
COMPSCI 230
Software Design and Construction

Design
2013-05-01

*

Design Principles

LEGO is not a toy.
It’s a way of life.
(Mike Smith)

Separation of Concerns
How to deal with complexity in a system?

Separation of concerns (SoC)
● Separate issues (break down large problems

into pieces) and concentrate on one at a time
● Break a program into distinct features

that overlap in functionality as little as possible
● Concern: a piece of a program, usually a feature or a

particular program behavior

Examples
● Separate concerns into classes and methods
● Separate data from UI, and UI from application logic
● Service-Oriented Architecture (SOA):

split up functionality into different (web-) services

Modularity
Complex systems can usually be divided into simpler pieces
called modules

Module: self-contained component of a system
● Has a well-defined interface to other modules
● Separates its interface from its implementation

Modularity can be used on different levels:
● Classes that implement a well-defined interface
● Packages with classes and methods (and other types)
● Whole programs (e.g. command-line "pipes & filters")

Advantages of Modular Systems

Modular systems are systems that are composed of modules
● Easier to understand: when dealing with a module the details

of other modules can be ignored (separation of concerns)
● Modules can be developed & maintained independently

○ Separation of work: different teams for different modules
○ Independent testing of modules

● Modules can be reused in several systems
● Modules can be replaced by other modules with the same

interface
● Isolation between modules can prevent failure in one module

to cause failure in other modules

Spaghetti Code
vs. Modular System

Spaghetti Code
● Haphazard connections, probably grown

over time
● No visible cohesive groups
● High coupling: high interaction between

random parts
● Understand it all or nothing

10 parts, 13 connections

10 parts, 13 connections,
3 modules

Modular System
● High cohesion within modules
● Low coupling between modules
● Modules can be understood separately
● Interaction between modules is well-

understood and thoroughly specified

Information Hiding
Problem: Information Overload
Idea: Hide information that does not need to be
visible in order to use a class/module/program
● Too much information can be confusing:

what is important for usage and what not?
● Too much information can lead to undesired dependencies

○ If internals are visible & accessible, someone might
use/change them (use something in an unintended
manner)

○ If internals are changed then external code that relies on
them might not work anymore

● Allowing only restricted access gives us more flexibility
● Class/module/program can be (ex)changed without

breaking other parts
● Many design decisions can be hidden and the system

design can evolve without collapsing

Three-Tier Architecture

Separation of
concerns
● Tiers can be

developed &
maintained
fairly
independently

● Important for
system
evolution

● Similar to
other designs
such as
model-view-
controller
(MVC)

Hierarchical Decomposition:
Separation of Concerns

within a UI

= +

Hierarchical Decomposition
of UIs

Problem: duplication of UI parts, i.e. some UI parts are needed
in several places
● Within an application, but also across apps

○ Parts of forms, i.e. fields for entering data,
e.g. for personal information

○ Toolbars & menus,
e.g. with functions for opening, saving, ...

○ Whole windows and dialogues
(e.g. for handling errors)

● Duplication is more work and creates inconsistencies

Solution: develop reusable UI parts in separate classes
● Subclass of JPanel to group related widgets
● Subclass of JFrame to create reusable windows
● Reusable parts can themselves reuse other parts...

HIERARCHICAL DECOMPOSITION
EXAMPLE

public class PersonDataForm extends JPanel {
private JLabel firstNameLabel;
private JTextField firstNameField;
private JLabel lastNameLabel; ...

public PersonDataForm() {
firstNameLabel = new JLabel("First Name"); ...

}
}

public class CompanyDataForm extends JPanel {
private JLabel companyNameLabel; ...

}

public class CustomerForm extends JFrame {
PersonDataForm personDataForm;
CompanyDataForm companyDataForm;
JButton addButton; ...

}

Separation of UI and Data
(Model and View)

 Different Views
Data represented

in

SEPARATION OF
MODEL AND VIEW

Use different classes for Model and View:
● Model: the data that is presented by a widget,

i.e. the data storage implementation (classes & methods)
● View: the presentation of the data on the screen,

i.e. the widgets that paint the data (classes & methods)

The data of a GUI component may be represented using
several model objects, e.g. for
● Displayed data (e.g. list items in JList: ListModel)
● Widget state

(e.g. selections in JList: ListSelectionModel)

Different Views
Data represented

in

Advantages of
Model-View SEPARATION

● Separation of concerns during development
○ Model can be developed & maintained independently

from view
○ Well-defined interface between model and view makes

sure that they can work together
● New possibilities for connecting models and views

○ Model can be displayed in multiple views
○ Models and views can be distributed

● Model concept is integrated with event notification
○ Changes of the model trigger updates of view
○ Changes of the view trigger updates of model
○ Consistency between model and view

Model

View View

View View

A TYPICAL MODEL-VIEW APPLICATION

JTable component
instance Model

JCombobox component
instance

Stats view

Graphical view

Change
request

Update notification

Many desktop
applications provide
multiple views of some
data model.

Invariant : all views
should offer a mutually
consistent
representation of the
model.

MODEL-VIEW IN SWING

● Contemporary GUI
frameworks, like Swing,
are based on a separable
model architecture

● All Swing widgets
(JComponents) have
separate models

JTable << interface >>
TableModel

JComboBox << interface >>
ComboBoxModel

JTree << interface >>
TreeModel

JList << interface >>
ListModel

JTable component
instance

TableModel
instance

setValueAt(row, col)

tableChanged(event)

Example: A Multi-
view Text Editor

TextEditor
instance

JTextArea
instance

JTextArea
instance

view 1

view 2 PlainDocument
instance

TextEditor JMenuBar JMenu JMenuItem is a special kind of
button.

JMenuItem

JFrame << interface >>
ActionListener

PlainDocument is an
implementation of the
Document (model) interface.

1 2

JTextArea<< interface >>
Document

PlainDocument

List Model Example
listModel = new DefaultListModel();
listModel.addElement("Alan Sommerer");
list = new JList(listModel);
…
hireButton.addActionListener(new ActionListener(){
 void actionPerformed(ActionEvent e) {
 listModel.addElement(nameField.getText());
 }});

fireButton.addActionListener(new ActionListener(){
 void actionPerformed(ActionEvent e) {
 int index = list.getSelectedIndex();
 listModel.remove(index);
 }});
…

Full source code at:
http://docs.oracle.com/javase/tutorial/uiswing/components/list.html

http://docs.oracle.com/javase/tutorial/uiswing/components/list.html
http://docs.oracle.com/javase/tutorial/uiswing/components/list.html

Tree Model Example Part 1
import javax.swing.tree.*;
import javax.swing.event.*;
…
public class BinaryTree implements TreeModel {
 public Object getRoot() { return 0; }
 public int getChildCount(Object parent) { return 2; }
 public Object getChild(Object parent, int index) {

 return index;
 }
 public int getIndexOfChild(Object parent, Object child) {

 return (Integer)child;
 }
 public boolean isLeaf(Object node) {
 return false;
 }

 // see next slide for more…
}

Tree Model Example Part 2
public void addTreeModelListener(TreeModelListener l) {}
public void removeTreeModelListener(TreeModelListener l) {}
public void valueForPathChanged(

TreePath path, Object newValue) {}

public static void main(String args[]) {
 JFrame frame = new JFrame("Binary Tree");
 frame.setSize(new Dimension(100, 200));
 frame.setDefaultCloseOperation(

 JFrame.EXIT_ON_CLOSE);

 JTree tree = new JTree(new BinaryTree());
 tree.setShowsRootHandles(true);
 frame.getContentPane().add(new JScrollPane(tree));

 frame.setVisible(true);
}

Separation of UI (View)
and Application Logic

Datatriggers

Logic

works
with

SEPARATION OF View and Logic
Use different classes for View and Logic:
● View: the presentation of the data on the screen,

i.e. the widgets that paint the data (classes & methods)
● Logic: the operations that the program performs,

e.g. decisions, calculations, data processing/filtering, etc.

The logic of an application is implemented in your own classes
● Methods for the different operations triggered through the UI

that read data from the model and work with it
● Should have a well-defined interface to view
● Main advantage: easier development & maintenance through

separation of concerns

Datatriggers

Logic

works
with

Separation of Logic
Example

…
hireButton.addActionListener(new ActionListener(){
 void actionPerformed(ActionEvent e) {
 String name = nameField.getText();
 logic.hire(name);
 }});

fireButton.addActionListener(new ActionListener(){
 void actionPerformed(ActionEvent e) {
 String name = (String) list.getSelectedValue();
 logic.fire(name);
 }});
…

Logic class defines methods for hiring and firing
e.g. hire()

● Validate input: check if the name is correct
● Check data constraints: make sure there is a vacancy
● Update model: add new employee

Summary

● Separation of Concerns, Modularity
and Information hiding are important design principles

● Improved reuse & maintenance through
○ Hierarchical Decomposition
○ Separation of Model and View
○ Separation of View and Logic

Assignment 3 out today:
Design and implement your own GUI prototype

Test this Friday during the lecture time:
From Christof's part only week 7 covered (first week)

Quiz

1. Briefly describe the three tiers of a 3-tier architecture.
2. What does separation of model and view mean?

Describe two of the advantages.
3. Why is it good to separate the logic and the view of an

application?

USB Coffee Machine http:
//vivifyer.deviantart.com/art/USB-
Coffee-Machine-56399525

http://vivifyer.deviantart.com/art/USB-Coffee-Machine-56399525
http://vivifyer.deviantart.com/art/USB-Coffee-Machine-56399525
http://vivifyer.deviantart.com/art/USB-Coffee-Machine-56399525
http://vivifyer.deviantart.com/art/USB-Coffee-Machine-56399525

