|| 20/09/2012 “

NG 254

SOFTE

The University of Auckland | New Zealand

o

Software

Englneerm

Quality Assurance
Data Modeling

Part IT - Lecture 5

eeeeeeeeeeeeeeeeeeeeee

20/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

‘LSE

Today's Outline

* More about Modeling
» Data Modeling
* Creating Data Models with UMLet

Software

Engineering

‘ The University of Auckland

N
—
)
N
=~
(o}
-
<
o
N

The University of Auckland | New Zealand

Software

Engineering

‘The University of Auckland

‘LSE

More about Modeling

All models are wrong,
some models are useful/
(George Box)

20/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Models in SE

Data models

Data types and their relations
E.g. ER-diagrams, class
diagrams

Architecture models
Components of a system and
their relations

User interface models
Structure of the UI
(navigation, interaction, ...)
E.g. formcharts, screen
diagrams

Software

Engineering

@

‘ The University of Auckland

gives w
Se
E (
G
active
Diakup Apnlicati
i — a—p MCClGeneric pplication
Applications FF'E:J“SrgLEE]I Modern Script | code
b
r
TCRAP
netwarking
(PPP, etc)
3 Kernel
code
L A r
ShimLib - Apple-developed shim library for serial dvices I
A
| |
LoginForm RegistrationForm
¥
ViewBook ‘\jﬁ?’tegor‘y i
hResult Book Category
4
* AddToCart
:

20/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

More Models in SE ‘LSE

‘The University of Auckland

+ State transition models
System states and transitions
E.g. lexical scanners, game
state machines

+ Source code models pmfmm\.
Structure of program code = | i | |
E.g. abstract syntax trees e O e O sy s ()

(AST)

el Gauge Status
Call ra hs is r=ad by js read by s resd o
[]
g p 4 _start Car Running
il (lgniticn Status ==fruz Soopain
dependency graphs, o L T
d I d. ther CarStatus ="Running z n
ata flow diagrams [ZTL | S
Z]CaNs tha T
& many more... 6 sicall|_suba subc | 0.4 o5 Ll e
1]call 1|call e s
b sicall| _subaa subcc |35 o= 1 b

20/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

Metamodels, Models and

‘ The University of Auckland

‘LSE

Distinguish between model and model instance (data)
Example: the parsimonious data model (PDM)

Model Instances

Metamodel: describes the structure of a model
1

1 1
Type @ @ @ @ Type
owner Role partner partner Role owner
Model: describes the s’rruc‘rtjrf of data i String
Course @ participants _
Student Upi String
Model instance: the data itself s “David”
O- ___— participants -
participants 2 6

20/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering
[The Un ckland

Domain Specific Languages ‘LSE
(DSLs)

Modeling is not necessarily done graphically;
also textual models

DSLs are tailored to a specific domain, i.e. they
provide a model for that domain

Much easier to describe a problem using a suitable
DSL than a general purpose language like Java

Example: GraphViz language for graphs

graph G { .o .o
subgraph clusterA { a -- b;
subgraph clusterC {C -- D;} } (o)
subgraph clusterB { d -- ¥ } Qi
d -- D S %ﬂ
e —-- clusterB H%
clusterC -- clusterB (o

20/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Forward and Reverse
Engineering

Forward Engineering

Generate a lower-level representation of
a system from a higher-level one

Usually: generate an implementation
from a model

Examples: data model to source code,
DSL to source code

Reverse Engineering

Recover higher-level information about a
system from low-level information

Usually: from executable implementation
to model

Examples: data model from source code,
source code from a binary executable,
data model from a database,
documentation of legacy code

Software

Engineering

‘LSE

Model

-
Implementation |

‘ The University of Auckland

Model

-
Implementation |

20/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Re-Engineering and
Round-Trip Engineering

Software

Eng 1n<>9r1nb

University of Auckland

Re-Engineering

Model

* Change an existing system by o
first reverse engineering
information about it

Use that information to do changes
and perform forward engineering

Round-Trip Engineering

+ Working with two different representations;

switching between them

-

- Changes in one representation cause corresponding
changes in the other one and vice versa (both

directions)

20/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

Meta-CASE Tools ‘LSE

‘The University of Auckland

Idea: a tool for creating CASE tools

Many CASE modeling tools use 2D graph for
visualization, i.e. vertices and edges

Varying shapes, labels, allowed connections, etc.
Use commonalities for generic tool specification:
1. Specify a data model

2. Specify how data model elements are
represented in the 2D graph

E.g. MetaEdit+, Pounamu, Eclipse GMF

String -
llname ~--_

»[= Classname

=
-
-
-
=
-

Class

-
-
-
-
-
-
-
-
-
-
=
-
-
-

Association

ftware
Engineering
11

‘The University of Auckland

-
U

Data Modeling

= 61046/60/0G || vsez oNaLd0S

7 pueeaz MaN | puepyany Jo AlsiaAlun ayL

20/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Modeling an App with a
3-Tier Architecture

Presentation tier

The top-most level of the application

is the user interface. The main function
of the interface is to translate tasks
and results to something the user can
understand.

Logic tier

This layer coordinates the
application, processes commands,
makes logical decisions and
evaluations, and performs
calculations. It also moves and
processes data between the two
surrounding layers.

Data tier

Here information is stored and retrieved
from a database or file system. The
information is then passed back to the
logic tier for processing, and then
eventually back to the user.

=GET SALES
TOTAL

Y
GET LIST OF ALL @ ADD ALL SALES
SALES MADE TOGETHER
LAST YEAR
A
N SALE1
QUERY SALE 2
SALE 3
SALE 4
e
—_—
pt Storage
Databas

SE Engineering
‘ The University of Auckland

Written docs

UI models (e.g.
screen diagrams)

Written docs

Flow or sequence
charts

State machines

Written docs

Data models (e.g.
class diagrams)

12

20/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

‘The University of Auckland

Data Modeling ‘LSE

Create model of the entities in a system
and the relations between them from user requirements

Often the most important artifact (for data-centric apps)

Analysis data model

What does the system deal with?
The concepts as they are understood by
the expert users ("domain-specific").
-> classes, attributes, associations
Ao R

A”UWD YUU lU LU""I“-IIIILUIC Wllh LUDIU”\CI a ver II Y DlJCbelLUl ion
No implementation details (too early, may confuse customer)
Evolves over time (oo much detail too early is a waste)

Design data model extends/adapts/refines analysis model
so that it becomes clear how to implement the system

20/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Classes

Software

Engineering

‘LSE

‘ The University of Auckland

Student

Lecturer

Name : String
Address : String
upi : String
number : long

calculateFees() : double

hasPayedFees() : boolean

payFees(amount : double) : void
sendEmail(subject : String,body : String) : void

name : String
address : String
upi : String
number : long
office : String
phone : String

calculateSalary() : double
paySalary(amount : double) : void
sendEmail(subject : String,body : String) : void

Class name and instance variables (attributes)
Possibly some method signatures (operations)
Use operations as a reminder rather than a strict

implementation decision

14

20/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Reusing Classes:
Inheritance / Generalization

Abstract class

Software

Engineering

‘LSE

‘ The Univers

» Person

(superclass so general that

there are no instances)

Student

calculateFees() : double
hasPayedFees() : boolean
payFees(amount : double) : void

z
A / Lecturer

name : String
address : String
upi : String
number : long

sendEmail(subject : String,body : String) : void

AN
\“Is r'ela‘rlon e

Tutor

office : String
phone : String

calculateSalary() : double

calculateSalary() : double
paySalary(amount : double) : void

paySalary(amount : double) : void

sity of Auckland

15

20/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Using Inheritance in Analysis
Models

Single inheritance:

- One general superclass, several specialized subclasses

- Substitution principle:

Subclasses can be used where superclass is used
- Easier to understand than multiple inheritance

Advantages:

- Treating similar objects similarly
("Don't ask what kind")

- Reuse of commonalities of classes
- Better maintenance
Disadvantages:

- May be an implementation decision
- May be confusing to the customer

Software

Engineering

‘LSE

‘ The University of Auckland

Shape

X . int
y :int

draw() : void

Circle

radius : int

draw() : void

Box

width : int
height : int

draw() : void

16

20/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Connecting the Classes:
Assoclations

1. Connect classes with a line

‘LSE

Software

Engineering

‘ The University of Auckland

Specify multiplicities on each side of association: min..max
(min and max of connected instances on each side)

3. Use roles to make the model more self-explanatory

Student

Course

1% 0% on
calculateFees() : double name - Sinng O .* 1

Lecturer

ICI- description : Stri
hasPayedFees() : boolean partICI eseription - >Ting coordi-
payFees(amount : double) : void pant nator

!

A student can A lecturer

A course is taken take an teaches an
by one or more arbitrarily arbitrary
students (the humber of number of

participants) courses courses

(possibly none) (possibly none)

upi : String
office : String
phone : String

calculateSalary() : double
paySalary(amount : double) : void

A course has

exactly one

coordinator
17

20/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

Recursive Associations ‘LSE

‘ The University of Auckland

Associations that connect a class with itself;
e.g. for ordering instances (e.g. hierarchies, dependencies, flow)

Use roles to distinguish ends of associations
Example: required courses for a course

- A course may require a student tfo complete 0..* other
courses first

- Each course may be required by 0..* other courses

Course

name : String 0..* requiredCourses

description : String

0.*
requiredByCourses

18

20/09/2012‘

SOFTENG 254

The University of Auckland | New Zealand

Analysis vs. Design Model ‘LSE

Analysis Model

Keep it simple (the customer

must understand it)
e.g. only undirected
associations

Only those things that are
part of the requirements
(no implementation decisions)

Design Model

Directed associations

(Java object references)

Access control

(interfaces, public/private...)

Getters and setters

Methods for data storage,
error handling, GUI, ...

m ff | x *J

|- fist e vy B

Software

Engineering

‘ The University of Auckland

Student

+calculateFees(): double

+hasPayedFees(): boolean
+payFees(amount:double)

1.

Course

+name: String
+description: String
-students: List<Student>

+AddStudent(student:Student) 19
+RemoveStudent(student:Student)

20/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software
Engineering
‘The University of Auckland

(LSE

Creating Data Models
with UMLet for Eclipse

20

20/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

‘ The University of Auckland

‘LSE

Creating a Diagram

First install UMLet from www.umlet.com

1.

2.

Select File->New->Other ->UMLet Diagram

a [Cther
|#| UMLet diagram

Choose a project ("Container”)
and a diagr‘am name Container: ftest

Diagram name: new_diagram.uxf

Open diagram file through Package Explorer. ;e
B src

- =i JRE Systemn Library
|£z new_diagram.uxf

Add diagram parts by double-clicking

SimpleClass | [AbstraciClass O
[oemes] O
«St -
p a e e Package Fatchss Oreratons |1E"ﬂ“
{Some Properties
-id: Long D ————————
-Cl il Long
#Operation(i:ntrint | 9 T T~
) -~

iy teaches to #
"""""" GJ‘ ns,omcé‘c;mg@&;
0.n
. . UMLet | Window Help
xport diagram: (e
Zoom to L |

UMLet->Export as->PDF = .. 21

20/09/2012‘

Software

SE

SOFTENG 254

The University of Auckland | New Zealand

o [J o
Editing a Diagram Engineering
- - ‘ The University of Auckland
| 2 Java - testineu_diagr (eS|
File Edit Mavigate Search Project Run UMLet Window Help
tvHBE -0 Q- B @ @O A HrE e oD ES &0 Team Synchr.. [§
g Packa I3 =0 (- *new_diagram.uxf 2 = EW
= <3==='>| & NDefault =
2 aim-java «Stereotypes . it
[pdstore Package::FatClass | SimplaClass | |‘“’-’“*‘-"“fG’f'SS | @) o
T test [test] {Some Properties} D r ag &d ro p e p— ‘:Ilrltel;f-'.:;c::;1 &
i sre -id: Long Package: FatClass Opl:::ratbnz
=), JRE System Librz -ClassAttribute: Long to m Ove : {Some Properties) 3
[s2 new_diagram.ux #Operation(i: int): int :g:lal:sosﬁmbute: Lona <
+AbstractOperation() #Operation(i: int): int f _________
Responsibilities +AbstractOperation() =
- Resp1 R.;E’;a#ette of
-- Resp2 0.n 0.1 1
- elementgoe e >
. A2 A2 I | E
CI I C k to wlnsta celifn . DOn = z
> (dauble-click to-adeh)
ob|ed Class -
NAridA Af\v'\v-\t\r\-l-r\v-r\ SeIeCt Hj.ang ="38548"
IVIiIOvEe CUIIIICULUI O [waiting for message] 1567 *
- «Sterénﬂ(pen : - - ;
to d| 'ig am elem ént Package::FatClass I't’“"""‘“““"“
{Some Properties} T
to attach -id: Long momo. 1
-ClassAttribute: Long teaches to>
#Operation(i: int): int .
+AbstractOperation() Element PropertleS
Responsibilities .
~ Resp1 In UMLet markup
--Resp2 .
(edit to change text
and arrows)
a4 LI} F 22
i

0 el eRE Y3 E°

20/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software
%ﬁdﬂyg Summary QL e
SN h

There are different levels of model data:
metamodels, models and model instances

Domain Specific Languages (DSLs) are languages for modeling
particular domains

Models are important for forward and reverse engineering, re-
engineering and round-trip engineering

Meta-CASE tools support the creation of graphical modeling
tools

Analysis models capture requirements
so that the users can understand and verify them

Design models refine analysis models
so that it becomes clear how to implement the system

Modeling tools help to create models and code

23

20/09/2012 “

SOFTENG 254

The University of Auckland | New Zealand

Software

Engineering

Exercise ‘LSE

[The Uni v of Auckland

Create a class diagram for the following system:

A GP needls a software to manage her patients,
appointments and invoices. The patients have a name,
address and phone number, and the date on which
they first visited the GP needs to be stored, too.
Private patients records have also the name of their
health insurance company. A patient can have several
appointments with a time and date, and several
appointments can have an invoice associated with
them. An appointment has at most one invoice. An
/nvoice contains several items that have a description
and a price.

24

