THE UNIVERSITY
@ OF AUCKLAND

COMPSCI 230

Software Design and Construction

Design
2013-05-01

Design Principles

LEGO is not a toy.
It's a way of life.
(Mike Smith)

Separation of Concerns

How to deal with complexity in a system?

Separation of concerns (SoC)

. Separate issues (break down large problems
into pieces) and concentrate on one at a time

« Break a program into distinct features
that overlap in functionality as little as possible

« Concern: a piece of a program, usually a feature or a
particular program behavior

Examples
« Separate concerns into classes and methods
. Separate data from Ul, and Ul from application logic

« Service-Oriented Architecture (SOA):
split up functionality into different (web-) services

Modularity

Complex systems can usually be divided into simpler pieces
called modules

Module: self-contained component of a system
. Has a well-defined interface to other modules
. Separates its interface from its implementation

Modularity can be used on different levels:

. Classes that implement a well-defined interface
. Packages with classes and methods (and other types)
« Whole programs (e.g. command-line "pipes & filters")

Position=17
n'tread beauty
ey'll make you

Ayl [
W

Advantages of Modular Systems

Modular systems are systems that are composed of modules

e Easier to understand: when dealing with a module the details
of other modules can be ignored (separation of concerns)

e Modules can be developed & maintained independently
o Separation of work: different teams for different modules
o Independent testing of modules

e Modules can be reused in several systems

e Modules can be replaced by other modules with the same
interface

e Isolation between modules can prevent failure in one module
to cause failure in other modules

Spaghetti Code
vs. Modular System

Spaghetti Code

Haphazard connections, probably grown
over time

No visible cohesive groups

High coupling: high interaction between
random parts

Understand it all or nothing

Modular System

High cohesion within modules

Low coupling between modules
Modules can be understood separately
Interaction between modules is well-
understood and thoroughly specified

10 parts, 13 connections

QY

\N_ /

-

/

10 parts, 13 connections,

3 modules

Information Hiding

Problem: Information Overload

Idea: Hide information that does not need to be
visible in order to use a class/module/program

« Too much information can be confusing:
what is important for usage and what not?
« Too much information can lead to undesired dependencies
o If internals are visible & accessible, someone might
use/change them (use something in an unintended

manner)
o If internals are changed then external code that relies on

them might not work anymore
. Allowing only restricted access gives us more flexibility
Class/module/program can be (ex)changed without

breaking other parts
Many design decisions can be hidden and the system

design can evolve without collapsing

Three-Tier Architecture

Presentation tier

The top-most level of the application

is the user interface. The main function
of the interface is to translate tasks
and results to something the user can
understand.

Logic tier

This layer coordinates the
application, processes commands,
makes logical decisions and
evaluations, and performs
calculations. It also moves and
processes data between the two
surrounding layers.

Data tier

Here information is stored and retrieved
from a database or file system. The
information is then passed back to the
logic tier for processing, and then
eventually back to the user.

>GET SALES
TOTAL

>GET SALES
TOTAL

4 TOTAL SALES

\J
GET LIST OF ALL ADD ALL SALES
SALES MADE TOGETHER
LAST YEAR
SALE 1
QUERY SALE 2
SALE 3
SALE 4
S ———
—_—
Storage

Database

Separation of
concerns

« Tiers can be
developed &
maintained
fairly
independently

. Important for

system
evolution

o Similar to
other designs
such as
model-view-

controller
(MVC)

222 THE UNIVERSITY
@ OF AUCKLAND

Hierarchical Decomposition:
Separation of Concerns
within a Ul

il Customer (e =)=] (%] Customer =E=]

. FirstName |Christof First Name | Christof

Last Name Lutteroth Last Name Lutteroth

- uPI UPT

. |
Company Name University of Auckland] Company Name University of Auckland
Company Address priyate Bag 92019 Company Address private Bag 92019

Auckland 1020 Auckland 1020

Add Customer] [Cancel Add Customer] [Cancel

Hierarchical Decomposition
of Uls

Problem: duplication of Ul parts, i.e. some Ul parts are needed

In several places

« Within an application, but also across apps
o Parts of forms, i.e. fields for entering data,
e.g. for personal information
o Toolbars & menus,
e.g. with functions for opening, saving, ...
o Whole windows and dialogues

(e.g. for handling errors)

[£) Customer

First Name |Christof
Last Name |Lutteroth

UPI

Company Name University of Auckland

Company Address private Bag 92019
Auckland 1020

Add Customer

] [Cancel

« Duplication is more work and creates inconsistencies

Solution: develop reusable Ul parts in separate classes

« Subclass of JPanel to group related widgets
o Subclass of JFrame to create reusable windows

« Reusable parts can themselves reuse other parts...

HIERARCHICAL DECOMPOSITION
EXAMPLE

public class PersonDataForm extends JPanel {
private JLabel firstNameLabel; First Name |Christof
private JTextField firstNameField; LastName |Lutteroth

UPI

private JLabel lastNamelabel;

public PersonDataForm() ({
new JLabel ("First Name") ;

firstNamelLabel =

}
}
4

University of Auckland

Company Name

Company Address priyate Bag 92019

public class CompanyDataForm extends JPanel ({
private JLabel companyNameLabel; . Auckland 1020

4

[@] =

}

| £ Customer

First Name | Christof

public class CustomerForm extends JFrame ({
PersonDataForm personDataForm; st e Lot
CompanyDataForm companyDataForm; -
JButton addButton; el

} Auckland 1020
Add Customer] [Cancel

2ud THE UNIVERSITY
@ OF AUCKLAND

Separation of Ul and Data
(Model and View)

A B. ¢ |D

41 711582C : 23] 3

42 720S1C : 7] 3

represented 43 72552 C . 29| 3
44 T2S1C - a7 3

45 T34 S1T . K

46 74252C . 2| 3

Diff: IEWS 7iszc e

SEPARATION OF
MODEL AND VIEW

Use different classes for Model and View:
« Model: the data that is presented by a widget,
l.e. the data storage implementation (classes & methods)

. View: the presentation of the data on the screen,
i.e. the widgets that paint the data (classes & methods)

The data of a GUI component may be represented using
several model objects, e.g. for

. Displayed data (e.qg. list items in JList: ListModel)

« Widget state
(e.g. selections in JList: ListSelectionModel)

41 711582C

23

42 72081C

43 725S2C

29

.LJ 713281C

734 81T

6 742S2C

Dat representec> @
- ‘
’ Diff

|eWS 750 52 C

O bl
DI~ ~

mwuummuo

Advantages of
Model-View SEPARATION

. Separation of concerns during development
o Model can be developed & maintained independently
from view
o Well-defined interface between model and view makes
sure that they can work together

« New possibilities for connecting models and views
o Model can be displayed in multiple views
o Models and views can be distributed

« Model concept is integrated with event notification
o Changes of the model trigger updates of view
o Changes of the view trigger updates of model
o Consistency between model and view
(View

(Model)

View

A TYPICAL MODEL-VIEW APPLICATION

| £ Model/View Application

Dlsmbutlon & statistics

Average 53.36

@sults breakdown
SudentID | Surname | Forename| Exam Test |Assignme..] Overall
57990651|Jolley Paul 54 66 96 75) 4
57103455(Balpakakis|Stefanos 38 43 46 42|=
40793583|Akavani [Reza 54 53 56 55
37512964 |Patterson |John 60 56 59 59
75429138|Bell Dave 67 32 40 53
44492295|Blakelock |William 47 65 45 46
57352508(Konylis Georgios 50 88 54 52
10429920|Li Chao 50 34 96 73

k 96076418|Baxter Andrew 3 45 59 33

2AN72A72UNMavarc Nanial 27 AA AR e
Assessment policy
|50/50 exam/assignment Ivl

Standard deviation 12.9
Median 56

JTable component\

instance

JCombobox component
instance

Many desktop
applications provide
multiple views of some
data model.

Invariant : all views
should offer a mutually
consistent
representation of the
model.

>

Change
request

p—

Update notification

MODEL-VIEW IN SWING

- Contemporary GUI
frameworks, like Swing,
are based on a separable
model architecture

- All Swing widgets
(JComponents) have
separate models

setValueAt(row, col)

o — @&
JTable component TableModel

instance — instance

tableChanged(event)

First Name

Last Name

Favorite Food

Jeff

Dinkins

Ewan

Dinkins

Amy

Fowler

Hania

Gajewska

David

Geary

=

y
¢

Pig

Bird

Dog
Rabbit
Pig

3 Music

® [Classical
©- [Beethoven

®- 3 Brahms
©- [Mozart

o [JJaz

©] Rock

January
February
March
April

|

JTable

<« interface »
TableModel

JComboBox

<« interface »
ComboBoxModel

JTree

<« interface »»
TreeModel

JList

<« interface »
ListModel

JFrame

1

<« interface >
ActionListener

Example: A Multi-
view Text Editor

<« interface »
Document

]

PlainDocument

PlainDocument is an
implementation of the
Document (model) interface.

TextEditor
instance

JTextArea
instance

N
JTextArea \

instance

PlainDocument
instance

import javax.swing.event. CaretListener,
import javax.swing.event DocumentEvent;
import javax.swing.event DocumentListener;
import javax.swing.text. Document;

import javax.swing.text.PlainDocument;

import cs230.command ActionManager,
import cs230.command.CopyAction;
import cs230.command.CutAction;
import cs230.command ExitAction;
import cs230.command.PasteAction;

TextEditor JMenuBar JMenu JMenuItem | JMenultem is a special kind of
button.
| <% 2

%’, i 'x

JTextArea - = B)X

ile

impo| [y Copy enultern; =
impo crollPane;
impo plitPane;
impo @ Paste exthArea;
impo| Select All oolBar,
impo! ent.CaretEvent;

import java.awt. Component;
import java.awt. Container,
import java.awt.event FocusEvent;
import java.awt event FocusListener;
import java.io BufieredReader,

List Model Example

listModel = new DefaultListModel () ;
listModel.addElement ("Alan Sommerer") ;
list = new JList(listModel) ;

hireButton.addActionListener (new ActionListener () {
void actionPerformed (ActionEvent e) {
listModel.addElement (nameField.getText ()) ;

}})

fireButton.addActionListener (new ActionListener () {
void actionPerformed(ActionEvent e) { peoou---eo
int index = list.getSelectedIndex() ; (] Listbemo =~
listModel. remove (index) ;

Ph) g

lan Sommerer

CEhocrns Folebungae

Fire |||

Full source code at:
http://docs.oracle.com/javase/tutorial/uiswing/components/list.html

http://docs.oracle.com/javase/tutorial/uiswing/components/list.html
http://docs.oracle.com/javase/tutorial/uiswing/components/list.html

Tree Model Example Part 1

import javax.swing.tree.*;
import javax.swing.event.¥*;

public class BinaryTree implements TreeModel {

public Object getRoot() { return 0, }
public int getChildCount (Object parent) { return 2; }

public Object getChild (Object parent, int index) ({
return index;

}
public int getIndexOfChild (Object parent, Object child) {

return (Integer)child;

}

public boolean isLeaf (Object node) { X
return false; =
}
¢ 1
// see next slide for more.. ?G?Ejo =
} =
¢ 1
¢ 30 <
«| T]1*] |

Tree Model Example Part 2

public void addTreeModellistener (TreeModellListener 1) {}
public void removeTreeModellistener (TreeModellistener 1) ({}
public void valueForPathChanged (

TreePath path, Object newValue) ({}

X
¢ 0 =

public static void main(String args|[]) { -3 0
JFrame frame = new JFrame ("Binary Tree") ; P 1 3
frame.setSize (new Dimension (100, 200)); ?Eggjo -
frame.setDefaultCloseOperation (o-=31 [|

JFrame .EXIT ON CLOSE) ; 31

¢ 0 |
1 |

JTree tree = new JTree (new BinaryTree()) ;
tree.setShowsRootHandles (true) ;

frame.getContentPane () .add (new JScrollPane (tree)) ;

frame.setVisible (true) ;

A

B

2ud THE UNIVERSITY
@ OF AUCKLAND

Separation of Ul (View)
and Application Logic

C

41 71582C

23

42 72081C

7

43 712582C

29

44 73281C

47

45 734 S1T

40

46 74282 C

42

47 750S2C

8

||| w]w S

- =

Logic

SEPARATION OF View and Logic

Use different classes for View and Logic:

. View: the presentation of the data on the screen,
i.e. the widgets that paint the data (classes & methods)

. Logic: the operations that the program performs,
e.g. decisions, calculations, data processing/filtering, etc.

The logic of an application is implemented in your own classes

e Methods for the different operations triggered through the Ul
that read data from the model and work with it

e Should have a well-defined interface to view

e Main advantage: easier development & maintenance through
separation of concerns

A B C D
41 711552C : 23
42 720S1C ‘ 7 . D
43 72552C : 29 tnggers at
44 732S1C 47 ‘
45 734817 . 4
46 742S2C ’ 4
47 75082C ’

Logic

WlWwlLwlWwiwlw|w

[==1 LS) =Y

Separation of Logic
Example

hireButton.addActionListener (new ActionListener () {
void actionPerformed (ActionEvent e) {
String name = nameField.getText() ;
logic.hire (name) ;

}})

fireButton.addActionListener (new ActionListener () {
void actionPerformed (ActionEvent e) {
String name = (String) list.getSelectedValue() ;
logic.fire (name) ; Lisemo

Yy o e

lan Sommerer
Alison Humil
Kathy Walrath =
Lisa Friendhy
Mary Campione —

-
Chiarns Foalsbvnpnre !——I

e[|

Logic class defines methods for hiring and firing
e.gd. hire ()
. Validate input: check if the name is correct
« Check data constraints: make sure there is a vacancy
« Update model: add new employee

222 THE UNIVERSITY
& OF AUCKLAND

Summary \

N TR
SN

e Separation of Concerns, Modularity

and Information hiding are important design principles
e Improved reuse & maintenance through

o Hierarchical Decomposition

o Separation of Model and View

o Separation of View and Logic

4)
Assignment 3 out today:

Design and implement your own GUI prototype
Q 4

4)
Test this Friday during the lecture time:

From Christof's part only week 7 covered (first week)
A 4

aal

THE UNIVERSITY
OF AUCKLAND

. Briefly describe the three tiers of a 3-tier architecture.

. What does separation of model and view mean?
Describe two of the advantages.

. Why is it good to separate the logic and the view of an
application?

USB Coffee Machine http:
[Ivivifyer.deviantart.com/art/USB-
Coffee-Machine-56399525

http://vivifyer.deviantart.com/art/USB-Coffee-Machine-56399525
http://vivifyer.deviantart.com/art/USB-Coffee-Machine-56399525
http://vivifyer.deviantart.com/art/USB-Coffee-Machine-56399525
http://vivifyer.deviantart.com/art/USB-Coffee-Machine-56399525

