|1 2009]

COMPSCI 732

The University of Auckland | New Zealand

Software Tools
Version Control

Part IT - Lecture 6

:2009)|

COMPSCI 732

The University of Auckland | New Zealand

Today's Outline

- Introduction to Version Control
* Managing Concurrency
- Decentralized Version Control

Introduction to
~ Version Control

4

[o] ¢ 2009)]

The only constant is change.
(Heraclitus)

The University of Auckland | New Zealand

2009)|

<
m
>
Py

COMPSCI 732

The University of Auckland | New Zealand

Version Control

Common problems in a software project:
- A change needs to be undone
- Old code that was overwritten would be useful again

- Several developers work on the same program part
simultaneously
- How do I get the latest version of the code?
The solution: a Version Contr e
- Manages a common repository for all artefacts
- Controls concurrent access

- Creates new version for each change (redo/undo
possible)

- Helps to merge several contributions to same part

:2009)|

COMPSCI 732

The University of Auckland | New Zealand

Version Control System
Network -
OF \sz:;"% <=

@ F——
O fag<=

Developers work on their local working copies

Developers synchronize their working copy with the repository
Repository usually uses delta encoding for the versions

Two ways to avoid conflicts: reserved vs. unreserved checkouts 5

Product Space
and Version Space
Product space: What is versioned? How is the data organized?

Just files: each file has a version number which is increased
when the file is changed (e.g. CVS)

Files and folders: the whole file-folder structure has a single
version number which is increased for any change done to any

file/folder (e.g. SVN)

Version Space: How is the data versioned? How are versions

i 2009

COMPSCI 732

» Change of Y: compatible, new features added
+ Change of Z: maintenance/bugfix release
Special versions: alpha, beta, RC (Release Candidate)

organized?
E Serial number (1, 2, 3, ...), build date (e.g. 20060901), ...
g X.Y.Z (major version . minor version . build)
g - Sometimes odd Y signifies development branch (e.g. Linux)
2 - Usually:
E * Change of X: breaks compatibility, adds substantial new
s features

:2009)|

COMPSCI 732

The University of Auckland | New Zealand

Delta Encoding

Storing every version of a file fakes up a lot space
Idea: just store differences between versions

Differences (“deltas” / "diffs") can be calculated
automatically with various algorithms

Deltas can be recorded in a separate file and used to update
files (e.g. for "patches")

Version 1: Version 2:

1
2

3
4
5

class X { class X {
// todo | | int mnQ {
vord m(Q) { j‘> <: return O;
+ }
v

} g }

Delta:
Line 2: delete

Line 3: “int” for ’void”
Line 4: 1nsert “return 0:;”

i 2009

COMPSCI 732

The University of Auckland | New Zealand

Branches & Tags

Branches: different copies of a project which are developed
simultaneously; "self-maintained lines of development”
(/branches)

One main branch (/trunk)

Maintenance branches: used for maintaining old versions
which are still widely used (e.g. commercial OS)

Experimental branches: used for trying out new features
before merging them into the trunk

Personal developer branches: for people trying out their
own ideas

. particular marked versions of the project (/tags)

Can be used to refer to and recreate an old version
Actually also like a copy of the project at a particluar point
In time

Difference to branches: usually not changed any more

i 2009

COMPSCI 732

The University of Auckland | New Zealand

Version Control
Best Practices

Complete one change at a time and commit it

- If you committing several changes together you cannot
undo/redo them individually

- If you don't commit and your hard disk crashes...

Only commit changes that preserve system integrity

- No "breaking changes” that make compilation or tests fail
Commit only source files (e.g. not .class files)

Write a log entry for each change

- What has been changed and why

Communicate with the other developers

- See who else is working on a part before changing it

- Discuss and agree on a design

- Follow the project guidelines & specifications

|1 2009]

COMPSCI 732

The University of Auckland | New Zealand

Managing Concurrency

10

:2009)|

COMPSCI 732

The University of Auckland | New Zealand

Concurrent File Access:
"Lost Update” Problem

When sharing files developers
can accidentally overwrite
each others changes

Consider two developers
working on the same file

1 lwo users read the same file
Repository

I_ Read Aead —1

Two approaches for solving 4]
Thls' Harry Sally
- Reserved checkouts Harry publishes his version firs

(“locking") 3 Repository
- Unreserverd checkouts
("merging") B
Many old version control e
systems support only locking E
(e.g. RCS, SCCS) Hary Sally

Newer systems offer merging

Both approaches have
disadvantages

s

2 They both begin fo edit their copies
Repository

B
¥]

Harry Sally

Senlly accidentally overwriles Harry's version
4 Repository

i
I

Harry Sally

Images taken from
the SVN Book
(see resources page

)11

§2009]

COMPSCI 732

The University of Auckland | New Zealand

Reserved Checkouts

(Locking)

Only one person can edit a
file at a time

Before getting write
access developer has to
acquire the lock of the file

Attempts to get lock while
someone else has it fail

Sally has to wait for Harry
to release the lock

Access to files is serialized

Workflow:
lock-modify-unlock

1 Harry “locks” file A, then copies
it for ealiting

Repository

A
Lock
_r Reod

2 While Harry edits, Salls lock

attempt fails
Repository

o

A[*.[.::Ir.l:

0 [A]

Harry Sally

Harry writies his version, then
releases his lock

Repository

Wnite ! T
LNLOCE

ﬁ

Harry ally

Harry

-

Sally

Now Sally can lock, read, and
enlf the lofest version

Hepnsunrgr

L

;N
ﬂ

Sally

12

2009)|

<
m
>
Py

Tevo users copy the same file

Repository

COMPSCI 732
—

A

I—ﬁ'-ﬁ'rd HE'I:?-E'T

Harry Sally
5 Harry compares the \afest version
fiv his owm
Repository

I—Hm:'

[™=,
%

Harry Sally

The University of Auckland | New Zealand

Unreserved Checkouts

(Merging)

2 They bath begin to edit their copies 3 Safly publishes her version first
Repository Repasitory

B

L Write

L3 [™. L Lo

Harry Sally Harry Sally

6 A new merged version is created

Repository
"

Repository

— Wite —I

= | o
A [

Harry Sally Harry Sally

7 The merged version is published

[/

- Everybody can modify their working copy whenever they want

* But own changes have to be merged with changes of others before
they can be written to repository (copy-modify-merge)

4 Harry gels on “oul-of-dafe” error

Repository
-
Write *I

Harry Sally

8 Moy both wsers have each

athers” changes
Repository
ﬁ
Read
Harry Sally

:2009)|

COMPSCI 732

The University of Auckland | New Zealand

Merging Example

class Test {

Developer A string mQ { Developer B

makes a
change

T}

return “test’;

makes a
change

class Test {
String s = “test”;

String mQO {
return s;
+ ¥

4

class Test {
String m(String t) {
return t;

+ 3

~<::\\§ﬂ?£951/;;;7

class Test {
String s = “test”;
String m(String t) {

L

Conflict: return s; or return t; ?2??

14

: 2009

COMPSCI 732

The University of Auckland | New Zealand

Merging: Textual and
Semantic Conflicts

Textual conflicts

- Changes of different developers are very close or overlapping
each other ("overlap")

- Merge tool cannot automatically combine them
- Merge tool detects such conflicts & reports them to the user

- Version control system will refuse to write a file with
unresolved textual conflicts to the repository

Semantic conflicts (logical conflicts)

- Changes are semantically incompatible, but may not be
overlapping (e.g. in different files)

- Eg. develoEer' A changes method signature of method m,
developer B inserts method calls to m using the old signature

- Non-overlapping semantic conflicts are not detected by a
generic merge algorithml!!

- Can be avoided by following specifications and communicating
with others

Both textual and semantic conflicts have to be resolved by the

user
15

i 2009

COMPSCI 732

The University of Auckland | New Zealand

Locking vs. Merging

Arguments against locking and

1. Administrative problems: people forget releasing
their locks; frequently administrators have to do it

2. Unnecessary serialization: very counter-productive

- Locking prevents people from editing different
parts of the same file

- Inreality conflicts occur rarely and can be
resolved without problems

- Conflicts usually indicate lack of communication
* Developers have not agreed on a proper design

* With mutual agreement on design conflicts are
usually straightforward to merge

3. False sense of security: locking does not prevent
semantic conflicts of distribufed changes (i.e. in
different files)

16

i 2009

COMPSCI 732

The University of Auckland | New Zealand

Locking vs. Merging

Arguments and against merging

1. "Unmergeable” files: a generic merging tool does not
work for all file types

- For some formats (e.g. for graphics) generic
merging leads tfo many conflicts

- Conflicts can be very hard to resolve (e.g. for
binary formats)

- One of two conflicting changes get lost (because
they cannot be merged)

2. Tradition: an organization might have always used a
locking VCS

17

|1 2009]

COMPSCI 732

The University of Auckland | New Zealand

Decentralized
Version Control

:2009)|

COMPSCI 732

The University of Auckland | New Zealand

Decentralized
Version Control
Every developer has their own local repository
(a.k.a. "distributed version control”)

1. Developers work on their working copy

2. Developers commit changes of the working copy to
their own local repository first

3. Changes can be exchanged between repositories
("pushed” and "pulled"”)

SN
Working |
<:> Copy

——— Network

i il @ .

: 2009

COMPSCI 732

The University of Auckland | New Zealand

* Changes can be pulled from one branch to another

Branches, Push and Pull

Branches

» Create a branch of a repository by cloning it

+ T.e. get the content and the change history

» The branch and the original repository share a

common ancestor version and can be merged later

* Main branch of a project called "trunk”

* Changes can be pushed from one branch to another

(like committing changes from a working copy)

- E.g. optimizations from an experimental W

branch to the trunk

20

(like updating a working copy)

: 2009

COMPSCI 732

The University of Auckland | New Zealand

» Versioning can be done locally

Decentralized Version
Control Advantages

(does not depend on central repository)
1. Good if you don't have Internet connectivity
2. Good if you don't have access to the main repo
3. Good for bigger changes that involve many steps

»»»»

- Easier to branch a repository (i.e. create a clone)

keeping all its history (its previous versions)
1. You can develop your own branch

2. Because history of a branch is kept,
changes can be easier merged back into
the original repository

3. Changes can also be merged into any
other branch

21

= | 12009

The University of Auckland | New Zealand

22

i 2009

COMPSCI 732

The University of Auckland | New Zealand

Today's Summary

* A Version Control System manages the different

versions of all artefacts in a project

* Many local working copies and one shared repository,

compressed with delta encoding

* Prevents lost updates through reserved (locking) or

unreserved (merging) checkouts

- Supports automatic merging and detects textual

conflicts, but cannot detect non-textual sematic
conflicts

+ Conflicts always have to be resolved manually
* In decentralized version control systems every user

has a full repository with several versions (not just a
working copy) 23

i 2009

COMPSCI 732

The University of Auckland | New Zealand

Quiz

What is delta encoding? Give an example.

. What is the difference between locking and

merging? When should each of it be used?

. What is a semantic conflict? Why can it be a

problem?

. What is the main difference between centralized

and decentralized version control?

24

