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Version Control
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Version Control
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– A change needs to be undone
– Old code that was overwritten would be useful again
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– Several developers work on the same program part 
simultaneously
H  d  I t th  l t t i f th  d ?
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– How do I get the latest version of the code?

The solution: a Version Control System (VCS)
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e The solution: a Version Control System (VCS)
– Manages a common repository for all artefacts
– Controls concurrent access
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k Controls concurrent access
– Creates new version for each change (redo/undo 

possible)
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– Helps to merge several contributions to same part



Version Control System
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Working
Copy

Repository

Version 4
Version 5
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Working

Copy

Version 1
Version 2

Version 3
Version 4
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• Developers work on their local working copies
• Developers synchronize their working copy with the repository
• Repository usually uses delta encoding for the versions
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• Repository usually uses delta encoding for the versions
• Two ways to avoid conflicts: locking and merging
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Version Space
Product space: What is versioned? How is the data organized?
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when the file is changed (e.g. CVS)
• Files and folders: the whole file-folder structure has a single 
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version number which is increased for any change done to any 
file/folder (e.g. SVN)

• Other data models, e.g. PD model in PDStore (instances, links)
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Other data models, e.g. PD model in PDStore (instances, links)

Version Space: How is it versioned? How are versions organized?
• Version identifiers: 
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e.g. serial numbers (1, 2, 3, …), dates (e.g. 20060901), …
• Version history:

• How are versions ordered? Parent-version / child-version
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k How are versions ordered? Parent version / child version
• Versions with several parents? -> Merging
• Versions with several children? -> Branching
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Delta Encoding
/2
01
2

g
• Storing every version of a file takes up a lot space
• Idea: just store differences between versions
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• Differences (”deltas” / “diffs”) can be calculated 
automatically with various algorithms
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• Deltas can be recorded in a separate file and used to update 
files (e.g. for “patches”)

Version 1: Version 2:
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Version 1:
1 class X {
2 // todo

id () {

Version 2:
class X {

int m() {
t 0Delta
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e 3 void m() {
4 }
5 }

return 0;
}

}

Delta
Encoding
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Delta:
Line 2: delete
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Line 3: “int” for ”void”
Line 4: insert “return 0;”



The Unified Diff Format
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2 • Standard format for 
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Index: X.java
===================

Filename
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understood by most VCS
• Example:

===================
--- X.java (revision 6094)
+++ X.java (working copy)
@@ 1 5 +1 5 @@
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 • Example:
remove comment and
insert “return;”

@@ -1,5 +1,5 @@
class X {

– // todo
id () {

Old and new 
version IDs

ea
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;

• Line-oriented:
only full line insertions 

void m() {
+    return;

}
List of text chunks:

-OldStart,#lines
+NewStart #lines
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and full line deletions

• No line parts or moving
} +NewStart,#lines

+ for line add, - for line delete
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• Some leading and trailing lines for each chunk for 
“fuzzy” patching (applying patch to version where it 
d  t fit tl )
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Branches & Tags
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Branches: different copies of a project which are developed 

i lt l  “ lf i t i d li  f d l t” 

 2
54

21
/0
9/ simultaneously; “self-maintained lines of development” 

(/branches)
– One main branch (/trunk)

S
O

FT
E

N
G

 

– Maintenance branches: used for maintaining old versions 
which are still widely used (e.g. commercial OS)

– Experimental branches: used for trying out new features 
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Exper mental branches  used for try ng out new features 
before merging them into the trunk

– Personal developer branches: for people trying out their 
own ideas
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e own ideas
Tags: particular marked versions of the project (/tags)

– Can be used to refer to and recreate an old version
A t ll  l  lik    f th  j t t  ti l  i t 
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in time

– Difference to branches: usually not changed any more
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Version Control
Best Practices
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Best Practices
1. Complete one change at a time and commit it
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undo/redo them individually
– If you don’t commit and your hard disk crashes
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 – If you don t commit and your hard disk crashes…
– Continuous integration (see XP)

2. Only commit changes that preserve system integrity
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– No “breaking changes” that make compilation or tests fail

3. Commit only source files (e.g. not .class files)
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4. Write a log entry for each change
– What has been changed and why

5 Communicate with the other developers
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k 5. Communicate with the other developers
– See who else is working on a part before changing it
– Discuss and agree on a design
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g g
– Follow the project guidelines & specifications
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Managing Concurrency
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Managing Concurrency
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Concurrent File Access:
“Lost Update” Problem
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Lost Update  Problem
• When sharing files developers 

 id t ll  it 1 2
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• Consider two developers 
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 working on the same file
• Two approaches for solving 

this:
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– Reserved checkouts 
(“locking”)

– Unreserverd checkouts 
3 4

kl
an

d 
| N

ew
 Z
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(“merging”)

• Many old version control 
systems support only locking 
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k systems support only locking 
(e.g. RCS, SCCS)

• Newer systems offer merging
B th h s h  Images taken from
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• Both approaches have 
disadvantages

Images taken from
the SVN Book

(see resources page)



Locking
(Reserved Checkouts)
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• Only one person can edit a 1 2
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file at a time

• Before getting write 
access developer has to 

1 2
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 access developer has to 
acquire the lock of the 
file
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• Attempts to get lock while 
someone else has it fail
S ll  h  t  it f  H  

3 4
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e • Sally has to wait for Harry 
to release the lock

• Access to files is serialized
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• Workflow:

lock-modify-unlock
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Merging 
(Unreserved Checkouts)
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(Unreserved Checkouts)
• Everybody can modify their working copy whenever they want
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they can be written to repository (copy-modify-merge)
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Merging Example
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class Test {

String m() {Developer A Developer B
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} }

Developer A
makes a
change

Developer B
makes a
change
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class Test {
String m(String t) {

class Test {
String s = "test";
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String m(String t) {
return t;

} }

String m() {
return s;

} }
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l T t {

Merge
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k class Test {
String s = "test";
String m(String t) {

fl
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} }



Merging: Textual and 
Semantic Conflicts
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Semantic Conflicts
• Textual conflicts

Ch  f diff t d l    l   l i
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each other (“overlap”)
– Merge tool cannot automatically combine them

M  t l d t t h fli t  & t  th  t  th  
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 – Merge tool detects such conflicts & reports them to the user
– Version control system will refuse to write a file with 

unresolved textual conflicts to the repository
S ti  fli t (l i l fli t )
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• Semantic conflicts (logical conflicts)
– Changes are semantically incompatible, but may not be 

overlapping (e.g. in different files)
E  d l  A h  th d i t  f th d  
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e – E.g. developer A changes method signature of method m, 
developer B inserts method calls to m using the old signature

– Non-overlapping semantic conflicts are not detected by a 
generic merge algorithm!!!
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k generic merge algorithm!!!
– Can be avoided by following specifications and communicating 

with others
• Both textual and semantic conflicts have to be resolved by the 
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• Both textual and semantic conflicts have to be resolved by the 
user



Locking vs. Merging
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Arguments against locking and for merging
1 Administrative problems: people forget releasing 

 2
54

21
/0
9/ 1. Administrative problems: people forget releasing 

their locks; frequently administrators have to do it
2. Unnecessary serialization: very counter-productive
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– Locking prevents people from editing different 

parts of the same file
– In reality conflicts occur rarely and can be 
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– In reality conflicts occur rarely and can be 
resolved without problems

– Conflicts usually indicate lack of communication
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• Developers have not agreed on a proper design
• With mutual agreement on design conflicts are 

usually straightforward to merge
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k usually straightforward to merge
3. False sense of security: locking does not prevent 

semantic conflicts of distributed changes (i.e. in 
different files)
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different files)



Locking vs. Merging
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1. “Unmergeable” files: a generic merging tool does not 

work for all file types
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– For some formats (e.g. for Java class files) 
generic merging leads to many conflicts
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– Conflicts can be very hard to resolve (e.g. for 
binary formats)
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– One of two conflicting changes get lost (because 
they cannot be merged)

2 T diti   i ti  i ht h  l  d  
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k 2. Tradition: an organization might have always used a 
locking VCS
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Today’s Summary
/2
01
2

y y

• A Version Control System manages the 

 2
54

21
/0
9/

y m m g
different versions of all artefacts in a project
– Many local working copies and one shared 
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 Many local working copies and one shared 
repository

– Compressed with delta encoding
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Compressed with delta encoding
• Prevents lost updates through locking or merging

– Supports automatic merging and detects 
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e – Supports automatic merging and detects 
textual conflicts
Cannot detect non textual sematic conflicts
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k – Cannot detect non-textual sematic conflicts
– Conflicts always have to be resolved manually
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Quiz
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1. What is delta encoding? Give an example.
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2. What is the difference between locking and 
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merging? When should each of it be used?
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3. What is a semantic conflict? Why can it be a 
problem?
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