
/2
01
2

 2
54

21
/0
9/

Quality Assurance
Version Control 1

S
O

FT
E

N
G

 Version Control 1

ea
la

nd Part II - Lecture 6

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

1

Today’s Outline
/2
01
2

y
 2

54
21
/0
9/

• Version Control
M i C

S
O

FT
E

N
G

 • Managing Concurrency

ea
la

nd
kl

an
d

| N
ew

 Z
e

ve
rs

ity
 o

f A
uc

k
Th

e
U

ni
v

2

/2
01
2

 2
54

21
/0
9/

S
O

FT
E

N
G

Version Control

ea
la

nd

Version Control

Have always

kl
an

d
| N

ew
 Z

e Have always
used version

control

ve
rs

ity
 o

f A
uc

k

Has never
used version

Th
e

U
ni

v

3
control

Version Control
/2
01
2

Common problems in a software project:

 2
54

21
/0
9/

p p j
– A change needs to be undone
– Old code that was overwritten would be useful again

S
O

FT
E

N
G

– Several developers work on the same program part
simultaneously
H d I t th l t t i f th d ?

ea
la

nd

– How do I get the latest version of the code?

The solution: a Version Control System (VCS)

kl
an

d
| N

ew
 Z

e The solution: a Version Control System (VCS)
– Manages a common repository for all artefacts
– Controls concurrent access

ve
rs

ity
 o

f A
uc

k Controls concurrent access
– Creates new version for each change (redo/undo

possible)

Th
e

U
ni

v

4

p)
– Helps to merge several contributions to same part

Version Control System
/2
01
2

y
Network

 2
54

21
/0
9/

Working
Copy

Repository

S
O

FT
E

N
G

Working
Copy

Repository

Version 4
Version 5

ea
la

nd

Working

Copy

Version 1
Version 2

Version 3
Version 4

kl
an

d
| N

ew
 Z

e Working
Copy

Version 1

ve
rs

ity
 o

f A
uc

k

• Developers work on their local working copies
• Developers synchronize their working copy with the repository
• Repository usually uses delta encoding for the versions

Th
e

U
ni

v

5

• Repository usually uses delta encoding for the versions
• Two ways to avoid conflicts: locking and merging

Product Space and
V rsi n Sp c

/2
01
2

Version Space
Product space: What is versioned? How is the data organized?

 2
54

21
/0
9/ • Just files: each file has a version number which is increased

when the file is changed (e.g. CVS)
• Files and folders: the whole file-folder structure has a single

S
O

FT
E

N
G

 g
version number which is increased for any change done to any
file/folder (e.g. SVN)

• Other data models, e.g. PD model in PDStore (instances, links)

ea
la

nd

Other data models, e.g. PD model in PDStore (instances, links)

Version Space: How is it versioned? How are versions organized?
• Version identifiers:

kl
an

d
| N

ew
 Z

e

e.g. serial numbers (1, 2, 3, …), dates (e.g. 20060901), …
• Version history:

• How are versions ordered? Parent-version / child-version

ve
rs

ity
 o

f A
uc

k How are versions ordered? Parent version / child version
• Versions with several parents? -> Merging
• Versions with several children? -> Branching

Th
e

U
ni

v

6

Delta Encoding
/2
01
2

g
• Storing every version of a file takes up a lot space
• Idea: just store differences between versions

 2
54

21
/0
9/ Idea: just store differences between versions

• Differences (”deltas” / “diffs”) can be calculated
automatically with various algorithms

S
O

FT
E

N
G

• Deltas can be recorded in a separate file and used to update
files (e.g. for “patches”)

Version 1: Version 2:

ea
la

nd

Version 1:
1 class X {
2 // todo

id () {

Version 2:
class X {

int m() {
t 0Delta

kl
an

d
| N

ew
 Z

e 3 void m() {
4 }
5 }

return 0;
}

}

Delta
Encoding

ve
rs

ity
 o

f A
uc

k

Delta:
Line 2: delete

Th
e

U
ni

v

7

Line 3: “int” for ”void”
Line 4: insert “return 0;”

The Unified Diff Format
/2
01
2 • Standard format for

h i t h s
Index: X.java
===================

Filename

 2
54

21
/0
9/ exchanging patches

understood by most VCS
• Example:

===================
--- X.java (revision 6094)
+++ X.java (working copy)
@@ 1 5 +1 5 @@

S
O

FT
E

N
G

 • Example:
remove comment and
insert “return;”

@@ -1,5 +1,5 @@
class X {

– // todo
id () {

Old and new
version IDs

ea
la

nd

;

• Line-oriented:
only full line insertions

void m() {
+ return;

}
List of text chunks:

-OldStart,#lines
+NewStart #lines

kl
an

d
| N

ew
 Z

e y
and full line deletions

• No line parts or moving
} +NewStart,#lines

+ for line add, - for line delete

ve
rs

ity
 o

f A
uc

k

• Some leading and trailing lines for each chunk for
“fuzzy” patching (applying patch to version where it
d t fit tl)

Th
e

U
ni

v does not fit exactly)
8

Branches & Tags
/2
01
2

g
Branches: different copies of a project which are developed

i lt l “ lf i t i d li f d l t”

 2
54

21
/0
9/ simultaneously; “self-maintained lines of development”

(/branches)
– One main branch (/trunk)

S
O

FT
E

N
G

– Maintenance branches: used for maintaining old versions
which are still widely used (e.g. commercial OS)

– Experimental branches: used for trying out new features

ea
la

nd

Exper mental branches used for try ng out new features
before merging them into the trunk

– Personal developer branches: for people trying out their
own ideas

kl
an

d
| N

ew
 Z

e own ideas
Tags: particular marked versions of the project (/tags)

– Can be used to refer to and recreate an old version
A t ll l lik f th j t t ti l i t

ve
rs

ity
 o

f A
uc

k – Actually also like a copy of the project at a particluar point
in time

– Difference to branches: usually not changed any more

Th
e

U
ni

v

9

Version Control
Best Practices

/2
01
2

Best Practices
1. Complete one change at a time and commit it

 2
54

21
/0
9/ – If you committing several changes together you cannot

undo/redo them individually
– If you don’t commit and your hard disk crashes

S
O

FT
E

N
G

 – If you don t commit and your hard disk crashes…
– Continuous integration (see XP)

2. Only commit changes that preserve system integrity

ea
la

nd

y g p y g y
– No “breaking changes” that make compilation or tests fail

3. Commit only source files (e.g. not .class files)

kl
an

d
| N

ew
 Z

e

4. Write a log entry for each change
– What has been changed and why

5 Communicate with the other developers

ve
rs

ity
 o

f A
uc

k 5. Communicate with the other developers
– See who else is working on a part before changing it
– Discuss and agree on a design

Th
e

U
ni

v

10

g g
– Follow the project guidelines & specifications

/2
01
2

 2
54

21
/0
9/

S
O

FT
E

N
G

Managing Concurrency

ea
la

nd

Managing Concurrency

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

11

Concurrent File Access:
“Lost Update” Problem

/2
01
2

Lost Update Problem
• When sharing files developers

 id t ll it 1 2

 2
54

21
/0
9/ can accidentally overwrite

each others changes
• Consider two developers

ki h fil

1 2

S
O

FT
E

N
G

 working on the same file
• Two approaches for solving

this:

ea
la

nd

– Reserved checkouts
(“locking”)

– Unreserverd checkouts
3 4

kl
an

d
| N

ew
 Z

e Unreserverd checkouts
(“merging”)

• Many old version control
systems support only locking

ve
rs

ity
 o

f A
uc

k systems support only locking
(e.g. RCS, SCCS)

• Newer systems offer merging
B th h s h Images taken from

Th
e

U
ni

v

12

• Both approaches have
disadvantages

Images taken from
the SVN Book

(see resources page)

Locking
(Reserved Checkouts)

/2
01
2

(Reserved Checkouts)
• Only one person can edit a 1 2

 2
54

21
/0
9/

y p
file at a time

• Before getting write
access developer has to

1 2

S
O

FT
E

N
G

 access developer has to
acquire the lock of the
file

ea
la

nd

• Attempts to get lock while
someone else has it fail
S ll h t it f H

3 4

kl
an

d
| N

ew
 Z

e • Sally has to wait for Harry
to release the lock

• Access to files is serialized

ve
rs

ity
 o

f A
uc

k Access to files is serialized
• Workflow:

lock-modify-unlock

Th
e

U
ni

v

13

y

Merging
(Unreserved Checkouts)

/2
01
2

(Unreserved Checkouts)
• Everybody can modify their working copy whenever they want

B h h b d i h h f h b f

 2
54

21
/0
9/ • But own changes have to be merged with changes of others before

they can be written to repository (copy-modify-merge)

S
O

FT
E

N
G

1 2 3 4

ea
la

nd
kl

an
d

| N
ew

 Z
e

5 6 7 8

ve
rs

ity
 o

f A
uc

k
Th

e
U

ni
v

14

Merging Example
/2
01
2

g g p
class Test {

String m() {Developer A Developer B

 2
54

21
/0
9/ return "test";

} }

Developer A
makes a
change

Developer B
makes a
change

S
O

FT
E

N
G

class Test {
String m(String t) {

class Test {
String s = "test";

ea
la

nd

String m(String t) {
return t;

} }

String m() {
return s;

} }

kl
an

d
| N

ew
 Z

e } }

l T t {

Merge

ve
rs

ity
 o

f A
uc

k class Test {
String s = "test";
String m(String t) {

fl

Th
e

U
ni

v

15
Conflict: return s; or return t; ???

} }

Merging: Textual and
Semantic Conflicts

/2
01
2

Semantic Conflicts
• Textual conflicts

Ch f diff t d l l l i

 2
54

21
/0
9/ – Changes of different developers are very close or overlapping

each other (“overlap”)
– Merge tool cannot automatically combine them

M t l d t t h fli t & t th t th

S
O

FT
E

N
G

 – Merge tool detects such conflicts & reports them to the user
– Version control system will refuse to write a file with

unresolved textual conflicts to the repository
S ti fli t (l i l fli t)

ea
la

nd

• Semantic conflicts (logical conflicts)
– Changes are semantically incompatible, but may not be

overlapping (e.g. in different files)
E d l A h th d i t f th d

kl
an

d
| N

ew
 Z

e – E.g. developer A changes method signature of method m,
developer B inserts method calls to m using the old signature

– Non-overlapping semantic conflicts are not detected by a
generic merge algorithm!!!

ve
rs

ity
 o

f A
uc

k generic merge algorithm!!!
– Can be avoided by following specifications and communicating

with others
• Both textual and semantic conflicts have to be resolved by the

Th
e

U
ni

v

16

• Both textual and semantic conflicts have to be resolved by the
user

Locking vs. Merging
/2
01
2

g g g
Arguments against locking and for merging
1 Administrative problems: people forget releasing

 2
54

21
/0
9/ 1. Administrative problems: people forget releasing

their locks; frequently administrators have to do it
2. Unnecessary serialization: very counter-productive

S
O

FT
E

N
G

y y p
– Locking prevents people from editing different

parts of the same file
– In reality conflicts occur rarely and can be

ea
la

nd

– In reality conflicts occur rarely and can be
resolved without problems

– Conflicts usually indicate lack of communication

kl
an

d
| N

ew
 Z

e

• Developers have not agreed on a proper design
• With mutual agreement on design conflicts are

usually straightforward to merge

ve
rs

ity
 o

f A
uc

k usually straightforward to merge
3. False sense of security: locking does not prevent

semantic conflicts of distributed changes (i.e. in
different files)

Th
e

U
ni

v

17

different files)

Locking vs. Merging
/2
01
2

g g g

Arguments for locking and against merging

 2
54

21
/0
9/

g g g g g
1. “Unmergeable” files: a generic merging tool does not

work for all file types

S
O

FT
E

N
G

– For some formats (e.g. for Java class files)
generic merging leads to many conflicts

ea
la

nd

– Conflicts can be very hard to resolve (e.g. for
binary formats)

kl
an

d
| N

ew
 Z

e

– One of two conflicting changes get lost (because
they cannot be merged)

2 T diti i ti i ht h l d

ve
rs

ity
 o

f A
uc

k 2. Tradition: an organization might have always used a
locking VCS

Th
e

U
ni

v

18

Today’s Summary
/2
01
2

y y

• A Version Control System manages the

 2
54

21
/0
9/

y m m g
different versions of all artefacts in a project
– Many local working copies and one shared

S
O

FT
E

N
G

 Many local working copies and one shared
repository

– Compressed with delta encoding

ea
la

nd

Compressed with delta encoding
• Prevents lost updates through locking or merging

– Supports automatic merging and detects

kl
an

d
| N

ew
 Z

e – Supports automatic merging and detects
textual conflicts
Cannot detect non textual sematic conflicts

ve
rs

ity
 o

f A
uc

k – Cannot detect non-textual sematic conflicts
– Conflicts always have to be resolved manually

Th
e

U
ni

v

19

Quiz
/2
01
2

Q

1. What is delta encoding? Give an example.

 2
54

21
/0
9/

g p

2. What is the difference between locking and

S
O

FT
E

N
G

 ff g
merging? When should each of it be used?

ea
la

nd

3. What is a semantic conflict? Why can it be a
problem?

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

20

