
00
9

YEAR

20
 7

32

Software Tools
Version Control

C
O

M
P

S
C

I Version Control

ea
la

nd Part II - Lecture 6

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

1

Today’s Outline
00
9

y

YEAR

20
 7

32

• Introduction to Version Control
M i C

C
O

M
P

S
C

I • Managing Concurrency
• Decentralized Version Control

ea
la

nd
kl

an
d

| N
ew

 Z
e

ve
rs

ity
 o

f A
uc

k
Th

e
U

ni
v

2

00
9

YEAR

20
 7

32
C

O
M

P
S

C
I

Introduction to
V i C t l

ea
la

nd

Version Control

kl
an

d
| N

ew
 Z

e

The only constant is change.
(Heraclitus)

ve
rs

ity
 o

f A
uc

k
Th

e
U

ni
v

3

Version Control
00
9 Common problems in a software project:

YEAR

20
 7

32

p p j
– A change needs to be undone
– Old code that was overwritten would be useful again

C
O

M
P

S
C

I

– Several developers work on the same program part
simultaneously
H d I t th l t t i f th d ?

ea
la

nd

– How do I get the latest version of the code?

The solution: a Version Control System (VCS)

kl
an

d
| N

ew
 Z

e The solution: a Version Control System (VCS)
– Manages a common repository for all artefacts
– Controls concurrent access

ve
rs

ity
 o

f A
uc

k Controls concurrent access
– Creates new version for each change (redo/undo

possible)

Th
e

U
ni

v

4

p)
– Helps to merge several contributions to same part

Version Control System
00
9

y
Network

YEAR

20
 7

32 Repository

Working
Copy

C
O

M
P

S
C

I Repository

Version 4
Version 5Working

Copy

ea
la

nd

Version 1
Version 2

Version 3
Version 4py

Working

kl
an

d
| N

ew
 Z

e Version 1Copy

ve
rs

ity
 o

f A
uc

k

• Developers work on their local working copies
• Developers synchronize their working copy with the repository
• Repository usually uses delta encoding for the versions

Th
e

U
ni

v

5

• Repository usually uses delta encoding for the versions
• Two ways to avoid conflicts: reserved vs. unreserved checkouts

Product Space
nd V rsi n Sp c

00
9

and Version Space
Product space: What is versioned? How is the data organized?
• Just files: each file has a version number which is increased

YEAR

20
 7

32

Just files: each file has a version number which is increased
when the file is changed (e.g. CVS)

• Files and folders: the whole file-folder structure has a single
version number which is increased for any change done to any

C
O

M
P

S
C

I version number which is increased for any change done to any
file/folder (e.g. SVN)

Version Space: How is the data versioned? How are versions

ea
la

nd

p
organized?

• Serial number (1, 2, 3, …), build date (e.g. 20060901), …
• X Y Z (major version minor version build)

kl
an

d
| N

ew
 Z

e X.Y.Z (major version . minor version . build)
– Sometimes odd Y signifies development branch (e.g. Linux)
– Usually:

ve
rs

ity
 o

f A
uc

k • Change of X: breaks compatibility, adds substantial new
features

• Change of Y: compatible, new features added

Th
e

U
ni

v

6

g p ,
• Change of Z: maintenance/bugfix release

• Special versions: alpha, beta, RC (Release Candidate)

Delta Encoding
00
9
g

• Storing every version of a file takes up a lot space
• Idea: just store differences between versions

YEAR

20
 7

32

Idea: just store differences between versions
• Differences (”deltas” / “diffs”) can be calculated

automatically with various algorithms

C
O

M
P

S
C

I • Deltas can be recorded in a separate file and used to update
files (e.g. for “patches”)

Version 1: Version 2:

ea
la

nd

Version 1:
1 class X {
2 // todo

id () {

Version 2:
class X {
int m() {

t 0Delta

kl
an

d
| N

ew
 Z

e 3 void m() {
4 }
5 }

return 0;
}

}

Delta
Encoding

ve
rs

ity
 o

f A
uc

k

Delta:
Line 2: delete

Th
e

U
ni

v

7

Line 3: “int” for ”void”
Line 4: insert “return 0;”

Branches & Tags
00
9

g
Branches: different copies of a project which are developed

i lt l “ lf i t i d li f d l t”
YEAR

20
 7

32

simultaneously; “self-maintained lines of development”
(/branches)
– One main branch (/trunk)

C
O

M
P

S
C

I

– Maintenance branches: used for maintaining old versions
which are still widely used (e.g. commercial OS)

– Experimental branches: used for trying out new features

ea
la

nd

Exper mental branches used for try ng out new features
before merging them into the trunk

– Personal developer branches: for people trying out their
own ideas

kl
an

d
| N

ew
 Z

e own ideas
Tags: particular marked versions of the project (/tags)

– Can be used to refer to and recreate an old version
A t ll l lik f th j t t ti l i t

ve
rs

ity
 o

f A
uc

k – Actually also like a copy of the project at a particluar point
in time

– Difference to branches: usually not changed any more

Th
e

U
ni

v

8

Version Control
Best Practices

00
9

Best Practices
1. Complete one change at a time and commit it

YEAR

20
 7

32

– If you committing several changes together you cannot
undo/redo them individually

– If you don’t commit and your hard disk crashes

C
O

M
P

S
C

I – If you don t commit and your hard disk crashes…
2. Only commit changes that preserve system integrity

– No “breaking changes” that make compilation or tests fail

ea
la

nd

g g p
3. Commit only source files (e.g. not .class files)
4. Write a log entry for each change

kl
an

d
| N

ew
 Z

e

– What has been changed and why
5. Communicate with the other developers

– See who else is working on a part before changing it

ve
rs

ity
 o

f A
uc

k – See who else is working on a part before changing it
– Discuss and agree on a design
– Follow the project guidelines & specifications

Th
e

U
ni

v

9

p j g p

00
9

YEAR

20
 7

32
C

O
M

P
S

C
I

Managing Concurrency

ea
la

nd

Managing Concurrency

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

10

Concurrent File Access:
“Lost Update” Problem

00
9

Lost Update Problem
• When sharing files developers

 id t ll it 1 2
YEAR

20
 7

32

can accidentally overwrite
each others changes

• Consider two developers
ki h fil

1 2

C
O

M
P

S
C

I working on the same file
• Two approaches for solving

this:

ea
la

nd

– Reserved checkouts
(“locking”)

– Unreserverd checkouts
3 4

kl
an

d
| N

ew
 Z

e Unreserverd checkouts
(“merging”)

• Many old version control
systems support only locking

ve
rs

ity
 o

f A
uc

k systems support only locking
(e.g. RCS, SCCS)

• Newer systems offer merging
B th h s h Images taken from

Th
e

U
ni

v

11

• Both approaches have
disadvantages

Images taken from
the SVN Book

(see resources page)

Reserved Checkouts
(Locking)

00
9

(Locking)
• Only one person can edit a 1 2

YEAR

20
 7

32

y p
file at a time

• Before getting write
access developer has to

1 2

C
O

M
P

S
C

I access developer has to
acquire the lock of the file

• Attempts to get lock while

ea
la

nd

Attempts to get lock while
someone else has it fail

• Sally has to wait for Harry
t l th l k

3 4

kl
an

d
| N

ew
 Z

e to release the lock
• Access to files is serialized

Workflow:

ve
rs

ity
 o

f A
uc

k • Workflow:
lock-modify-unlock

Th
e

U
ni

v

12

Unreserved Checkouts
(Merging)

00
9

(Merging)
• Everybody can modify their working copy whenever they want

B h h b d i h h f h b f
YEAR

20
 7

32

• But own changes have to be merged with changes of others before
they can be written to repository (copy-modify-merge)

C
O

M
P

S
C

I 1 2 3 4

ea
la

nd
kl

an
d

| N
ew

 Z
e

5 6 7 8

ve
rs

ity
 o

f A
uc

k
Th

e
U

ni
v

13

Merging Example
00
9

g g p
class Test {
String m() {Developer A Developer B

YEAR

20
 7

32

return “test”;
} }

Developer A
makes a
change

Developer B
makes a
change

C
O

M
P

S
C

I

class Test {
String m(String t) {

class Test {
String s = “test”;

ea
la

nd

String m(String t) {
return t;

} }

String m() {
return s;

} }

kl
an

d
| N

ew
 Z

e } }

l T t {

Merge

ve
rs

ity
 o

f A
uc

k class Test {
String s = “test”;
String m(String t) {

fl

Th
e

U
ni

v

14
Conflict: return s; or return t; ???

} }

Merging: Textual and
Semantic Conflicts

00
9

Semantic Conflicts
• Textual conflicts

Ch f diff t d l l l i
YEAR

20
 7

32

– Changes of different developers are very close or overlapping
each other (“overlap”)

– Merge tool cannot automatically combine them
M t l d t t h fli t & t th t th

C
O

M
P

S
C

I – Merge tool detects such conflicts & reports them to the user
– Version control system will refuse to write a file with

unresolved textual conflicts to the repository
S ti fli t (l i l fli t)

ea
la

nd

• Semantic conflicts (logical conflicts)
– Changes are semantically incompatible, but may not be

overlapping (e.g. in different files)
E d l A h th d i t f th d

kl
an

d
| N

ew
 Z

e – E.g. developer A changes method signature of method m,
developer B inserts method calls to m using the old signature

– Non-overlapping semantic conflicts are not detected by a
generic merge algorithm!!!

ve
rs

ity
 o

f A
uc

k generic merge algorithm!!!
– Can be avoided by following specifications and communicating

with others
• Both textual and semantic conflicts have to be resolved by the

Th
e

U
ni

v

15

• Both textual and semantic conflicts have to be resolved by the
user

Locking vs. Merging
00
9

g g g
Arguments against locking and for merging
1 Administrative problems: people forget releasing

YEAR

20
 7

32

1. Administrative problems: people forget releasing
their locks; frequently administrators have to do it

2. Unnecessary serialization: very counter-productive

C
O

M
P

S
C

I

y y p
– Locking prevents people from editing different

parts of the same file
– In reality conflicts occur rarely and can be

ea
la

nd

– In reality conflicts occur rarely and can be
resolved without problems

– Conflicts usually indicate lack of communication

kl
an

d
| N

ew
 Z

e

• Developers have not agreed on a proper design
• With mutual agreement on design conflicts are

usually straightforward to merge

ve
rs

ity
 o

f A
uc

k usually straightforward to merge
3. False sense of security: locking does not prevent

semantic conflicts of distributed changes (i.e. in
different files)

Th
e

U
ni

v

16

different files)

Locking vs. Merging
00
9

g g g

Arguments for locking and against merging
YEAR

20
 7

32

g g g g g
1. “Unmergeable” files: a generic merging tool does not

work for all file types

C
O

M
P

S
C

I

– For some formats (e.g. for graphics) generic
merging leads to many conflicts

ea
la

nd

– Conflicts can be very hard to resolve (e.g. for
binary formats)

kl
an

d
| N

ew
 Z

e

– One of two conflicting changes get lost (because
they cannot be merged)

2 T diti i ti i ht h l d

ve
rs

ity
 o

f A
uc

k 2. Tradition: an organization might have always used a
locking VCS

Th
e

U
ni

v

17

00
9

YEAR

20
 7

32
C

O
M

P
S

C
I

Decentralized
V i C t l

ea
la

nd

Version Control

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

18

Decentralized
V rsi n C ntr l

00
9

Version Control
Every developer has their own local repository

YEAR

20
 7

32

(a.k.a. “distributed version control”)
1. Developers work on their working copy

C
O

M
P

S
C

I

2. Developers commit changes of the working copy to
their own local repository first

ea
la

nd

3. Changes can be exchanged between repositories
(“pushed” and “pulled”)

kl
an

d
| N

ew
 Z

e

Local
Repository

Working
Copy

ve
rs

ity
 o

f A
uc

k

Network

Th
e

U
ni

v

19
Local

Repository
Working

Copy

Branches, Push and Pull
00
9

,

Branches
YEAR

20
 7

32

• Create a branch of a repository by cloning it
• I.e. get the content and the change history

C
O

M
P

S
C

I

g g y
• The branch and the original repository share a

common ancestor version and can be merged later

ea
la

nd

g
• Main branch of a project called “trunk”

kl
an

d
| N

ew
 Z

e

• Changes can be pushed from one branch to another
(like committing changes from a working copy)

ve
rs

ity
 o

f A
uc

k

– E.g. optimizations from an experimental
branch to the trunk

Th
e

U
ni

v

• Changes can be pulled from one branch to another
(like updating a working copy) 20

Decentralized Version
C ntr l Adv nt s

00
9

Control Advantages
• Versioning can be done locally

YEAR

20
 7

32

g y
(does not depend on central repository)
1. Good if you don’t have Internet connectivity

C
O

M
P

S
C

I

2. Good if you don’t have access to the main repo
3. Good for bigger changes that involve many steps

ea
la

nd

gg g y p
• Easier to branch a repository (i.e. create a clone)

keeping all its history (its previous versions)

kl
an

d
| N

ew
 Z

e

1. You can develop your own branch
2. Because history of a branch is kept,

ve
rs

ity
 o

f A
uc

k

changes can be easier merged back into
the original repository

3 Ch l b d i

Th
e

U
ni

v 3. Changes can also be merged into any
other branch 21

00
9

YEAR

20
 7

32
C

O
M

P
S

C
I

Summary

ea
la

nd

Summary

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

22

Today’s Summary
00
9

y y

• A Version Control System manages the different
YEAR

20
 7

32

y g
versions of all artefacts in a project

• Many local working copies and one shared repository,

C
O

M
P

S
C

I compressed with delta encoding
• Prevents lost updates through reserved (locking) or

d (i) h k

ea
la

nd

unreserved (merging) checkouts
• Supports automatic merging and detects textual

fli ts b t t d t t t t l s ti

kl
an

d
| N

ew
 Z

e conflicts, but cannot detect non-textual sematic
conflicts

• Conflicts always have to be resolved manually

ve
rs

ity
 o

f A
uc

k • Conflicts always have to be resolved manually
• In decentralized version control systems every user

has a full repository with several versions (not just a

Th
e

U
ni

v

23

has a full repository with several versions (not just a
working copy)

Quiz
00
9

Q

1. What is delta encoding? Give an example.
YEAR

20
 7

32

g p

2. What is the difference between locking and

C
O

M
P

S
C

I

ff g
merging? When should each of it be used?

ea
la

nd

3. What is a semantic conflict? Why can it be a
problem?

kl
an

d
| N

ew
 Z

e

4. What is the main difference between centralized

ve
rs

ity
 o

f A
uc

k

and decentralized version control?

Th
e

U
ni

v

24

