
/2
01
2

 2
54

20
/0
9/

Quality Assurance
Data Modeling

S
O

FT
E

N
G

 Data Modeling
Part II - Lecture 5

ea
la

nd
kl

an
d

| N
ew

 Z
e

ve
rs

ity
 o

f A
uc

k
Th

e
U

ni
v

1

Today’s Outline
/2
01
2

y
 2

54
20
/0
9/

• More about Modeling

S
O

FT
E

N
G

• Data Modeling
• Creating Data Models with UMLet

ea
la

nd

g

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

2

/2
01
2

 2
54

20
/0
9/

S
O

FT
E

N
G

More about Modeling

ea
la

nd

More about Modeling

kl
an

d
| N

ew
 Z

e

All models are wrong;

ve
rs

ity
 o

f A
uc

k All models are wrong;
some models are useful

(George Box)

Th
e

U
ni

v

3

Models in SE
/2
01
2 • Data models

D t t d th i l ti

 2
54

20
/0
9/ Data types and their relations

E.g. ER-diagrams, class
diagrams

S
O

FT
E

N
G

• Architecture models

ea
la

nd

Components of a system and
their relations

kl
an

d
| N

ew
 Z

e

• User interface models

ve
rs

ity
 o

f A
uc

k User interface models
Structure of the UI
(navigation, interaction, …)
E.g. formcharts, screen

Th
e

U
ni

v

4

E.g. formcharts, screen
diagrams

More Models in SE
/2
01
2

• State transition models

 2
54

20
/0
9/ System states and transitions

E.g. lexical scanners, game
state machines

S
O

FT
E

N
G

• Source code models
St t f d

ea
la

nd

Structure of program code
E.g. abstract syntax trees
(AST)

kl
an

d
| N

ew
 Z

e

• Call graphs

ve
rs

ity
 o

f A
uc

k Call graphs,
dependency graphs,
data flow diagrams
& many more

Th
e

U
ni

v

5

& many more… …

Metamodels, Models and
Model Instances

/2
01
2

Model Instances
Distinguish between model and model instance (data)

 2
54

20
/0
9/ Example: the parsimonious data model (PDM)

Metamodel: describes the structure of a model

S
O

FT
E

N
G

 Metamodel describes the structure of a model

Type Type
Role Role

1
owner

1
owner

1
partner

1
partner

ea
la

nd Model: describes the structure of data
1 *

1
name String

kl
an

d
| N

ew
 Z

e

Course
Student

1..
participants

name

String1
upi

ve
rs

ity
 o

f A
uc

k

Model instance: the data itself

SE254
participants

name “David”

“T ” upiname
?

Th
e

U
ni

v

6

SE254 “Tom” upi

participants
name

upi ?

Domain Specific Languages
(DSLs)

/2
01
2

(DSLs)
• Modeling is not necessarily done graphically;

 2
54

20
/0
9/

g y g p y
also textual models

• DSLs are tailored to a specific domain, i.e. they
provide a model for that domain

S
O

FT
E

N
G

 provide a model for that domain
• Much easier to describe a problem using a suitable

DSL than a general purpose language like Java

ea
la

nd

DSL than a general purpose language like Java
• Example: GraphViz language for graphs

graph G {

kl
an

d
| N

ew
 Z

e graph G {
subgraph clusterA { a -- b;
subgraph clusterC {C -- D;} }
b h l { d f }

ve
rs

ity
 o

f A
uc

k subgraph clusterB { d -- f }
d -- D
e -- clusterB

Th
e

U
ni

v

7
clusterC -- clusterB

}

Forward and Reverse
Engineering

/2
01
2

Engineering
Forward Engineering

 2
54

20
/0
9/ • Generate a lower-level representation of

a system from a higher-level one
• Usually: generate an implementation

Model

S
O

FT
E

N
G

 y g p
from a model

• Examples: data model to source code,
DSL to source code

Implementation

ea
la

nd

DSL to source code

Reverse Engineering
R hi h l l i f ti b t

kl
an

d
| N

ew
 Z

e • Recover higher-level information about a
system from low-level information

• Usually: from executable implementation
t d l

Model

ve
rs

ity
 o

f A
uc

k to model
• Examples: data model from source code,

source code from a binary executable,
l

Implementation

Th
e

U
ni

v

8
data model from a database,
documentation of legacy code

p

Re-Engineering and
Round Trip Engineering

/2
01
2

Round-Trip Engineering
Re-Engineering Model

 2
54

20
/0
9/

g g
• Change an existing system by

first reverse engineering

Model

I l t ti

S
O

FT
E

N
G

information about it
• Use that information to do changes

d f f d i i

Implementation

ea
la

nd

and perform forward engineering

kl
an

d
| N

ew
 Z

e

Round-Trip Engineering
• Working with two different representations;

it hi b t th

ve
rs

ity
 o

f A
uc

k switching between them
• Changes in one representation cause corresponding

changes in the other one and vice versa (both

Th
e

U
ni

v

9

changes in the other one and vice versa (both
directions)

Meta-CASE Tools
/2
01
2 • Idea: a tool for creating CASE tools

 2
54

20
/0
9/

g
• Many CASE modeling tools use 2D graph for

visualization, i.e. vertices and edges
V i h l b l ll d ti t

S
O

FT
E

N
G

 • Varying shapes, labels, allowed connections, etc.
• Use commonalities for generic tool specification:

1 Specify a data model

ea
la

nd

1. Specify a data model
2. Specify how data model elements are

represented in the 2D graph

kl
an

d
| N

ew
 Z

e represented in the 2D graph
• E.g. MetaEdit+, Pounamu, Eclipse GMF

String

ve
rs

ity
 o

f A
uc

k

Class

1 name
String

1 1

Classname

Th
e

U
ni

v

10
Association

1 1

/2
01
2

 2
54

20
/0
9/

S
O

FT
E

N
G

Data Modeling

ea
la

nd
kl

an
d

| N
ew

 Z
e

ve
rs

ity
 o

f A
uc

k
Th

e
U

ni
v

11

Modeling an App with a
3 Ti r Archit ctur

/2
01
2

3-Tier Architecture
• Written docs

 2
54

20
/0
9/ • UI models (e.g.

screen diagrams)

S
O

FT
E

N
G

• Written docs
• Flow or sequence

ea
la

nd

q
charts

• State machines

kl
an

d
| N

ew
 Z

e

• Written docs

ve
rs

ity
 o

f A
uc

k Written docs
• Data models (e.g.

class diagrams)

Th
e

U
ni

v

12

Data Modeling
/2
01
2

g
• Create model of the entities in a system

d th l ti b t th f i t

 2
54

20
/0
9/ and the relations between them from user requirements

• Often the most important artifact (for data-centric apps)

S
O

FT
E

N
G

Analysis data model
• What does the system deal with?

The concepts as they are understood by

ea
la

nd

The concepts as they are understood by
the expert users (“domain-specific”).
-> classes, attributes, associations

• Allows you to communicate with customer & verify specification

kl
an

d
| N

ew
 Z

e • Allows you to communicate with customer & verify specification
• No implementation details (too early, may confuse customer)
• Evolves over time (too much detail too early is a waste)

ve
rs

ity
 o

f A
uc

k

Design data model extends/adapts/refines analysis model
so that it becomes clear how to implement the system

Th
e

U
ni

v

13

m mp m y m

Classes
/2
01
2

 2
54

20
/0
9/

S
O

FT
E

N
G

ea

la
nd

kl
an

d
| N

ew
 Z

e

• Class name and instance variables (attributes)

ve
rs

ity
 o

f A
uc

k

• Possibly some method signatures (operations)
• Use operations as a reminder rather than a strict

l d

Th
e

U
ni

v

14
implementation decision

Reusing Classes:
Inheritance / Generalization

/2
01
2

Inheritance / Generalization
Abstract class

(l l h

 2
54

20
/0
9/ (superclass so general that

there are no instances)

S
O

FT
E

N
G

ea

la
nd “Is-a”-relation

(inheritance)

kl
an

d
| N

ew
 Z

e (inheritance)

ve
rs

ity
 o

f A
uc

k
Th

e
U

ni
v

15

Using Inheritance in Analysis
Models

/2
01
2

Models
• Single inheritance:

 2
54

20
/0
9/ – One general superclass, several specialized subclasses

– Substitution principle:
Subclasses can be used where superclass is used

S
O

FT
E

N
G

 Subclasses can be used where superclass is used
– Easier to understand than multiple inheritance

• Advantages:

ea
la

nd

g
– Treating similar objects similarly

(“Don’t ask what kind”)
R f liti f l

kl
an

d
| N

ew
 Z

e – Reuse of commonalities of classes
– Better maintenance

• Disadvantages:

ve
rs

ity
 o

f A
uc

k Disadvantages:
– May be an implementation decision
– May be confusing to the customer

Th
e

U
ni

v

16

Connecting the Classes:
Associations

/2
01
2

Associations
1. Connect classes with a line
2 Sp if m ltipli iti n h sid f ss i ti n: min m x

 2
54

20
/0
9/ 2. Specify multiplicities on each side of association: min..max

(min and max of connected instances on each side)
3. Use roles to make the model more self-explanatory

S
O

FT
E

N
G

 p y

ea
la

nd

1..* 0..* 10..*partici-
pant

coordi-

kl
an

d
| N

ew
 Z

e

A student can A lecturer

pant nator

ve
rs

ity
 o

f A
uc

k A student can
take an

arbitrarily
number of

A course is taken
by one or more
st d ts (th

A lecturer
teaches an
arbitrary
number of

A course has
exactly one

di t

Th
e

U
ni

v

17

number of
courses

(possibly none)

students (the
participants)

number of
courses

(possibly none)

coordinator

Recursive Associations
/2
01
2

• Associations that connect a class with itself;

 2
54

20
/0
9/ e.g. for ordering instances (e.g. hierarchies, dependencies, flow)

• Use roles to distinguish ends of associations
• Example: required courses for a course

S
O

FT
E

N
G

 • Example: required courses for a course
– A course may require a student to complete 0..* other

courses first

ea
la

nd

– Each course may be required by 0..* other courses

kl
an

d
| N

ew
 Z

e

0..* requiredCourses

ve
rs

ity
 o

f A
uc

k

0 *

Th
e

U
ni

v

18

0..
requiredByCourses

Analysis vs. Design Model
/2
01
2

y g
Analysis Model
• Keep it simple (the customer

 2
54

20
/0
9/ Keep it simple (the customer

must understand it)
e.g. only undirected
associations

S
O

FT
E

N
G

 associations
• Only those things that are

part of the requirements
(no implementation decisions)

ea
la

nd

(no implementation decisions)

Design Model
• Directed associations

kl
an

d
| N

ew
 Z

e Directed associations
(Java object references)

• Access control
(interfaces public/private)

ve
rs

ity
 o

f A
uc

k (interfaces, public/private…)
• Getters and setters
• Methods for data storage,

 h dli GUI

Th
e

U
ni

v

19
error handling, GUI, …

/2
01
2

 2
54

20
/0
9/

S
O

FT
E

N
G

Creating Data Models
with UMLet for Eclipse

ea
la

nd

with UMLet for Eclipse

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

20

Creating a Diagram
/2
01
2

g g
First install UMLet from www.umlet.com

 2
54

20
/0
9/

1. Select File->New->Other ->UMLet Diagram

S
O

FT
E

N
G

2. Choose a project (“Container”)
and a diagram name

ea
la

nd 3. Open diagram file through Package Explorer

kl
an

d
| N

ew
 Z

e

4. Add diagram parts by double-clicking
palette

ve
rs

ity
 o

f A
uc

k palette

5 E t di :

Th
e

U
ni

v

21

5. Export diagram:
UMLet->Export as->PDF

Editing a Diagram
/2
01
2

g g
 2

54
20
/0
9/

Drag&drop

S
O

FT
E

N
G

Palette of available

g
to move

ea
la

nd

elements
(double-click to add)Click to

selectMove connectors

kl
an

d
| N

ew
 Z

e Move connectors
to diagram element

to attach

ve
rs

ity
 o

f A
uc

k

Element Properties
in UMLet markup

(edit to change text

Th
e

U
ni

v

22

(edit to change text
and arrows)

Today’s Summary
/2
01
2

y y

• There are different levels of model data:

 2
54

20
/0
9/ metamodels, models and model instances

• Domain Specific Languages (DSLs) are languages for modeling
particular domains

S
O

FT
E

N
G

 particular domains
• Models are important for forward and reverse engineering, re-

engineering and round-trip engineering

ea
la

nd

• Meta-CASE tools support the creation of graphical modeling
tools

kl
an

d
| N

ew
 Z

e

• Analysis models capture requirements
so that the users can understand and verify them

ve
rs

ity
 o

f A
uc

k • Design models refine analysis models
so that it becomes clear how to implement the system

• Modeling tools help to create models and code

Th
e

U
ni

v

23

Modeling tools help to create models and code

Exercise
/2
01
2

 2
54

20
/0
9/

Create a class diagram for the following system:
A GP needs a software to manage her patients

S
O

FT
E

N
G

 A GP needs a software to manage her patients,
appointments and invoices. The patients have a name,
address and phone number, and the date on which
th fi st isit d th GP ds t b st d t

ea
la

nd

they first visited the GP needs to be stored, too.
Private patient’s records have also the name of their
health insurance company. A patient can have several

kl
an

d
| N

ew
 Z

e p y p
appointments with a time and date, and several
appointments can have an invoice associated with
them An appointment has at most one invoice An

ve
rs

ity
 o

f A
uc

k them. An appointment has at most one invoice. An
invoice contains several items that have a description
and a price.

Th
e

U
ni

v

24

