
00
9

YEAR

20
 7

32

Software Tools
Research Papers

C
O

M
P

S
C

I Research Papers

ea
la

nd Part II - Lecture 2

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

1

Today’s Overview
00
9

y

• Writing Research Papers
YEAR

20
 7

32

g p
• Research Paper Assignment
• Research Paper Presentations

C
O

M
P

S
C

I

p

ea
la

nd
kl

an
d

| N
ew

 Z
e

ve
rs

ity
 o

f A
uc

k
Th

e
U

ni
v

2

00
9

YEAR

20
 7

32
C

O
M

P
S

C
I

Writing Research Papers

ea
la

nd

Writing Research Papers

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

3

Research Papers
00
9

p

Typical structure of a research paper (or thesis):
YEAR

20
 7

32

yp p p ()
1. Title
2. Abstract: brief summary, typically 100-200 words

C
O

M
P

S
C

I

f mm y, yp y
3. Introduction: motivation, context, overview
4. Related Work: what are others doing

ea
la

nd

4. Related Work what are others doing
5. Design / Concepts: the theory / our new ideas
6. Implementation: how we did it

kl
an

d
| N

ew
 Z

e 6. Implementation: how we did it
7. Evaluation: why it is good/useful/better than others
8 Conclusion: summing up the results

ve
rs

ity
 o

f A
uc

k 8. Conclusion: summing up the results

Short conference papers: typically around 4 pages

Th
e

U
ni

v Short conference papers: typically around 4 pages
Long conference papers: typically about 10 pages 4

Paper Writing Strategy
00
9

p g gy

1. Related Work: get an overview and note down points
YEAR

20
 7

32

g p
2. Design / Concepts: collect ideas

1. Create structure with bullet points / mind map

C
O

M
P

S
C

I

p m m p
2. Create figures

3. Implementation: create a prototype

ea
la

nd

3. Implementation create a prototype
1. Start small and extend it bit by bit
2 Experiment and collect results

kl
an

d
| N

ew
 Z

e 2. Experiment and collect results
(more bullet points and other data)

4. Evaluation: compare and refine your work

ve
rs

ity
 o

f A
uc

k p y
(if necessary, go back to 2 or 3)

5. Title, Abstract, Introduction and Summary can be

Th
e

U
ni

v

y
done last

5

Tackling Related Work
00
9

g

1. Gather phase
YEAR

20
 7

32

p
– Keyword search

(e.g. Google Scholar, ACM, IEEE)

C
O

M
P

S
C

I

– Follow up the references
(cited and citing papers)

ea
la

nd

2. Filter phase:
read only abstract and throw blanks out

kl
an

d
| N

ew
 Z

e

3. Reading phase

ve
rs

ity
 o

f A
uc

k

The “someone else has already done it” problem
• Look again, is it really the same?

Th
e

U
ni

v

• Related work is good!

00
9

YEAR

20
 7

32
C

O
M

P
S

C
I

Research Paper Assignment

ea
la

nd

Research Paper Assignment

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

7

Paper Topics
00
9

p p

1. Static Analysis
YEAR

20
 7

32

y
2. Program Exploration
3. IDEs

C
O

M
P

S
C

I

4. Tool Integration
5. Aspects

ea
la

nd

5. Aspects
6. Software Engineering
7 Web Development

kl
an

d
| N

ew
 Z

e 7. Web Development

• About 5 papers per topic

ve
rs

ity
 o

f A
uc

k

• 2 persons per paper (presentation is done together)
except for papers marked as “short” (one person)
If fi d h i i ld

Th
e

U
ni

v • If you find another interesting paper you would
prefer to present, ask Christof about it 8

Topic: Static Analysis
00
9

p y

How to analyze programs by looking at their code?
YEAR

20
 7

32

y p g y g
• Pär Emanuelsson, Ulf Nilsson. A Comparative Study of

Industrial Static Analysis Tools. SSV, 2008.

C
O

M
P

S
C

I

• William R. Bush, Jonathan D. Pincus, David J. Sielaff.
A static analyzer for finding dynamic programming

 f P i d E i 2000

ea
la

nd

errors. Software: Practice and Experience, 2000.
• Bacon, D.F. and Sweeney, P.F. Fast static analysis of

C i t l f ti lls OOPSLA 1996

kl
an

d
| N

ew
 Z

e C++ virtual function calls. OOPSLA, 1996.
• Lattner, Adve. LLVM: A Compilation Framework for

Lifelong Program Analysis & Transformation GCO

ve
rs

ity
 o

f A
uc

k Lifelong Program Analysis & Transformation. GCO,
2004.

• Leroy Java Bytecode Verification: An Overview CAV

Th
e

U
ni

v Leroy. Java Bytecode Verification: An Overview. CAV,
2001. 9

Topic:
Pr r m Expl r ti n

00
9

Program Exploration
How can we understand code faster?

YEAR

20
 7

32

• Emily Hill, Lori Pollock, and K. Vijay-Shanker.
Exploring the Neighborhood with Dora to Expedite

C
O

M
P

S
C

I Software Maintenance. ASE, 2007.
• Martin P. Robillard, Wesley Coelho, and Gail C.

M h H Eff i D l i

ea
la

nd

Murphy. How Effective Developers Investigate
Source Code: An Exploratory Study. TSE, 2004.
Mik K st G il C M h M l d f

kl
an

d
| N

ew
 Z

e • Mik Kersten, Gail C. Murphy. Mylar: a degree-of-
interest model for IDEs. AOSD, 2005.

• Martin P Robillard Automatic Generation of

ve
rs

ity
 o

f A
uc

k • Martin P. Robillard. Automatic Generation of
Suggestions for Program Investigation. FSE, 2005.

• Andrew J Ko and Brad A Myers Debugging

Th
e

U
ni

v Andrew J. Ko and Brad A. Myers. Debugging
Reinvented: Asking and Answering Why and Why Not
Questions about Program Behavior. ICSE, 2008.

10

Topic: IDEs
00
9

p

How can we make IDEs better tools?
YEAR

20
 7

32

• B. Medeiros. Creating IDEs for the Eclipse Platform.
Tech Report, 2007.

C
O

M
P

S
C

I

• A. D. Eisenberg, G. Kiczales. Expressive Programs
Through Presentation Extension. AOSD, 2007.

ea
la

nd

• V. Gruhn. Process-Centered Software Engineering
Environments. Annals of SE, 2002.

kl
an

d
| N

ew
 Z

e

• W. Harrison, H. Ossher, P. Tarr. Soft. Eng. Tools and
Environments: A Roadmap. ICSE, 2000.
M h t l H A J S ft D l

ve
rs

ity
 o

f A
uc

k • Murphy et al. How Are Java Software Developers
Using the Eclipse IDE? IEEE Software, 2006. (short)

• Hupfer et al Introducing Collaboration into an

Th
e

U
ni

v • Hupfer et al. Introducing Collaboration into an
Application Dev. Env. CSCW, 2004. (short) 11

Topic: Tool Integration
00
9

p g

How can we integrate different tools and models?
YEAR

20
 7

32

g
• Reichmann et al. GeneralStore – A CASE Tool

Integration Platform. ECBS, 2004.

C
O

M
P

S
C

I

• Kappel et al. On Models and Ontologies. MOD, 2006.
• M.N. Wicks, R.G. Dewar. A new research agenda for

ea
la

nd

g
tool integration. JSS, 2007.

• L. Tratt. Model transformations and tool integration.

kl
an

d
| N

ew
 Z

e

SSM, 2005.
• Königs, Schürr. Multi-Domain Integration with MOF

d t d d T i l G h G D t hl 2005

ve
rs

ity
 o

f A
uc

k and extended Triple Graph Grammars. Dagstuhl, 2005.
• Burmester at al. Tool Integration at the MetaModel

Level within the FUJABA Tool Suite TIS 2003

Th
e

U
ni

v Level within the FUJABA Tool Suite. TIS, 2003.
(short) 12

Topic: Aspects
00
9

p p

How to deal with crosscutting concerns?
YEAR

20
 7

32

g
• Kiczales et al. Getting started with AspectJ.

ComACM, 2001.

C
O

M
P

S
C

I

• G. Kiczales, M. Mezini. Aspect-Oriented Programming
and Modular Reasoning. ICSE, 2005.

ea
la

nd

• Tarr et al. N Degrees of Separation: Multi-
Dimensional Separation of Concerns. ICSE, 1999.

kl
an

d
| N

ew
 Z

e

• D. Janzen, K. De Voider. Navigating and Querying
Code Without Getting Lost. AOSD, 2003.
J Pf iff A S d J R G d C l C d

ve
rs

ity
 o

f A
uc

k • J. Pfeiffer, A. Sardos, J. R. Gurd. Complex Code
Querying and Navigation for AspectJ. Eclipse, 2005.
(short)

Th
e

U
ni

v (short)
13

Topic:
S ft r En in rin

00
9

Software Engineering
How to develop maintain and deploy software?

YEAR

20
 7

32

p p y
• Alan Dearle. Software Deployment, Past, Present and

Future. FOSE, 2007.

C
O

M
P

S
C

I

• R. Robbes, M. Lanza. A Change-based Approach to
Software Evolution. ENTCS, 2007.

ea
la

nd

• Müller et al. Reverse Engineering: A Roadmap. ICSE,
2000.

kl
an

d
| N

ew
 Z

e

• T. Mens, T. Tourwe. A Survey of Software
Refactoring. TSE, 2004.
J G fi ld K Sh t S ft F t i

ve
rs

ity
 o

f A
uc

k • J. Greenfield, K. Short. Software Factories -
Assembling Applications with Patterns, Models,
Frameworks and Tools OOPSLA 2003

Th
e

U
ni

v Frameworks and Tools. OOPSLA, 2003.
14

Topic: Web Development
00
9

p p

How to develop Web applications efficiently?
YEAR

20
 7

32

p pp y
• D. Draheim, and G. Weber. Specification and

Generation of Model 2 Web Interfaces. APCHI, 2004.

C
O

M
P

S
C

I

• Draheim et al. Realistic Load Testing of Web
Applications. CSMR, 2006.

ea
la

nd

• Draheim, Lutteroth, Weber. A Source Code
Independent Reverse Engineering Tool for Dynamic
W b Sit s CSMR 2005

kl
an

d
| N

ew
 Z

e Web Sites. CSMR, 2005.
• P. Tonella, F. Ricca. Dynamic Model Extraction and

Statistical Analysis of Web Applications WSE 2002

ve
rs

ity
 o

f A
uc

k Statistical Analysis of Web Applications. WSE, 2002.
• D. Draheim, E. Fehr, G. Weber. JSPick - A Server

Pages Design Recovery Tool CSMR 2003 (short)

Th
e

U
ni

v Pages Design Recovery Tool. CSMR, 2003. (short)
15

Research Paper
Gr up W rk

00
9

Group Work
1. Find a partner

YEAR

20
 7

32

p
2. Pick a research paper
3. Read your paper together

C
O

M
P

S
C

I

y p p g
4. Discuss the paper with other groups (with similar

papers)

ea
la

nd

p p

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

16

00
9

YEAR

20
 7

32
C

O
M

P
S

C
I

Research Paper Presentations

ea
la

nd

Research Paper Presentations

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

17

Presentations
00
9 Normal papers

YEAR

20
 7

32

p p
• In teams of two, 4 minutes each
• 2 minutes questions

C
O

M
P

S
C

I

m q

Short papers

ea
la

nd

Short papers
• One person, 4 minutes only
• 1 minute questions

kl
an

d
| N

ew
 Z

e 1 minute questions

• Should explain context refer to some related work

ve
rs

ity
 o

f A
uc

k Should explain context, refer to some related work
• You don’t have to preset full paper, only main ideas
• You may use illustrations from the paper

Th
e

U
ni

v You may use illustrations from the paper
18

Presentation Grading
Sch dul

00
9

Schedule
• Are the important results/concepts

YEAR

20
 7

32

p p
clearly explained?

• Are the important results/concepts

C
O

M
P

S
C

I clearly presented on the slides?
• Is related work mentioned

(b i fl)

ea
la

nd

(briefly)?
• Are questions adequately answered?

kl
an

d
| N

ew
 Z

e

Tips:

ve
rs

ity
 o

f A
uc

k

• Do a “dry run” of your presentation before you give it
before the class
S d i i hi !

Th
e

U
ni

v • Structure and practice is everything!
19

