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Research Papers 
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Typical structure of a research paper (or thesis):
YEAR
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yp p p ( )
1. Title
2. Abstract: brief summary, typically 100-200 words

C
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S
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I 

f mm y, yp y
3. Introduction: motivation, context, overview
4. Related Work: what are others doing

ea
la

nd

4. Related Work  what are others doing
5. Design / Concepts: the theory / our new ideas
6. Implementation: how we did it
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an

d 
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e 6. Implementation: how we did it
7. Evaluation: why it is good/useful/better than others
8 Conclusion: summing up the results
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k 8. Conclusion: summing up the results

Short conference papers: typically around 4 pages
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v Short conference papers: typically around 4 pages
Long conference papers: typically about 10 pages 4



Paper Writing Strategy
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1. Related Work: get an overview and note down points
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g p
2. Design / Concepts: collect ideas

1. Create structure with bullet points / mind map
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p m m p
2. Create figures

3. Implementation: create a prototype

ea
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nd

3. Implementation  create a prototype
1. Start small and extend it bit by bit
2 Experiment and collect results 
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e 2. Experiment and collect results 
(more bullet points and other data)

4. Evaluation: compare and refine your work
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k p y
(if necessary, go back to 2 or 3)

5. Title, Abstract, Introduction and Summary can be 
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done last
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Tackling Related Work
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1. Gather phase
YEAR
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p
– Keyword search

(e.g. Google Scholar, ACM, IEEE)
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– Follow up the references
(cited and citing papers)
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2. Filter phase:
read only abstract and throw blanks out
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3. Reading phase
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The “someone else has already done it” problem
• Look again, is it really the same?
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Paper Topics
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p p

1. Static Analysis
YEAR
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y
2. Program Exploration
3. IDEs

C
O

M
P

S
C

I 

4. Tool Integration
5. Aspects
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5. Aspects
6. Software Engineering
7 Web Development

kl
an

d 
| N

ew
 Z

e 7. Web Development

• About 5 papers per topic
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• 2 persons per paper (presentation is done together)
except for papers marked as “short” (one person)
If  fi d h  i i    ld 

Th
e 

U
ni
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prefer to present, ask Christof about it 8



Topic: Static Analysis
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How to analyze programs by looking at their code?
YEAR
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 7
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y p g y g
• Pär Emanuelsson, Ulf Nilsson. A Comparative Study of 

Industrial Static Analysis Tools. SSV, 2008.
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• William R. Bush, Jonathan D. Pincus, David J. Sielaff. 
A static analyzer for finding dynamic programming 

 f  P i  d E i  2000
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errors. Software: Practice and Experience, 2000.
• Bacon, D.F. and Sweeney, P.F. Fast static analysis of 

C  i t l f ti  lls  OOPSLA  1996
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e C++ virtual function calls. OOPSLA, 1996.
• Lattner, Adve. LLVM: A Compilation Framework for 

Lifelong Program Analysis & Transformation  GCO  
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k Lifelong Program Analysis & Transformation. GCO, 
2004.

• Leroy  Java Bytecode Verification: An Overview  CAV  
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v Leroy. Java Bytecode Verification: An Overview. CAV, 
2001. 9



Topic:
Pr r m Expl r ti n
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Program Exploration
How can we understand code faster?

YEAR
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 7

32

• Emily Hill, Lori Pollock, and K. Vijay-Shanker. 
Exploring the Neighborhood with Dora to Expedite 

C
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I Software Maintenance. ASE, 2007.
• Martin P. Robillard, Wesley Coelho, and Gail C. 

M h  H  Eff i  D l  i  
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nd

Murphy. How Effective Developers Investigate 
Source Code: An Exploratory Study. TSE, 2004.
Mik K st  G il C  M h  M l   d f
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e • Mik Kersten, Gail C. Murphy. Mylar: a degree-of-
interest model for IDEs. AOSD, 2005.

• Martin P  Robillard  Automatic Generation of 
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k • Martin P. Robillard. Automatic Generation of 
Suggestions for Program Investigation. FSE, 2005.

• Andrew J  Ko and Brad A  Myers  Debugging 
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v Andrew J. Ko and Brad A. Myers. Debugging 
Reinvented: Asking and Answering Why and Why Not 
Questions about Program Behavior. ICSE, 2008.
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Topic: IDEs
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How can we make IDEs better tools?
YEAR
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 7

32

• B. Medeiros. Creating IDEs for the Eclipse Platform. 
Tech Report, 2007.
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• A. D. Eisenberg, G. Kiczales. Expressive Programs 
Through Presentation Extension. AOSD, 2007.
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• V. Gruhn. Process-Centered Software Engineering 
Environments. Annals of SE, 2002.
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• W. Harrison, H. Ossher, P. Tarr. Soft. Eng. Tools and 
Environments: A Roadmap. ICSE, 2000.
M h  t l  H  A  J  S ft  D l  
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k • Murphy et al. How Are Java Software Developers 
Using the Eclipse IDE? IEEE Software, 2006. (short)

• Hupfer et al  Introducing Collaboration into an 

Th
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v • Hupfer et al. Introducing Collaboration into an 
Application Dev. Env. CSCW, 2004. (short) 11



Topic: Tool Integration
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How can we integrate different tools and models?
YEAR

20
 7

32

g
• Reichmann et al. GeneralStore – A CASE Tool 

Integration Platform. ECBS, 2004.
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• Kappel et al. On Models and Ontologies. MOD, 2006.
• M.N. Wicks, R.G. Dewar. A new research agenda for 

ea
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nd

g
tool integration. JSS, 2007.

• L. Tratt. Model transformations and tool integration. 
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SSM, 2005.
• Königs, Schürr. Multi-Domain Integration with MOF 

d t d d T i l  G h G  D t hl  2005
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k and extended Triple Graph Grammars. Dagstuhl, 2005.
• Burmester at al. Tool Integration at the MetaModel 

Level within the FUJABA Tool Suite  TIS  2003  
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v Level within the FUJABA Tool Suite. TIS, 2003. 
(short) 12



Topic: Aspects
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How to deal with crosscutting concerns?
YEAR
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 7

32

g
• Kiczales et al. Getting started with AspectJ. 

ComACM, 2001.
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• G. Kiczales, M. Mezini. Aspect-Oriented Programming 
and Modular Reasoning. ICSE, 2005.
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• Tarr et al. N Degrees of Separation: Multi-
Dimensional Separation of Concerns. ICSE, 1999.
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• D. Janzen, K. De Voider. Navigating and Querying 
Code Without Getting Lost. AOSD, 2003.
J  Pf iff  A  S d  J  R  G d  C l  C d  
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k • J. Pfeiffer, A. Sardos, J. R. Gurd. Complex Code 
Querying and Navigation for AspectJ. Eclipse, 2005. 
(short)
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Topic:
S ft r  En in rin
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Software Engineering
How to develop maintain and deploy software?
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• Alan Dearle. Software Deployment, Past, Present and 

Future. FOSE, 2007.
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• R. Robbes, M. Lanza. A Change-based Approach to 
Software Evolution. ENTCS, 2007.
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• Müller et al. Reverse Engineering: A Roadmap. ICSE, 
2000.
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• T. Mens, T. Tourwe. A Survey of Software 
Refactoring. TSE, 2004.
J  G fi ld  K  Sh t  S ft  F t i  
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k • J. Greenfield, K. Short. Software Factories -
Assembling Applications with Patterns, Models, 
Frameworks and Tools  OOPSLA  2003
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v Frameworks and Tools. OOPSLA, 2003.
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Topic: Web Development
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How to develop Web applications efficiently?
YEAR
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p pp y
• D. Draheim, and G. Weber. Specification and 

Generation of Model 2 Web Interfaces. APCHI, 2004.
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• Draheim et al. Realistic Load Testing of Web 
Applications. CSMR, 2006.
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• Draheim, Lutteroth, Weber. A Source Code 
Independent Reverse Engineering Tool for Dynamic 
W b Sit s  CSMR  2005

kl
an

d 
| N

ew
 Z

e Web Sites. CSMR, 2005.
• P. Tonella, F. Ricca. Dynamic Model Extraction and 

Statistical Analysis of Web Applications  WSE  2002
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k Statistical Analysis of Web Applications. WSE, 2002.
• D. Draheim, E. Fehr, G. Weber. JSPick - A Server 

Pages Design Recovery Tool  CSMR  2003  (short)
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v Pages Design Recovery Tool. CSMR, 2003. (short)
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Research Paper
Gr up W rk
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Group Work
1. Find a partner
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2. Pick a research paper
3. Read your paper together
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4. Discuss the paper with other groups (with similar 

papers)
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Presentations
00
9 Normal papers
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• In teams of two, 4 minutes each
• 2 minutes questions
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m q

Short papers
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Short papers
• One person,  4 minutes only
• 1 minute questions
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e 1 minute questions

• Should explain context  refer to some related work

ve
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ity
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f A
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k Should explain context, refer to some related work
• You don’t have to preset full paper, only main ideas
• You may use illustrations from the paper

Th
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v You may use illustrations from the paper
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Presentation Grading 
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• Are the important results/concepts 
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p p
clearly explained?

• Are the important results/concepts 
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I clearly presented on the slides?
• Is related work mentioned 

(b i fl )

ea
la

nd

(briefly)?
• Are questions adequately answered?
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Tips:
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• Do a “dry run” of your presentation before you give it 
before the class
S  d i  i  hi !
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v • Structure and practice is everything!
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