|1 2009]

COMPSCI 732

The University of Auckland | New Zealand

Software Tools
Data Access Layers

Part IT - Lecture 3

:2009)|

COMPSCI 732

The University of Auckland | New Zealand

Today's Outline

Data Access Layers

- PDStore

Assignment 2 Project

|1 2009]

COMPSCI 732

The University of Auckland | New Zealand

Data Access Layers

:2009)|

COMPSCI 732

The University of Auckland | New Zealand

Data Access Layer (DAL)

- Application layer that provides

functionality for convenient DB
access

- Enables the use of OO classes to

read and write from/to the DB
(instead of having to use SQL)

- Advantages:

- Higher level of abstraction
- Separation of concerns makes
application easier to maintain

- Application is independent of
particular DB management
system (DBMS)

User Ig\’rer'face

J L

Applica’[v\ion Logic

<

Y 3

Tr~ =Wwb

DB Table Customer
id INTEGER
name VARCHAR(200)

:2009)|

COMPSCI 732

Developing DALs:
Writing DALs Manually

Use a DB access APT such as JDBC -
Low level: need to deal with SQL

“Tr~ <Wh

and possibly with DB specific code

. . DB Table Customer
Tedious: writing SQL for id INTEGER

getters/setters is very repetitive |name VARCHAR(200)

Maintenance problem when data model specification
changes (DAL needs to be changed as well)

String getName() throws SQLException {

The University of Auckland | New Zealand

Statement s = connection.createStatement();
ResultSet r = s.executeQuery(

"SELECT name FROM Customer WHERE i1d="" + 1d);
String name = null;
iIT (r.next()) name = r.getString(l);
s.close(); return name;

:2009)|

COMPSCI 732

The University of Auckland | New Zealand

Developing DALs:
Generating DALs

Generating the DAL from data model specification

* For each data type, a class with getters and setters

is generated by a DAL generator

* Getters/setters read from and write to the DB
* Generator may support different DBMS
* When the data model specification changes, simply

re-run the generator to get an updated DAL

DB Table Customer
id INTEGER
name VARCHAR(200)

+ Example: PDStore

>

DAL
Generator

)-

§2009]

COMPSCI 732

Developing DALs:
Using a Generic DAL
Using a generic DAL with a mapping specification
» Use your own classes for the persistent data types

+ Specify how the classes should be mapped to the DB

» Use generic functions to begin/commit transactions
and load/save objects from and to the DB

+ Example: Hibernate

<hibernate-mapping>
<class name="'"Customer' table=""Customer'>

<id name="id" column="1ID"> ... </i1d> Generic
<property name="name" type=''string" [i> DAL
column=""NAME"'/>

</class> </hibernate-mapping>

The University of Auckland | New Zealand

7 Tusesr—
session.beginTransaction();

Customer c = new Customer(); c.setName('Joe');
session.save(c); session.getTransaction().commit();

PDStore

¢€/ 10SdINOD

YEAR

7 puejeaz MaN | puepony Jo AlsIsAlun ayL

16002

PDStore

DB system based the parsimonious —
data model (PD model) AEHCLE

2009

* Implementedonaona

relational DBMS (Firebird) S
_| »+ Provides a DAL generator PDStore
for Java (PDGen) Firebird

Advantages:

+ All data elements are indentified with GUIDs
— data from different DBs can easily be merged

» All changes to the data are logged
— changes can be undone/redone, versioning

» Support for change notification
— applications can react to changes immediately

The University of Auckland | New Zealand

:2009)|

COMPSCI 732

The University of Auckland | New Zealand

Parsimonious Data Model
(PD Model)

Address Sfreef nameg gipin
1@ """

0.1 addresses 0.*
Customer 1.*
orders = houselncl) Integer
1.1 0> Order -

Types, Relations and Roles with Multiplicities

Types are sets of elements

- Primitive types contain values like strings, ints

- Complex types contain GUIDs (e.g. for customers)
Each relation has exactly two roles (one each end)
Roles may have a name, e.g. "orders”, but need not
Each role has a minimum and a maximum multiplicity
Types contain instances, relations contain 10

i 2009

COMPSCI 732

The University of Auckland | New Zealand

Globally Unique
Identifiers (GUIDs)
+ A identifier that is globally unique (nothing else in the
world has the same identifier)

» Consists of 16 bytes

» GUIDs can be generated using the network card
(MAC) address of a computer and a tfimestamp

In PDStore:

* We can get GUIDs by using the GUIDGen class
(just run it and it spits out a list of new GUIDs)

+ GUIDs are represented as 32 hex digits,
e.g. 66b114821704dc11b933e6037c01b18f

+ All instances of complex types have GUIDs as IDs

11

:2009)|

COMPSCI 732

The University of Auckland | New Zealand

Creating a
PDStore Data Model

Create an SQL script in a text file with the following:

1.

2.

Connect to the database:
CONNECT "pdstore.fdb®™ user "sysdba® password "masterkey”;

Create a model first:
execute procedure create model("model guid®, "model name®);

Now go through the minl maxl min2..max2
elements of the model: YPe @ hiames @ 7PE2
For each type: (primitve types are defined in pdstore.sql)
execute procedure create type("type guid”,

"model guid®, "type name®, null);

For each relation:

execute procedure create relation(

"rolel guid®, "typel guid®,minl,maxl, "roleNamel”,
"role2 guid®, "typeZ2 guid',min2,max2,'roleName2');1

Add a commit;

2

: 2009

COMPSCI 732

The University of Auckland | New Zealand

Creating a
PDStore Data Model Cont.
6. After creating a model with types and relations, tell
PDStore to create all the corresponding DB tables:

execute procedure iIntercession("model guid®);

Address STreef name‘ String DB Table Address
1.1 Inter- GUID id
h cession VARCHAR street_name
ouselnci Integer INTEGER house_no

7. Add another commit;
8. Add the SQL script (e.g. mymodel .sqgl) to reset-pdstore.bat

Tsql\fsgl -1 pdstore.sql 2> pdstore-errors.txt

del .\pdstore.fdb
fsql\fsgl -1 mymodel.sqgql 2> mymodel-errors.txt

9. Start Development — Dev. Env. — Firebird — Fb. Guardian;
Run reset-pdstore.bat and you get your model ina fresh
database in file pdstore.fdb

Example Model:
mymodel.sql
CONNECT “pdstore.fdb®" user "sysdba® password "masterkey”;

execute procedure
create_model ("4ef3e2dab0b9dd11blbff11d9e19f111", "My Model™);

execute procedure create_type("09ca301fl9leddllad8da2fa74ba0698",
4et3e2dab0b9dd11blbff11d9e19f111, “Customer®, null);

execute procedure create_type("10ca301fl9leddllad8da2fa74ba0698",
*4et3e2dab0b9dd11blbff11d9e19f111", “Address®, null);

execute procedure create_relation(
*57f3e2dab0b9dd11..", *09ca301f19l1edd1..”", 0O, 1, null,
"5813e2dab0b9dd11..", "108a986c4062dbl..", 1, null, "addresses®);

2009)|

<
m
>
Py

COMPSCI 732

/* do the same for all other types and relations */

commit;
execute procedure intercession("4ef3e2dab0b9dd11blbff11d9..");
commit;
Address street name Ps String
0.1 addresses 1.1
Customer 1 *

house no
1.1

I
orders nteger

0.*

The University of Auckland | New Zealand

Order

:2009)|

<
>

COMPSCI 732

The University of Auckland | New Zealand

Generating a DAL
with PDGen
Run PDGen with the following arguments:

1. Model name (""My Model"")
2. Source root (src) PDGen

Application

PDStore
Firebird

e.g. java PDGen "My Model™ src
All DAL classes will be in package pdstore
For all types x in the model it will generate class PDx

DAL classes will have getters and setters for all the

named accessible roles, e.g. class pbaddress will have
String getStreetName()
void setStreetName(String streetName)

and class pbcustomer will have

Set<PDAddress> getAddresses()
void addAddresses(PDAddress addresses)
void removeAddresses(PDAddress addresses) 15

2009)|

<
m
>
Py

COMPSCI 732

The University of Auckland | New Zealand

Using the Generated DAL

Import pdstore.*; // at the beginning of your fTile

// create a new cache that 1s connected to the DB

PDCache cache = new PDCache(
"“jdbc:firebirdsql:local: . \\pdstore.fdb",

"'sysdba'', "masterkey'); treet :
Address ~ STreev name g gtpip
1 @>""

// load an Instance Into memory

PDAddress a = (PDAddress) cache.load(house no

Int
PDAddress.typeld, "My Address'); 1.1 nreger

a.setStreetName("'Symond Street'); // use setter
System.out.println(a.getStreetName()); // use getter
a.setHouseNo(108);

cache.commit(); // make changes permanent

16

2009)|

<
m
>
Py

COMPSCI 732

The University of Auckland | New Zealand

Using the Generated DAL
Vo _
cont.
// create a new iInstance
PDCustomer c¢ = (PDCustomer) cache.newlnstance(
PDCustomer . typeld);
// every iInstance can have a name (initially 1t 1s NULL)
System.out.println(c.getName());
c.setName(*'Joe™); // name can be used Tor loading instance

// use getters and setters for roles with multiple links
Set<PDAddress> addresses = c.getAddresses(); // empty
c.addAddresses(a); // now there i1s one address
c.removeAddresses(a); // and now 1t Is gone

cache.conmit(); // make changes permanent

Address Streef name gy String

0.1 —ecress Q‘
Customer 1 *)
* ouse no
orders v 1.1 Integer

1.1 0= Order

17

= | 12009

The University of Auckland | New Zealand

Assignment 2 Project

i 2009

COMPSCI 732

The University of Auckland | New Zealand

Structured Source Code
Representation

Most tools deal with source code in a textual representation

- Unnecessary lexical details; error prone because depends on
every single character ("untyped”)

- Linear in contrast to inherent tree-like structure, thus hard
to process (parser required) and inflexible

Idea: use structured, typed AST representation for source code
Many modern IDEs use such an approach internally

- Source code is parsed (often while typing) and stored as AST

- AST is used for navigation, editing, transformation, analysis
Structured representation enables new functionality

- Enhanced reftrieval: search, aggregation, elision

- Typed editing (inherent prevention of syntactic errors)

Int

\ 4

= Var

X++

int X = 0; J Program 0

++ 19

:2009)|

COMPSCI 732

The University of Auckland | New Zealand

+ ASTs represent the package

Abstract Syntax Tree
(AST)

Java

structure (syntax) of a Package

program 0.1

For each program part, package ravq
the AST | 0.* Package
: Java imports
contains Compilation|1..1
a hode Unit Import 5
The AST is usually Java
Type

typed, e.g. to store
Java source code you

Java Interface
Java

need to create a 0.* "lIn’rerface
PD model like type definitions .

. Java T 0.1 Java
the one on the right ava type Tova Clac<® Class

side 20

= | 12009

The University of Auckland | New Zealand

21

: 2009

COMPSCI 732

The University of Auckland | New Zealand

Today's Summary

+ Data Access Layers (DALs) enables the use of OO

classes to read and write from/to the DB

- Can be written manually

- Can be generated with a DAL generator

- Can be generic, i.e. able to handle any data given a

mapping

+ PDStore is a DB system that is based on GUIDs

- Types, Relations and Roles with Multiplicities
- Models are specified in an SQL script
- Has a DAL generator for Java

22

i 2009

COMPSCI 732

The University of Auckland | New Zealand

w

Quiz

What is a DAL?

Describe the advantages and disadvantages of the
different ways to create DALs.

What is a GUID and why is it useful?
How are data models specified in PDStore?

