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The only constant is change.
(Heraclitus)
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Version Control
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9 Common problems in a software project:
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– A change needs to be undone
– Old code that was overwritten would be useful again
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– Several developers work on the same program part 
simultaneously
H  d  I t th  l t t i  f th  d ?
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– How do I get the latest version of the code?

The solution: a Version Control System (VCS)
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e The solution: a Version Control System (VCS)
– Manages a common repository for all artefacts
– Controls concurrent access
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k Controls concurrent access
– Creates new version for each change (redo/undo 

possible)
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– Helps to merge several contributions to same part



Version Control System
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Version 4
Version 5Working

Copy
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Version 1
Version 2

Version 3
Version 4py

Working
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• Developers work on their local working copies
• Developers synchronize their working copy with the repository
• Repository usually uses delta encoding for the versions
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• Repository usually uses delta encoding for the versions
• Two ways to avoid conflicts: reserved vs. unreserved checkouts



Product Space
nd V rsi n Sp c
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and Version Space
Product space: What is versioned? How is the data organized?
• Just files: each file has a version number which is increased 
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Just files: each file has a version number which is increased 
when the file is changed (e.g. CVS)

• Files and folders: the whole file-folder structure has a single 
version number which is increased for any change done to any 
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I version number which is increased for any change done to any 
file/folder (e.g. SVN)

Version Space: How is the data versioned? How are versions 
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p
organized?

• Serial number (1, 2, 3, …), build date (e.g. 20060901), …
• X Y Z (major version  minor version  build)
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e X.Y.Z (major version . minor version . build)
– Sometimes odd Y signifies development branch (e.g. Linux)
– Usually:
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k • Change of X: breaks compatibility, adds substantial new 
features

• Change of Y: compatible, new features added
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• Change of Z: maintenance/bugfix release

• Special versions: alpha, beta, RC (Release Candidate)



Delta Encoding
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• Storing every version of a file takes up a lot space
• Idea: just store differences between versions
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Idea: just store differences between versions
• Differences (”deltas” / “diffs”) can be calculated 

automatically with various algorithms

C
O

M
P

S
C

I • Deltas can be recorded in a separate file and used to update 
files (e.g. for “patches”)

Version 1: Version 2:
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Version 1:
1 class X {
2 // todo

id () {

Version 2:
class X {
int m() {

t 0Delta
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e 3 void m() {
4 }
5 }

return 0;
}

}

Delta
Encoding
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Delta:
Line 2: delete
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Line 3: “int” for ”void”
Line 4: insert “return 0;”



Branches & Tags
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Branches: different copies of a project which are developed 

i lt l  “ lf i t i d li  f d l t” 
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simultaneously; “self-maintained lines of development” 
(/branches)
– One main branch (/trunk)
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– Maintenance branches: used for maintaining old versions 
which are still widely used (e.g. commercial OS)

– Experimental branches: used for trying out new features 
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Exper mental branches  used for try ng out new features 
before merging them into the trunk

– Personal developer branches: for people trying out their 
own ideas
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e own ideas
Tags: particular marked versions of the project (/tags)

– Can be used to refer to and recreate an old version
A t ll  l  lik    f th  j t t  ti l  i t 
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k – Actually also like a copy of the project at a particluar point 
in time

– Difference to branches: usually not changed any more
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Version Control
Best Practices
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Best Practices
1. Complete one change at a time and commit it
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– If you committing several changes together you cannot 
undo/redo them individually

– If you don’t commit and your hard disk crashes
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I – If you don t commit and your hard disk crashes…
2. Only commit changes that preserve system integrity

– No “breaking changes” that make compilation or tests fail
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g g p
3. Commit only source files (e.g. not .class files)
4. Write a log entry for each change
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– What has been changed and why
5. Communicate with the other developers

– See who else is working on a part before changing it
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k – See who else is working on a part before changing it
– Discuss and agree on a design
– Follow the project guidelines & specifications
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Managing Concurrency
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Managing Concurrency
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Concurrent File Access:
“Lost Update” Problem
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Lost Update  Problem
• When sharing files developers 

 id t ll  it  1 2
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can accidentally overwrite 
each others changes

• Consider two developers 
ki   h   fil

1 2
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I working on the same file
• Two approaches for solving 

this:
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– Reserved checkouts 
(“locking”)

– Unreserverd checkouts 
3 4
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e Unreserverd checkouts 
(“merging”)

• Many old version control 
systems support only locking 
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k systems support only locking 
(e.g. RCS, SCCS)

• Newer systems offer merging
B th h s h  Images taken from
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• Both approaches have 
disadvantages

Images taken from
the SVN Book

(see resources page)



Reserved Checkouts 
(Locking)
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(Locking)
• Only one person can edit a 1 2
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file at a time

• Before getting write 
access developer has to 

1 2
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I access developer has to 
acquire the lock of the file

• Attempts to get lock while 
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Attempts to get lock while 
someone else has it fail

• Sally has to wait for Harry 
t  l  th  l k

3 4
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• Access to files is serialized

Workflow:
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k • Workflow:
lock-modify-unlock
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Unreserved Checkouts 
(Merging)
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(Merging)
• Everybody can modify their working copy whenever they want
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• But own changes have to be merged with changes of others before 
they can be written to repository (copy-modify-merge)
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Merging Example
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class Test {
String m() {Developer A Developer B
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return “test”;
} }

Developer A
makes a
change

Developer B
makes a
change
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class Test {
String m(String t) {

class Test {
String s = “test”;
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String m(String t) {
return t;

} }

String m() {
return s;

} }
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l T t {

Merge
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String s = “test”;
String m(String t) {

fl
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Conflict: return s; or return t; ???

} }



Merging: Textual and 
Semantic Conflicts
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Semantic Conflicts
• Textual conflicts
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– Changes of different developers are very close or overlapping 
each other (“overlap”)

– Merge tool cannot automatically combine them
M  t l d t t  h fli t  & t  th  t  th  
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I – Merge tool detects such conflicts & reports them to the user
– Version control system will refuse to write a file with 

unresolved textual conflicts to the repository
S ti  fli t (l i l fli t )

ea
la

nd

• Semantic conflicts (logical conflicts)
– Changes are semantically incompatible, but may not be 

overlapping (e.g. in different files)
E  d l  A h  th d i t  f th d  
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e – E.g. developer A changes method signature of method m, 
developer B inserts method calls to m using the old signature

– Non-overlapping semantic conflicts are not detected by a 
generic merge algorithm!!!
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k generic merge algorithm!!!
– Can be avoided by following specifications and communicating 

with others
• Both textual and semantic conflicts have to be resolved by the 

Th
e 

U
ni

v

15

• Both textual and semantic conflicts have to be resolved by the 
user



Locking vs. Merging
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Arguments against locking and for merging
1 Administrative problems: people forget releasing 
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1. Administrative problems: people forget releasing 
their locks; frequently administrators have to do it

2. Unnecessary serialization: very counter-productive
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– Locking prevents people from editing different 

parts of the same file
– In reality conflicts occur rarely and can be 
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– In reality conflicts occur rarely and can be 
resolved without problems

– Conflicts usually indicate lack of communication
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• Developers have not agreed on a proper design
• With mutual agreement on design conflicts are 

usually straightforward to merge
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k usually straightforward to merge
3. False sense of security: locking does not prevent 

semantic conflicts of distributed changes (i.e. in 
different files)
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different files)



Locking vs. Merging
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Arguments for locking and against merging
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1. “Unmergeable” files: a generic merging tool does not 

work for all file types
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– For some formats (e.g. for graphics) generic 
merging leads to many conflicts
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– Conflicts can be very hard to resolve (e.g. for 
binary formats)
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– One of two conflicting changes get lost (because 
they cannot be merged)

2 T diti   i ti  i ht h  l  d  
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k 2. Tradition: an organization might have always used a 
locking VCS
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Decentralized
V i  C t l
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Version Control
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Decentralized
V rsi n C ntr l
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Version Control
Every developer has their own local repository
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(a.k.a. “distributed version control”)
1. Developers work on their working copy

C
O

M
P

S
C

I 

2. Developers commit changes of the working copy to 
their own local repository first
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3. Changes can be exchanged between repositories 
(“pushed” and “pulled”)
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Local
Repository

Working
Copy
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Network
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Branches, Push and Pull
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Branches
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• Create a branch of a repository by cloning it
• I.e. get the content and the change history
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• The branch and the original repository share a 

common ancestor version and can be merged later
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• Main branch of a project called “trunk”
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• Changes can be pushed from one branch to another
(like committing changes from a working copy)
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– E.g. optimizations from an experimental
branch to the trunk
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(like updating a working copy) 20



Decentralized Version 
C ntr l Adv nt s
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Control Advantages
• Versioning can be done locally
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(does not depend on central repository)
1. Good if you don’t have Internet connectivity
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2. Good if you don’t have access to the main repo
3. Good for bigger changes that involve many steps
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• Easier to branch a repository (i.e. create a clone) 

keeping all its history (its previous versions)
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1. You can develop your own branch
2. Because history of a branch is kept, 
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changes can be easier merged back into 
the original repository

3 Ch   l  b  d i   
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Summary
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Summary
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Today’s Summary
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• A Version Control System manages the different 
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versions of all artefacts in a project

• Many local working copies and one shared repository, 
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I compressed with delta encoding
• Prevents lost updates through reserved (locking) or 
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unreserved (merging) checkouts
• Supports automatic merging and detects textual 

fli ts  b t t d t t t t l s ti  
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e conflicts, but cannot detect non-textual sematic 
conflicts

• Conflicts always have to be resolved manually
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k • Conflicts always have to be resolved manually
• In decentralized version control systems every user 

has a full repository with several versions (not just a 
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has a full repository with several versions (not just a 
working copy)



Quiz
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1. What is delta encoding? Give an example.
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2. What is the difference between locking and 
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ff g
merging? When should each of it be used?
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3. What is a semantic conflict? Why can it be a 
problem?
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4. What is the main difference between centralized 
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and decentralized version control?
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