
An Aspect-Oriented UML Tool for Software Development
with Early Aspects

Yang Wang, Santokh Singh, John Hosking
Department of Computer Science

University of Auckland
Private Bag 92019, Auckland

New Zealand
+64-9-3737-599

{santokh, john}@cs.auckland.ac.nz

John Grundy
Department of Electrical and Computer Engineering

and Department of Computer Science
University of Auckland

Private Bag 92019, Auckland, New Zealand
+64-9-3737-599

john-g@cs.auckland.ac.nz

ABSTRACT

Aspect-oriented Component Engineering uses early aspects to
better categorize and reason about provided and required services
of individual components in software systems. Our earlier work
on AOCE demonstrated an increase in the reusability and
understandability of software components and systems via its
usage of early requirements and design-phase aspects but lacked
adequate tool support. We describe a novel design tool called
Aspect-Oriented UML (AO-UML) that can be used to efficiently
capture and manage early aspects for software development using
the Aspect-oriented Component Engineering methodology. The
key benefits of our tool are its use throughout the development
lifecycle and its ability to support and take advantage of Aspect-
Oriented Component Engineering’s features and capabilities.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Requirements/Specifications –
tools. Design Tools and Techniques – evolutionary prototyping,
modules and interfaces, object-oriented design methods.

General Terms
Design, Documentation, Management, Reliability, Verification.

Keywords
Early Aspects, Meta-Modeling Tool, AOCE, AO-UML.

1. INTRODUCTION
As software systems have became more sophisticated and
complex, traditional software development methodologies which
had focused on building software systems from scratch have been
replaced by a “build-systems-from-parts” approach [5], [14], [16].
These newer methodologies, collectively called component-based
software development (CBSD), have significantly changed how
software systems are built by focusing on selection of software
components off-the-shelf (COTS) and assembly of those
components within an appropriate software architecture [15].

Various software architectures and implementation frameworks
have been developed based on the notion of software components,
including COM [17], JavaBeans [18] and JViews [12]. In
contrast to traditional software systems, component based systems
offer potential for better existing or third party component reuse,
compositional system development, and dynamic and end user
reconfiguration of the applications.

However, CBSD methodologies present their own set of
problems, including the common issue of cross-cutting of
concerns and the interleaving or “tangling” of common code in
software systems. Cross-cutting concerns give rise to designs and
implementations that are complicated, difficult to understand and
hard to control. In some respects this problem is even more
challenging in CBSD than in traditional monolithic software
construction as 3rd party components may be assembled, even
dynamically, with poor descriptions of the component’s
requirements and design decisions exposed for developers and
other components to understand. We developed a novel CBSD
approach called Aspect-Oriented Component Engineering
(AOCE) to address the issue of representing cross-cutting
concerns in component-based software systems [9], [19]. Our
approach makes extensive use of both “early” and “late” aspects
throughout the software development lifecycle, with aspect-based
characterizations of components used in requirements
engineering, software architecture and component design,
component implementation and at run-time to support dynamic
component discovery, integration, and deployed component
testing [9], [11], [13]. However, as AOCE adds extra complexity
to component requirements, designs and implementations, using
AOCE without adequate tool support is very difficult [11].

In this paper we present our recent work developing integrated
tool support for AOCE so that designing and implementing
software systems based on early aspects can be performed in a
more robust manner. We developed a novel notation and
prototype tool set called Aspect-Oriented UML (AO-UML) that
supports developers’ use of the AOCE methodology for
component-based software development throughout the
component development lifecycle.

2. MOTIVATION
We have explored the possibility of applying AOCE to a variety
of phases of software development in our previous work [9], [11],
[13]. However, much of this research has focused on limited
phases or areas of component software development, and lacked
comprehensive tool support. More specifically, developers may
not know how to apply these isolated techniques in a complete

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

EA’06, May 21, 2006, Shanghai, China.

Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

software process, and some techniques such as dynamic discovery
and deployment time component testing with aspects cannot be
used without specialized tool support [11], [13]. We also found
that without tool support we spent considerable time
programming and coding aspect oriented applications that were
very similar regarding their structure and contents. Therefore a
tool to integrate our various AOCE techniques was urgently
needed to provide an integrated development environment (IDE).
In this paper, the terms of Software Development Methodology
and Software Process Model are based on Boehm’s definitions [5]
where he maintains a clear distinction between the two.

Even though our previous research has evaluated our AOCE
techniques in realistic scenarios, the evaluations have only
concerned a specific development phase independent of other
phases and its impact on the whole development life cycle. Thus
our AO-UML IDE project is aimed at investigating the capability
of the AOCE techniques to support whole lifecycle aspect-
oriented component engineering in an efficient manner.
Furthermore, although we believe AOCE has strong potential for
improvement of component-based software engineering, it is only
an abstract methodology without proper tool support. For
developers who wish to explore AOCE, our AO-UML tool
provides a systemic and recipient way for them to learn about
AOCE techniques and apply them in their own scenarios.

3. EARLY ASPECTS AND AOCE
Aspect oriented software development (AOSD) [1], [7] has
become an important new approach to software engineering.
AOSD addresses the problem of overlapping, horizontal cross-
cutting concerns across multiple classes (and components) that
exist in traditional software development. The fundamental idea
here is to use aspects to represent concerns that cut modules, and
implement aspects at a programming level separately from the
modules. This enables aspects to be easily managed and
controlled since they are isolated from the modules, and once
defined, modules can be reconfigured by weaving aspect code in.
Up until the last few years, most work using aspects has been
limited to the implementation phase of software development, i.e.
finding cross-cutting concerns that implementation units have in
common and factoring those out as aspects. Many current
applications of aspects, such as in Aspect-Oriented Programming
(AOP) [19],[22], mainly concentrate on the implementation phase
of the life cycle. These aspects are actually code blocks that can
specify different concerns in modules. However, much recent
work has tried to generalize the concept and apply it to different
phases of the life cycle. A new direction of AOSD is to identify
and categorize aspects, called early aspects, in early phases of the
life cycle, and convert them into programming level aspects for
modules in the implementation phase. Identifying aspects at an
early stage helps to achieve separation of crosscutting concerns in
the initial system analysis instead of deferring such decisions to
later stages of design and code, hence avoiding costly redesigning
and refactorings. Several approaches have been introduced to try
to assist in the identification of early aspects for AOSD, these
includes Theme [4], Early-AIM [22], and EA-Miner [20].
However, most such techniques are still in initial stages of
research. Our whole of lifecycle AOCE methodology [9], [11] is
one such technique. AOCE uses a concept of different cross
cutting systemic capabilities (clearly defined early aspects such as

persistency, security, user interface, transaction, configuration,
collaboration, resource utilisation etc.) which are identified in the
early phases of the System’s Development Life Cycle (SDLC).
These aspects are used to categorize and reason about provided
and required services of individual candidate components in a
software system, whether these may be existing or to-be-
developed components. AOCE supports the identification,
description and reasoning about the component’s high-level
functional and non-functional requirements grouped by different
early aspects, with “aspect details” and “detail properties”
providing an ontology and constraint language to express
constraints on the provided and required relationship between
components and component compositions. AOCE component
requirements are refined into design-level software component
services implementing these aspects but which are also
characterized by more detailed design and implementation-level
aspects, tracable back to the requirements-level aspects.
Components are implemented using aspect characterizations to
support dynamic component description, discovery, adaptation,
reconfiguration and deployment-time testing [11]. Using AOCE,
components can be automatically indexed by their early aspects,
and users can formulate high-level queries about the component’s
capabilities. Moreover, some pre-defined properties of early
aspects in AOCE provide validation functions for sensible
configurations of any retrieved components [11].

In the past we have redesigned and redeveloped some complex
traditionally implemented component-based software systems
using AOCE for proof of concept purposes [12] using manual
application of AOCE techniques (i.e. without tool support).
These results were very encouraging and show that re-engineering
using AOCE can produce significantly better characterized
component requirements and more easily reused and reconfigured
components. The early aspect information provides advantages
during component requirements analysis and design, such as rich
multiple perspectives for components, better structuring of
components and design, better dynamic configuration and de-
coupled component interaction, and run-time access to detailed
component knowledge [12], [20]. Having proven the concept our
aim now is to develop usable, comprehensive and novel tools to
support the whole AOCE software development process. The AO-
UML tool presented here is the first of these and is novel in its
comprehensive support for aspects across the SLDC.

4. AO-UML
Our prototype AO-UML tool has the capability to support several
perspectives for software development using AOCE. These
include a component-based system’s functional requirements,
architectural designs and detailed component specifications and
characteristics. An exemplar application developed using AO-
UML is used to illustrate the tool’s capabilities. We implemented
AO-UML with the Pounamu meta-CASE tool which was used to
specify and generate the AO-UML IDE.
The Pounamu [27] meta-CASE tool supports specification and
generation of multiple view visual tools. The tool permits rapid
specification of visual notational elements, underlying tool
information model requirements, visual editors, the relationship
between notational and model elements, and behavioral
components. Pounamu can generate visual modeling tools
automatically and the tools used for modeling immediately.

4.1 FUNCTIONAL REQUIREMENTS
The SDLC literature introduces and defines various phase models
[1], [3], [9], [15]. These models, however, while using different
terminology, have very similar phases in terms of the activities
defined in the phases. We have identified six core phases that
define an SDLC based on the descriptions in these papers; these
six phases are listed in Table 1 together with the overall
requirements for those phases. Table 1 also lists the functional
requirements of AO-UML for each of the SDLC phases. For
example, in the Software Requirements Analysis phase shown, we
list out the services that the system should provide as aggregate
early aspects and this identification of aspects is done very early
in the life cycle.

Phase Requirements Functions provided by
AO-UML

Planning System engineering
and modeling, which
involves in setting up
the required resources
such as hardware,
people and software.

Initializing the project
in AO-UML and the
AOCE component
database*.

Software
Requirement
Analysis

Analyzing the
requirements of the
software system.

Listing out services that
the system should
provide as aggregate
early aspects.
Invoking components
that might be reused
from the AOCE
component database.

Defining components
and their aspects
information.
Aspects mapping across
components.

System Analysis
and Design

Defining overall
software structure.

Deploying components
to UML design.

Implementation Translating the design
into a platform-
readable format such as
Java, C# or PHP.

Generating code for
various platforms.
(Current version only
supports Java)

Testing After the code is
generated, developers
should start testing the
code in a planned
manner.

Dynamic Validation
Agents to support
deployment of
component testing.[11]

Storing and querying
components from
AOCE database
through AO-XML
standard. [13]

Maintenance Software will definitely
be updated for some
reason, e.g. for bug
fixing or functional
enhancement after it is
delivered to customer. Reverse engineering

with aspect
information.

*AOCE component database: A component database which supports the storage and
query of aspect information of the component.

Table 1: Functional Requirements of AO-UML

Even though we used the system development life cycle (SDLC)
for the software process model (SPM) to introduce the functions
of AO-UML, these functions can in fact be applied to any SPM to
support development using Early Aspects. One of these models is
our eXtreme AOCE [22] which extends the features of both

AOCE and eXtreme Programming (XP) to support cross-cutting
concerns of the components with Agile techniques. Instead of
developing the software system as a whole in SDLC, eXtreme
AOCE tends to slice the system into small pieces containing
aspect information, and work on developing them separately.
Through this method, the development team can handle any
change of requirements more rapid and easily, at the same time
achieve a high level of productivity. Also, eXtreme AOCE drives
the team to produce high quality reusable aspect-oriented
software components based on AOCE concepts. For employing
eXtreme AOCE as the SPM in AO-UML, each small piece of new
program that needs to be developed is treated as an independent
mini-project that is then merged with the remainder of the
program once it has been tested. Therefore, developers can do the
requirements analysis, aspect identification and component design
for each small piece as if they are working on independent
projects without disrupting the rest of the system that is already
developed. As such, though the AO-UML is specially built for
software development using AOCE, it is versatile and can also be
used to fully support other AOCE related techniques like eXtreme
AOCE because of the tool’s ability to enable the design and
construction of high quality aspect-oriented components and
address issues concerning Early Aspects during the development
of the software.

4.2 Architecture of AO-UML
The architecture of AO-UML, shown in Figure 1, consists of three
main parts, the Graphical User Interface (GUI), a repository and
an implementation factory. The GUI of AO-UML is composed of
three view types, which can be switched between: the component,
aspect and UML views. Each view type has its own visual
symbols and semantics for describing the design in multiple
perspectives. The aspect view manages information concerning
component aspects and their mapping (the mapping is presented
as aggregate aspects).

Figure 1: The overall architectural design of AO-UML

The component view is used to gather information about
components including their child classes, aspects and the mapping
between methods and aspects. The UML view co-operates with
the component view. It allows users to import the classes defined
in the component views and use additional notations provided by
the UML view to complete the UML class diagram for
implementation. Even though these three view types have their

own concepts and definition, some of their visual symbols such as
classes and aspects share the same meaning and properties. The
AO-UML thus provides a way of sharing these kinds of concerns
and symbols across different view types and to synchronize the
entities relating to these.

An aspect-oriented component repository is used by AO-UML
users to store and share information concerning all AO-
components developed so far. This supports fast search and
retrieval of these components using aspect-enhanced queries. AO-
UML can also be used to visualize the components as notations
on its views and allow users to reuse them in their designs and
analysis. In order to communicate with the repository, a schema
is required for both sides to interpret and understand the
conversation. AO-XML [23] is a novel schema which we
developed to define the grammar for exchanging aspectual
information and stores information related to the components and
their aspects in a well-structured way.

The final part of the architectural design is an implementation
factory. This provides tool support for the implementation phase
such as transferring the design into a platform-readable form,
implementing reverse engineering and exporting XMI files.
Based on the UML design diagrams drawn, AO-UML can be used
to generate code scripts for various platforms to minimize the
developer’s effort in writing code. The current AO-UML version
generates Java code. AO-UML can also support reverse
engineering to allow recovery of a design with aspect information
from code scripts.

4.3 AO-UML NOTATION
Figure 3 describes the main visual elements of the component
view type. These include the component, class, aspect, connector
and event flow symbols. In a software system developed using
AOCE, all system components are aspect oriented by categorizing
their operations with early aspects.

Visual Symbol Explanation

A software component is a reusable piece of software
which has some certain functions, and can be
integrated with other components.

A class is a reference type that encapsulates data and
defines its behaviors using methods, properties, events
etc. A class is one of the elements of a component.

Aspects are system capabilities that can be cross-cut
between components to identify, describe and reason
about the system’s high level functional and non-
functional requirements.

A connector is used to connect related entities to
expose their relations e.g. the component this class
belongs to.

The event flow describes what a component does to
another component in a particular case. It is used in
the component use case diagram at the early stage to
reason about the components at a very abstract level.

Figure 3: Sample of modeling capabilities in component views.

An AO-component may consist of several classes which are also
aspect oriented, meaning that each and every method in a class of
this type of component is also categorized as belonging to aspects
that either provide services to other methods or require services
from other methods across components. These services are
defined as aspect details which are categorized into particular
aspect types [9] (e.g. Persistency, User Interface type of aspects).
An AO-component can be composed of one or more aspect types,
and in our AO-UML tool, each aspect type can be depicted as
having several “provided” (prefixed “+”) or “required” (prefixed
“-“) aspect details. The purpose of the component view is to allow
users to design the components and their classes with aspect
information.
Figure 4 shows the main visual elements of the aspect view and
their explanations. Unlike the component view which
concentrates on individual components and their constructs, the
aspect view focuses on components’ aspects and the system’s
aggregate aspects. This view type shows the details of all kinds
of aspects and the aspect mapping information across components
and is vital for understanding the aspects’ effects and impact
across the components and system.

Visual Symbol Explanation

An aggregate aspect is a set of services provided by the
software system, these service are from several
provided or required aspects of the same aspect type of
different components

Aspects in this view are imported from the component
view, so they correspond to the same element but
shown on different representation layers. Aspects in
this view are automatically synchronized with the
aspects in the component view.

A connector is used to connect related entities to expose
their relations such as what aspects this aggregate
aspect consists of.

Figure 4: Sample of modeling capabilities in aspect views.
The visual elements used in the UML view type are shown in
Figure 5. The UML view is used to show details of how the
classes are constructed and related to each other, and hence has
UML specific symbols. The current prototype implements all the
essential notational elements of UML class diagrams.

4.4 AN EXEMPLAR APPLICATION
This section provides an example to demonstrate the usage of the
AO-UML through the whole SDLC. The scenario is a simple
online banking system called “Simple Bank”. To develop this
software system we shall assume the following requirements:

• The system must be developed using Java (Java Servlets for
the website).

• The bank’s customers are able to login to the system
through the website.

• Customers can view their account balances and deposit or
withdraw money through the website.

• All accounts information is stored in a database.

In the Planning phase, developers receive the project from their
customers and after the resources and working environments in
the AO-UML are set up, developers start gathering requirements.
This proceeds into the analysis of the requirements phase, where
requirements are identified as the functional services of the
system, and are stated as aggregate aspects in AOCE.

Visual Symbol Explanation

An interface in UML is represented by a rectangle with a
sign of “interface”.

A class in UML is represented by a rectangle with a sign
of “class; this entity can be imported from the component
view.

An aggregation represents “whole/part” or “has-a”
relationships between classes.

An association in UML indicates the relationship between
an object of one type with an object of another type.

A generalization represents a relationship in which one
class is of a more specialized version of the other.

A dependency is a relationship in which an object of one
type must rely on an object of another type.

Figure 5: Basic modeling capabilities of the UML view type
Figure 6 shows the aggregate aspects and their aspect details as
listed in AO-UML’s aspect view. In this figure, the tool also lists
out the aspect details (services) of the system. In the following
phase, developers will commence analysing the gathered
requirements to design the components. To design and structure
the components, AO-UML provides various icons and functions
in its component view to help developers design the system step
by step.

Figure 6: Aggregate aspects of the “Simple Bank” example.

A component use case diagram for the “Simple Bank” system is
shown in Figure 7. These types of diagrams are very useful for
developers to think and reason about all the possible components

required and assign tasks to them at an early stage of the
development process to increase efficiency.

Figure 7: A component use case diagram for SimpleBank.

Figure 8: The component diagram of AccountManager.

Before:

After:

Figure 9: An aspect diagram before and after being mapped.

The components can then be specifically designed and structured
one by one in AO-UML’s component view. Figure 8 shows the
constructs of the AccountManager component from our exemplar
application. This component consists of two classes, Account and
AccountManager. The aspects and aspect details of the classes are
also depicted. For example the AccountManager class has two
types of aspects,. Collaborative Work and Persistency. Each of
these aspect types are further shown to contain several aspect
details, including “provided +” or “required -” (i.e. this aspect
provides or requires this service) attributes.

After the components’ design is completed, their aspects can be
imported into the aspect view where the required and provided
aspect details can be matched together. The first row in the table
illustrated in Figure 9 shows the aspect diagram for the
persistency aspects from the various different components of our
exemplar system. Aspects can be mapped using AO-UML’s
“Aspect Mapper” to match particular aggregate aspect details.
Through this approach, we can obtain all the aggregate aspect
details mapped with their corresponding provided and required
aspects. The lower diagram in figure 9 shows the persistency
aspect-diagram that was produced after mapping the component’s
aspects. In this, we see that the “store data” service required by
the Account Manager persistency aspect is provided by the
DatabaseManager Persistency aspect “store data” service. A
further mapping could be used to match “retrieve data” services.

A snippet of the AO-XML document generated from the sample
project is shown in Figure 10. To export the information of the
components and aspects that has been designed, users can use
AO-UML’s export function to generate the AO-XML [14] shown.
This document is very useful and can be read by the AO-UML
tool to regenerate the design diagrams in the tool.
<?xml version="1.0" encoding="utf-8"?>
<aoxml:application language="Java" name="SimpleBank" xmlns:aoxml="http://www.cs.auckland.ac.nz/">
 <aoxml:components>
 <aoxml:documentation information=""/>
 <aoxml:description description=""/>
 <aoxml:component description="" name="AuthenticationAgent">
 …………
 <aoxml:object description="" name="AccountManager" type="Class">
 <aoxml:aspects>
 <aoxml:aspect description="" name="Collaborative Work Aspect">
 <aoxml:detail name="data broadcasting" provided="false"/>
 <aoxml:detail name="event broadcasting" provided="false"/>
 </aoxml:aspect>
 <aoxml:aspect description="" name="Persistency Aspect">
 <aoxml:detail name="store data" provided="false"/>
 <aoxml:detail name="retrieve data" provided="false"/>
 </aoxml:aspect>
 </aoxml:aspects>
 </aoxml:object>
 …………………..
 </aoxml:component>
 <aoxml:component description="" name="DBAgent">
 <aoxml:object description="" name="Database" type="Class">
 <aoxml:aspects>
 <aoxml:aspect description="" name="Persistency Aspect">
 <aoxml:detail name="store data" provided="true"/>
 <aoxml:detail name="retrieve data" provided="true"/>
 </aoxml:aspect>
 </aoxml:aspects>
 </aoxml:object>
 </aoxml:component>
 …………………
 </aoxml:components>
</aoxml:application>

Figure 10: Example of the AO-XML “Simple Bank” project.

AO-UML’s UML view provides icons and connectors for
developers to draw UML class diagrams with pre-populated
classes from the component view. An example of the UML class
diagram of the “Simple Bank” application is shown in Figure 11.
During this phase, developers are working on the static/structural
design of the software. Classes in this view need to be completed
with all the necessary parameters and connected to each other

using UML connectors. Java skeleton code is generated by AO-
UML after all the aspect-oriented UML class diagrams are
completed. Full business logic etc. can be inserted into the
skeleton code based on the specifications of the system being
built. All code and component-interfaces are generated in objects
constructed within their respective components with their
namespaces clearly defined to aid developers.

Figure 11: A UML class diagram for “Simple Bank”

<?xml version="1.0" encoding="utf-8"?>
<XMI xmi.version="1.0">
 <XMI.header>
 <XMI.documentation>
 <XMI.exporter>Novosoft UML Library</XMI.exporter>
 <XMI.exporterVersion>0.4.20</XMI.exporterVersion>
…………
 <Foundation.Core.Class xmi.id="Class$AccountManager">

<Foundation.Core.ModelElement.name>AccountManager
 </Foundation.Core.ModelElement.name>

 <Foundation.Core.ModelElement.visibility xmi.value="public"/>
 <Foundation.Core.ModelElement.isSpecification xmi.value="false"/>
 <Foundation.Core.GeneralizableElement.isRoot xmi.value="false"/>
 ………….

Figure 12: Portion of XMI document from the “SimpleBank”.
In addition to system code generation, the AO-UML can also
export this UML information in the design diagrams as an XMI
document, an example is shown in Figure 12. It is part of the
AccountManager object from our example of the SimpleBank
project with its major elements included in the figure. The tool
can also be used to store, inspect and retrieve all XMI and AO-
XML documents, designs, generated code and aspect-oriented
components from its repository, as in [13]. Other software
engineers may also use the AO-UML to locate these objects from
the repository and may reuse any or all of them.

5. DISCUSSION
Developing the AO-UML tool and using it for software
development based on AOCE techniques has given us valuable
hands-on experience on the significance and application of AOCE
and early aspects in real world scenarios. We have shown a
sample application (an extension of “SimpleBank”) developed
using AO-UML. While using AO-UML we have noted some
features of the prototype tool which can be improved upon.
Currently there is a lack of navigation support for the individual
elements across views, e.g. for navigation involving aspects and
classes. Users of the tool currently have to manually search

through the diagrams to find related components. A search and
indexing mechanism would mitigate the hidden dependencies that
otherwise result. Formatting of detailed information as text inside
the visual icon of the corresponding component has room for
improvement. For example, in figure 9 above, the string
“+retrieve data ==> (-retrieve data@AccountManager)(+retrieve
data@Database) () etc.” could be better rendered. In addition,
capability to elide some of this detail is needed. Though AOUML
provides quite comprehensive functions to support AOCE
development phases it still needs to be improved to provide
services and functions in the requirements phase. Currently users
identify their own aspects and design components manually in the
tool, and this can be quite laborious and time consuming. One
solution is to provide a comprehensive library that can be used to
look-up, identify, reuse or store aspects and aspect details.
Another possible improvement is to provide specific visual UML
icons and code generation for various target systems. More
substantial future directions include the following:

• Designing and developing a more comprehensive AO-
component repository, possibly on top of a traditional
component database with aspect-based indexing.

• We are currently migrating Pounamu to the Eclipse IDE [9]
in the form of a new meta tool (Marama). This opens up the
possibility of migrating AO-UML into Eclipse as well.
Integration as an Eclipse plug-in will potentially permit us
to integrate with Eclipse UML tools (offering improved
UML support), code generators, and code views.

• The current version of AO-UML lacks adequate tool
support for the testing phase. We plan to re-develop
validation agents that can automatically test the components
with their non-functional constraints and properties [11].

• Reverse engineering is another area that we are very
interested in. One challenge here is how to recover
aspectual information from code scripts. Information of
aspects and components can be retrieved from AO-UML’s
component repository, so one solution may be to use an
indexing and query framework to retrieve this information.

6. SUMMARY
Aspect Oriented Component Engineering or AOCE is a
methodology that uses early aspects to develop aspect-oriented
software components. These components are the basic building
blocks of our aspect-oriented software systems. We successfully
designed and developed a novel tool called the Aspect-Oriented
UML (AO-UML) that can be used to efficiently capture and
manage early aspects for software development using AOCE. We
also showed how the AO-UML can be used throughout a system’s
development life cycle based on capturing and using early aspects
in aspect-oriented components.

7. REFERENCES
[1] Araujo, J., Baniassad, E., Clements, P., Moreira, A. and

Tekinerdogan, B. Early Aspects: The Current Landscape, Feb 2005.
[2] Arthur, L. J. Software Evolution: The Software Maintenance

Challenge. New York: Wiley & Sons (1988)
[3] Bader, J., Edwards, J., Harris-Hones, C., & Hannaford, D.

Practical engineering of knowledge-based systems. Information and
Software Technology (1988), 5, 266-277.

[4] Baniassad, E. and Clarke, S. Theme: An approach for aspect-
oriented analysis and design. Proc. of the 26th International
Conference on Software Engineering, IEEE 2004.

[5] Boehm, B. W. A spiral model of software development and
enhancement. Computer, (1988) 21, 61-72.

[6] Bosch, F. v. e., Ellis, J. R., Freeman, P., Johnson, L., McClure,
C.L., Robinson, D., Scacchi, W., Scheff, B., Staa, A.v., Tripp, L.L..
Evaluation of Software Development Life Cycle. Software
Engineering Notes (1982) Vol 7 no1, Page 45-59, ACM SIGSOFT

[7] Chitchyan, R. and Rashid, A. Survey of Aspect-Oriented Analysis
and Design Approach. AOSD-Europe (May 2005).

[8] Connors, D. T. Software Development Methodologies and
Traditional and Modern Information Systems. Software Engineering
Notes (1992) Vol 17 no2, Page 43, ACM SIGSOFT

[9] Eclipse.org, Eclipse Modeling Framework (EMF), at URL:
http://www.eclipse.org/emf/

[10] Grundy, J. Multi-perspective specification, design and
implementation of software components using aspects.
International Journal of Software Engineering and Knowledge
Engineering (2000) vol.10, No. 6.

[11] Grundy, J.C., Ding, G., and Hosking, J.G. Deployed Software
Component Testing using Dynamic Validation Agents, Journal of
Systems and Software, vol. 74, no. 1, Jan 2005, Elsevier, pp. 5-14.

[12] Grundy, J.C. and Hosking, J.G. Engineering plug-in software
components to support collaborative work, Software – Practice and
Experience, vol. 32, Wiley, pp. 983-1013, 2002.

[13] Grundy, J.C. Storage and retrieval of Software Component using
Aspects. Proc. Of the 2000 Australasian Computer Science
Conference, Canberra, Australia (Jan 30-Feb 3 2000.

[14] Henderson-Sellers, B.S. and Edwards, J.M. Object-Oriented
Systems Life Cycle. CACM, (1990) Vol 35, No9, Page 142-159

[15] Pour, G. Moving toward Component-Based Software Development
Approach, TOOLS 27, Sept. 1998, pp. 296 – 300.

[16] Pour, G. Component-based software development approach: new
opportunities and challenges. TOOLS 26, Aug. 1998, pp. 376 – 383

[17] Sessions, R, COM and DCOM: Microsoft’s vision for distributed
objects, Wiley, 1998

[18] O’Neil, J. and Schild, H. Java Beans Programming from the Group
up, Osborne McGraw-Hill, 1998

[19] Panas, T., Andersson, J. and Assmann, U. The editing aspect of
aspects. In I. Hussain, editor, Software Engineering and
Applications (SEA 2002), Cambridge, Nov 2002. ACTA.

[20] Sampaio, A., Chitchyan, R., Rashid, A. and Rayson, P. EA-Miner:
a Tool for automating aspect-oriented requirements identification,
2005 Conf. Automated Software Engineering, ACM, Nov 2005.

[21] Singh, S., Grudy, J.C. and Hosking, J.G. Developing .NET web
service-based applications with aspect-oriented component
engineering. Proc. AWSA, April 2004, Australia.

[22] Singh, S., Chen, H., C., Hunter, O., Grundy, J., C. and Hosking, G.,
J. Improving Agile Software Development using eXtreme AOCE
and Aspect Oriented CVS, APSEC 2005, Taiwan, Dec 2005.

[23] Singh.S, AO-XML Specification Version 1.0, PhD Thesis,
Department of Computer Science, 2006.

[24] Sampaio, A., Rashid, A. and Rayson, P. Early-AIM: An approach
for identifying aspects in requirements, RE’05, IEEE.

[25] Suzuki, J. and Yamamoto, Y. "Extending UML with Aspects:
Aspect Support in the Design Phase," ECOOP 1999 Workshop on
Aspect-Oriented Programming, 1999.

[26] W3C, Extensible Markup Language (XML), at URL:
http://www.w3.org/TR/xslt

[27] Zhu, N, Grundy, J, Hosking, J, Pounamu: a meta-tool for multi-view
visual language environment construction, in Proc IEEE
VL/HCC’04, Rome, Italy, September 2004.

