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• Data Modeling
• Creating Data Models with UMLet
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More about Modeling
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More about Modeling
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All models are wrong;
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some models are useful

(George Box)
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Models in SE
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2 • Data models

D t  t  d th i  l ti

 2
54

20
/0
9/ Data types and their relations

E.g. ER-diagrams, class 
diagrams
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• Architecture models
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Components of a system and 
their relations
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• User interface models
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Structure of the UI
(navigation, interaction, …)
E.g. formcharts, screen 
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E.g. formcharts, screen 
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More Models in SE
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E.g. lexical scanners, game 
state machines
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• Source code models
St t  f  d
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nd

Structure of program code
E.g. abstract syntax trees 
(AST)

kl
an

d 
| N

ew
 Z

e

• Call graphs  
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k Call graphs, 
dependency graphs, 
data flow diagrams
& many more
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Metamodels, Models and 
Model Instances
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Model Instances
Distinguish between model and model instance (data)
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Metamodel: describes the structure of a model
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 Metamodel  describes the structure of a model

Type Type
Role Role

1
owner

1
owner

1
partner

1
partner
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nd Model: describes the structure of data
1 *

1
name String
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Course
Student

1..
participants

name

String1
upi
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Model instance: the data itself

SE254
participants

name “David”

“T ” upiname
?
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Domain Specific Languages 
(DSLs)
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• Modeling is not necessarily done graphically; 
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also textual models

• DSLs are tailored to a specific domain, i.e. they 
provide a model for that domain
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 provide a model for that domain
• Much easier to describe a problem using a suitable 

DSL than a general purpose language like Java
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DSL than a general purpose language like Java
• Example: GraphViz language for graphs

graph G {
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subgraph clusterA { a -- b; 
subgraph clusterC {C -- D;} } 
b h l { d f }
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k subgraph clusterB { d -- f } 
d -- D 
e -- clusterB 
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Forward and Reverse 
Engineering
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Engineering
Forward Engineering
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a system from a higher-level one
• Usually: generate an implementation 

Model
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 y g p
from a model

• Examples: data model to source code,
DSL to source code

Implementation
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DSL to source code

Reverse Engineering
R  hi h l l i f ti  b t 
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system from low-level information

• Usually: from executable implementation 
t  d l

Model
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• Examples: data model from source code, 

source code from a binary executable, 
l

Implementation
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Re-Engineering and 
Round Trip Engineering

/2
01
2

Round-Trip Engineering
Re-Engineering Model
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first reverse engineering 

Model
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information about it
• Use that information to do changes 

d f  f d i i

Implementation
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and perform forward engineering
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Round-Trip Engineering
• Working with two different representations; 

it hi  b t  th
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• Changes in one representation cause corresponding 

changes in the other one and vice versa (both 
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changes in the other one and vice versa (both 
directions)



Meta-CASE Tools
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2 • Idea: a tool for creating CASE tools
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• Many CASE modeling tools use 2D graph for 

visualization, i.e. vertices and edges
V i  h  l b l  ll d ti  t
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 • Varying shapes, labels, allowed connections, etc.
• Use commonalities for generic tool specification:

1 Specify a data model
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1. Specify a data model
2. Specify how data model elements are 

represented in the 2D graph
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e represented in the 2D graph
• E.g. MetaEdit+, Pounamu, Eclipse GMF

String
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Class

1 name
String

1 1

Classname
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Data Modeling
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Modeling an App with a 
3 Ti r Archit ctur
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3-Tier Architecture
• Written docs

 2
54

20
/0
9/ • UI models (e.g. 

screen diagrams)

S
O

FT
E

N
G

 

• Written docs
• Flow or sequence 
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q
charts

• State machines
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• Written docs
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• Data models (e.g. 

class diagrams)
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Data Modeling
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• Create model of the entities in a system

d th  l ti  b t  th  f   i t
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• Often the most important artifact (for data-centric apps)
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Analysis data model
• What does the system deal with? 

The concepts as they are understood by
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nd

The concepts as they are understood by
the expert users (“domain-specific”).
-> classes, attributes, associations

• Allows you to communicate with customer & verify specification
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e • Allows you to communicate with customer & verify specification
• No implementation details (too early, may confuse customer)
• Evolves over time (too much detail too early is a waste) 
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Design data model extends/adapts/refines  analysis model
so that it becomes clear how to implement the system
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• Class name and instance variables (attributes)
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• Possibly some method signatures (operations)
• Use operations as a reminder rather than a strict 

l  d
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Reusing Classes: 
Inheritance / Generalization
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Inheritance / Generalization
Abstract class

( l   l h  
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ea
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nd “Is-a”-relation

(inheritance)
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Using Inheritance in Analysis 
Models
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Models
• Single inheritance:
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– Substitution principle:
Subclasses can be used where superclass is used

S
O

FT
E

N
G

 Subclasses can be used where superclass is used
– Easier to understand than multiple inheritance

• Advantages:
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g
– Treating similar objects similarly

( “Don’t ask what kind”)
R f liti  f l
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– Better maintenance

• Disadvantages:
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k Disadvantages:
– May be an implementation decision
– May be confusing to the customer
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Connecting the Classes: 
Associations
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Associations
1. Connect classes with a line
2 Sp if  m ltipli iti n h sid  f ss i ti n: min m x
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(min and max of connected instances on each side)
3. Use roles to make the model more self-explanatory
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1..* 0..* 10..*partici-
pant

coordi-
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A student can A lecturer 

pant nator
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k A student can 
take an 

arbitrarily 
number of 

A course is taken 
by one or more 
st d ts (th  

A lecturer 
teaches an 
arbitrary 
number of 

A course has 
exactly one 

di t
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number of 
courses

(possibly none)

students (the 
participants)

number of 
courses

(possibly none)

coordinator



Recursive Associations
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• Associations that connect a class with itself;
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• Use roles to distinguish ends of associations
• Example: required courses for a course
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 • Example: required courses for a course
– A course may require a student to complete 0..* other 

courses first
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– Each course may be required by 0..* other courses
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0..*  requiredCourses
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0 *
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0..
requiredByCourses



Analysis vs. Design Model
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Analysis Model
• Keep it simple (the customer 
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must understand it)
e.g. only undirected 
associations
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 associations
• Only those things that are 

part of the requirements
(no implementation decisions)
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nd

(no implementation decisions)

Design Model
• Directed associations
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e Directed associations
(Java object references)

• Access control
(interfaces  public/private )
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k (interfaces, public/private…)
• Getters and setters
• Methods for data storage, 

 h dli  GUI  
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Creating Data Models
with UMLet for Eclipse
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with UMLet for Eclipse
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Creating a Diagram
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First install UMLet from www.umlet.com
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1. Select File->New->Other ->UMLet Diagram

S
O

FT
E

N
G

 

2. Choose a project (“Container”)
and a diagram name
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nd 3. Open diagram file through Package Explorer
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4. Add diagram parts by double-clicking 
palette
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k palette

5 E t di :
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5. Export diagram:
UMLet->Export as->PDF



Editing a Diagram
/2
01
2

g g
 2

54
20
/0
9/

Drag&drop
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Palette of available 

g
to move
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elements
(double-click to add)Click to

selectMove connectors
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e Move connectors
to diagram element

to attach
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Element Properties
in UMLet markup

(edit to change text
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(edit to change text 
and arrows)



Today’s Summary
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• There are different levels of model data: 
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• Domain Specific Languages (DSLs) are languages for modeling 
particular domains
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 particular domains
• Models are important for forward and reverse engineering, re-

engineering and round-trip engineering
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• Meta-CASE tools support the creation of graphical modeling 
tools
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• Analysis models capture requirements
so that the users can understand and verify them
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k • Design models refine analysis models
so that it becomes clear how to implement the system

• Modeling tools help to create models and code
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Modeling tools help to create models and code



Exercise
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Create a class diagram for the following system:
A GP needs a software to manage her patients  

S
O

FT
E

N
G

 A GP needs a software to manage her patients, 
appointments and invoices. The patients have a name, 
address and phone number, and the date on which 
th  fi st isit d th  GP ds t  b  st d  t  
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they first visited the GP needs to be stored, too. 
Private patient’s records have also the name of their 
health insurance company. A patient can have several 
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appointments with a time and date, and several 
appointments can have an invoice associated with 
them  An appointment has at most one invoice  An 
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k them. An appointment has at most one invoice. An 
invoice contains several items that have a description 
and a price. 
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