” changes
Repository
ﬁ
Read
Harry Sally
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Developer A
makes a
change

T i

class Test {

String mQ) { Developer B
return '"test'';

makes a
change

class Test {
String s = "'test";
String m(Q {
return s;

¥}

4

class Test {
String m(String t) {
return t;

+ 3

~<::\\§ﬂ?£951/;;;7

class Test {
String s = ""test'’;
String m(String t) {

T

Conflict: return s; or return t; ?2??

15
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Semantic Conflicts

Textual conflicts

- Changes of different developers are very close or overlapping
each other (“overlap”)

- Merge tool cannot automatically combine them
- Merge tool detects such conflicts & reports them to the user

- Version control system will refuse to write a file with
unresolved textual conflicts to the repository

Semantic conflicts (logical conflicts)

- Changes are semantically incompatible, but may not be
overlapping (e.g. in different files)

- Eg. develoEer' A changes method signature of method m,
developer B inserts method calls to m using the old signature

- Non-overlapping semantic conflicts are not detected by a
generic merge algorithml!!

- Can be avoided by following specifications and communicating
with others

Both textual and semantic conflicts have to be resolved by the
user

‘The University of Auckland

16
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Locking vs. Merging ‘LSE

Arguments against locking and

1. Administrative problems: people forget releasing
their locks; frequently administrators have to do it

2. Unnecessary serialization: very counter-productive

- Locking prevents people from editing different
parts of the same file

- Inreality conflicts occur rarely and can be
resolved without problems

- Conflicts usually indicate lack of communication
* Developers have not agreed on a proper design

* With mutual agreement on design conflicts are
usually straightforward to merge

3. False sense of security: locking does not prevent
semantic conflicts of distribufed changes (i.e. in
different files)

17
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Arguments and against merging

1. "Unmergeable” files: a generic merging tool does not
work for all file types

- For some formats (e.g. for Java class files)
generic merging leads to many conflicts

- Conflicts can be very hard to resolve (e.g. for
binary formats)

- One of two conflicting changes get lost (because
they cannot be merged)

2. Tradition: an organization might have always used a
locking VCS

18
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* A Version Control System manages the
different versions of all artefacts in a project

- Many local working copies and one shared
repository

- Compressed with delta encoding
* Prevents lost updates through locking or merging

- Supports automatic merging and detects
textual conflicts

- Cannot detect non-textual sematic conflicts
- Conflicts always have to be resolved manually

19
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Quiz ‘LSE

What is delta encoding? Give an example.

What is the difference between locking and

| merging? When should each of it be used?

What is a semantic conflict? Why can it be a
problem?

20



