
A Journey from Finite to Automatic Structures

and Beyond

A Dissertation

Submitted to the Department of Computer Science

and the School of Graduate Studies

of University of Auckland

In Partial Fulfillment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

Jiamou Liu

November 2010

ii

Preface

The work at hand studies properties of structures that have certain types of algorithmic de-

scription. In particular, we study the fundamental properties of three classes of structures.

The first class is the class of finite structures, which can be algorithmically described by

listing all elements and tuples of atomic relations. The second class is the class of automatic

structures, which are possibly infinite structures whose descriptions consist of automata

representing their universe and relations. These structures attract attention as their first-

order theories are decidable. The third class is the class of computable structures, which

are structures given by Turing machines.

For finite structures, we address the efficiency of deciding the winners in Ehrenfeucht-

Fraı̈ssé games (EF games for short) for some standard classes of structures. EF game is

an important tool in finite model theory in demonstrating the expressive power of first-

order logic and its extensions. We present algorithms that decide which player wins EF

games played on structures that are taken from the following classes: structures with unary

predicates, equivalence structures and some of their expansions, trees with level predicates

and Boolean algebras with distinguished ideals. Under some natural assumptions on the

representations of these structures and EF games, we will prove all algorithms run in

constant time.

We then investigate a special subclass of automatic structures, the class of unary au-

tomatic structures. These structures are described using automata over a unary alphabet.

We present uniform and efficient algorithms to decide certain graph-theoretical proper-

ties for the class of unary automatic graphs with finite degree. We also provide efficient

algorithms for deciding the isomorphism problem for unary automatic linear orders, equiv-

alence structures and trees. We also extend the notion of state complexity from regular

languages to structures and study this in the context of unary automatic structures.

For automatic structures in general, the isomorphism problem is highly undecidable

(Σ1
1
-complete). We show that undecidability also holds for some natural subclasses of

automatic structures. In particular, we show that the isomorphism problem for automatic

equivalence structures is Π0
1
-complete; the isomorphism problem for automatic successor

trees of finite height k ≥ 2 isΠ0
2k−3

-complete; the isomorphism problem for automatic linear

iii

orders is hard for every level of the arithmetic hierarchy. We also illustrate that for any

k ∈N, there exist two isomorphic automatic trees of finite height (and two automatic linear

orders) without any Σ0
k
-isomorphism. These solve some known open questions in the area,

in particular, questions posed by Khoussainov and Nerode.

Lastly, we study computable categoricity of computable structures. A computable

structure is computably categorical if any two computable presentation of it are computably

isomorphic. We focus on the class of computably categorical graphs. In particular, we

investigate the strongly locally finite graphs: graphs all of whose components are finite.

We present a necessary and sufficient condition for certain classes of strongly locally finite

graphs to be computably categorical. We show that whenever the graph contains an infinite

∆0
2
-set of components that can be properly embedded into infinitely many components of

the graph, then the graph is not computably categorical. We also construct a strongly

locally finite computably categorical graph with an infinite chain of properly embedded

components.

iv

Acknowledgements

I owe my deepest gratitude to my main supervisor, Bakhadyr Khoussainov, whose instruc-

tions, encouragement and support have made great impact in my development. I thank

him for introducing me to the subject, suggesting me interesting problems and teaching me

important techniques in my research. Through his association, I have had the privilege to

work with some distinguished people. I am indebted to all of the co-authors who provided

me great help on the work in this thesis: Barbara Csima, Bakhadyr Khoussainov, Dietrich

Kuske, Markus Lohrey and Mia Minnes. In particular, I am very grateful to Markus Lohrey,

who hosted me at Leipzig. In Leipzig I was fortunate to work with Markus and Dietrich

Kuske on automatic structures. I have learned a lot from both of them.

I want to thank André Nies for helping me on computability theory and providing me

interesting ideas to expand my research.

I want to thank Richard Shore and Anil Nerode for hosting me at Cornell University

in the Fall semesters of 2005, 2007 and 2008. The courses I took from them helped me

immensely in understanding mathematical logic.

I also want to thank Ting Zhang for being my mentor during my internship at Microsoft

Research Asia, Beijing and Wei Chen for teaching me distributed computing at Tsinghua

University. Many thanks to Yang Yue who organized my three-month visit to National

University of Singapore in 2006.

I want to thank Education New Zealand for providing me funding for three years

through NZIDRS (New Zealand International Doctoral Research Scholarship). I am also

indebted to Microsoft Research Asia for financial support through Microsoft Research Asia

Fellowship.

Also, I would like to thank Mingzhong Cai, Aniruddh Gandhi, Niko Haubold, Nick

Hay, Masoud Khosravani, Pavel Semukhin, Christian Mathissen, Alexander Melnikov,

Sasha Rubin and all friends and colleagues who provided a stimulating work environment

during my stays in different institutions during the past years.

Above all, I thank my family. This thesis would not have been possible without the

continuous encouragement and support from my parents, Xu Jin and Liu Mingdi. Jade,

thank you for your understanding, patience and love during the past 4 years. Thank you.

v

vi

Contents

Preface iii

Acknowledgements v

1 Introduction 1

1.1 Background and motivation . 1

1.1.1 Finite model theory . 2

1.1.2 Automatic structures . 3

1.1.3 Computable model theory . 4

1.2 Summary of results . 5

2 Preliminaries 17

2.1 Structures . 17

2.2 Theories . 19

2.3 The arithmetic hierarchy . 21

2.4 Automata and languages . 23

2.5 Automatic structures and computable structures 25

3 The Complexity of Ehrenfeucht-Fraı̈ssé Games 29

3.1 Ehrenfeucht-Fraı̈ssé games . 29

3.2 Simple example: structures with unary predicates 31

3.3 Equivalence structures . 32

3.4 Equivalence structures with colors . 36

3.5 Embedded equivalence structures . 41

3.6 Trees with level predicates . 45

3.7 Boolean algebras with distinguished ideals 47

4 The Complexity of Unary Automatic Structures 51

4.1 Unary automatic structures . 51

4.1.1 MSO-decidability . 51

vii

4.1.2 A characterization theorem . 52

4.1.3 Decision problems on unary automatic structures 54

4.1.4 State complexity of unary automatic structures 55

4.2 Unary automatic graphs of finite degree . 56

4.2.1 Characterizations of unary automatic graphs of finite degree 56

4.2.2 Deciding the infinite component problem 59

4.2.3 Deciding the infinity testing problem 62

4.2.4 Deciding the reachability problem . 63

4.2.5 Deciding the connectivity problem . 68

4.2.6 Deciding the isomorphism problem 70

4.3 Unary automatic linear orders . 73

4.3.1 A characterization theorem . 73

4.3.2 An efficient solution to the isomorphism problem 75

4.3.3 State complexity . 79

4.4 Unary automatic equivalence structures . 81

4.4.1 A characterization theorem . 81

4.4.2 An efficient solution to the isomorphism problem 82

4.4.3 State complexity . 85

4.5 Unary automatic trees . 87

4.5.1 Characterizing unary automatic trees 87

4.5.2 An efficient solution to the isomorphism problem 91

4.5.3 State complexity . 95

5 The Isomorphism Problem for Automatic Structures 97

5.1 Automatic equivalence structures . 98

5.2 Automatic trees . 102

5.2.1 Construction of trees . 105

5.2.2 Automaticity . 110

5.3 Computable trees of finite height . 114

5.4 Automatic linear orders . 115

5.4.1 Construction of linear orders . 116

5.4.2 Automaticity . 121

5.5 Arithmetical isomorphisms . 130

6 Computably Categorical Graphs with Finite Components 133

6.1 Computable categoricity of graphs . 133

6.2 Examples of strongly locally finite graphs . 135

6.3 Graphs with computable size functions . 138

6.4 A sufficient condition for non-computably categoricity 141

viii

6.5 ∆0
3
-chain of embedded components . 145

6.5.1 Special cyclic graphs and weighted equivalence structures 145

6.5.2 Construction of F . 148

6.5.3 Verification . 154

Bibliography 159

List of Notations . 169

Index . 171

Name Index . 173

ix

x

List of Tables

1.1 Deciding the EF games on classes of finite structures 8

1.2 Unary automatic graphs of finite degrees . 10

1.3 The isomorphism problem for classes of unary automatic structures. 11

1.4 Summary of chapters . 16

xi

xii

List of Figures

2.1 The arithmetic hierarchy . 22

2.2 NFA over the unary alphabet {1}. 24

2.3 The automaton recognizing the prefix order 25

2.4 The automaton recognizing +2 . 26

4.1 General shape of a deterministic 2-tape unary automaton 53

4.2 An example of unwind(F,D, R̄, L̄) and the synchronous 2-tape automaton for

its edge relation. If we label VF = {a, b} and VD = {0, 1, 2} then ED = {(0, 1)},

EF = ∅, R1 = {(1, a), (2, b)}, R2 = ∅, R3 = {(2, b)}, R4 = {(2, b)} and L1 = L2 =

L3 = L4 = ∅. 54

4.3 Unary automatic graph of finite degree Gησω 58

4.4 An optimal automaton for ω + 1 + ω∗ + ω∗. 80

4.5 An example of a tree-unfolding. 89

5.1 The tree T2
c

and U2
κ . 106

5.2 The tree Ti+1
c

and Ui+1
κ . 108

5.3 Automatic presentation of T2
c

and U2
κ . 112

5.4 Automatic presentation of Ti+1
c

. 114

5.5 Automatic presentation of Ui+1
ω . 114

5.6 Automatic presentation of Ui+1
m . 115

6.1 A special cyclic graph. 146

6.2 Components in the sets Cα,t,Wα,t,Oα,t,Mα,t,Aα,t 150

xiii

xiv

Chapter 1

Introduction

1.1 Background and motivation

The goal of the thesis is to study properties of structures that have certain types of al-

gorithmic descriptions. Such structures have attracted the attention of many experts in

mathematical logic and algebra. These structures have also become a topic of interest to

experts in theoretical computer science, especially to those in computational complexity,

model checking, verification, and logic in computer science. By a structure, we mean a set

along with a collection of finitary functions and relations defined on it. In mathematics,

typical examples of structures are orders, lattices, Boolean algebras, groups, rings, fields

and vector spaces. In computer science, structures with no functions represent models of

relational databases. Structures are also used to realize specifications of systems on which

formal verifications are carried out. Broadly speaking, data structures such as tables, lists

and trees can also be viewed as structures. Other examples of structures in computer

science include models of XML documents, programs and networks.

In the thesis, we study some of the basic yet fundamental properties of three classes of

structures with algorithmic descriptions. The first class is the class of finite structures. These

structures have obvious algorithmic descriptions that consist of listing all domain elements

and tuples of atomic relations. The second class is the class of automatic structures. These

structures are typically infinite but their descriptions consist of automata representing their

domain and relations. Examples of such structures include Presburger arithemetic (N;+)

and the Skolem arithmetic (N;×). The third class is the class of computable structures. The

descriptions of structures from this class consist of Turing machines. Typically, the domains

of these structures are computable subsets of natural numbers and all atomic relations

are uniformly computable. The arithmetic (N;+,×,≤, 0) is an example of a computable

structure.

This thesis contains a collection of results on finite structures, automatic structures and

1

2 Chapter 1. Introduction

computable structures. In particular, these results aim to answer the following interrelated

problems.

- Problem 1. How complex is it to compute whether two structures are similar?

- Problem 2. How complex is it to compute whether two structures are isomorphic?

- Problem 3. How complex is it to build an isomorphism between structures?

All these problems assume certain explicit presentations of the underlying structures. The

unifying motivation of these problems is to understand the complexities, in various senses,

of classes of structures that are respectively finite, automatic, and computable.

1.1.1 Finite model theory

The central themes of finite model theory concern with the expressibility of logics and its

connection with computational complexity. The first investigation into the properties of

logical languages over finite structures probably dates back to Trakhtenbrot in 1950 [113],

who proved validity over finite structures is not computably enumerable. Since then finite

model theory has evolved into a separate field from classical model theory. This is largely

due to the fact that most tools in classical model theory, e.g. compactness theorem, Łoś-

Tarski theorem [110], Craig interpolation theorem [47], do not have counterparts over finite

structures. On the other hand, Ehrenfeucht-Fraı̈ssé games, a notion that is already present

in infinite model theory, have become a central technique in finite model theory.

The Ehrenfeucht-Fraı̈ssé games were used in establishing various inexpressibility re-

sults in first order logic. See Gurevich [46] for typical examples. Building on classical

work by Hanf [48] and Gaifman [31], Fagin/Stockmeyer/Vardi [27], Schwentick [105],

Arora/Fagin [2] and Hella/Libkin/Nurmonen [51] provided sufficient winning condition

for Ehrenfeucht-Fraı̈ssé games. Variants of Ehrenfeucht-Fraı̈ssé games were also used to

prove expressibility and inexpressibility results in other logics. Examples along this line of

research include Fagin [26] and Ajtai/Fagin [1] on existential monadic second order logic;

Hella [50] on infinitary counting logics; Immerman [60] and Poizat [95] on logics with

finitely many variables.

Descriptive complexity established the connections between logic and computational

complexity. The celebrated result by Fagin [25] showed that properties that are decidable in

nondeterministic polynomial times correspond exactly to the ones definable in existential

second order logic. Over ordered structures, Immerman [59] and Vardi [116] showed

that least fixed-point logic captures the class of polynomial time decidable properties and

Immerman [61] showed that transitive closure logic captures the class of logarithmic space

decidable properties.

We refer the readers to standard textbooks of Ebbinghaus/Flum [19] and Libkin [85], as

well as the book Grädel et al. [42] for detailed accounts of finite model theory.

1.1. BACKGROUND AND MOTIVATION 3

1.1.2 Automatic structures

The idea of automatic structures goes back to Büchi [10] and Elgot [21] who established

equivalence between monadic second order logic and finite automata. The result was used

to decide S1S, the monadic second order logic of the natural numbers with one successor

relation. Later Rabin [98] used automata on infinite trees to decide S2S, the monadic

second order logic of the infinite binary trees with two successor predicates. Hodgson

[55] first introduced the term “automata decidable theory”. In 1995, Khoussainov/Nerode

[70] introduced automata presentable structures as part of the complexity theoretic model

theory, and initiated a systematic study of automatic structures.

Roughly, we say that a relational structure is automatic if the elements in the universe

can be represented as strings from a regular language and every relation of the structure can

be recognized by a finite state automaton with several heads that proceed synchronously.

The representation of an automatic structure is the collection of automata that recognize re-

spectively its domain and relations, and is therefore finite. The class of automatic structures

are closed under the logical operations ∨, ¬ and ∃. Hence, one can effectively decide any

properties that are defined by first order logic for these structures. Therefore, automatic

structures fit into the program of algorithmic model theory, which focuses on structures

that have both finite presentations and effective semantics.

Algorithmic model theory is motivated by applications where infinite structures (e.g.

in databases or program verifications [118, 117, 45]) are of interest. A wide range of finitely

presentable structures have been investigated in the past, which include, apart from auto-

matic structures, structures that are definable through graph grammars, or through inter-

pretations over a fixed structure. See the recent survey [4] for an exposition of algorithmic

model theory.

Numerous works have focused on the logical properties of automatic structures. The

first order decidability result mentioned above has been extended by adding the quantifiers

∃∞ (“there exists infinitely many”) [6], ∃(k,m) (“there exists k modulo m many”) [76], and

a number of other generalized quantifiers [103]. Blumensath/Grädel [8] proved a logical

characterization theorem stating that finite-word automatic structures are exactly those

definable in the following fragment of the arithmetic (N;+, |2,≤, 0), where + and ≤ have

their usual meanings and |2 is a weak divisibility predicate for which x|2y if and only if x is

a power of 2 and divides y.

Different concepts and tools were employed to identify structures that are not automatic.

For example, techniques in automata theory such as the pumping lemma were used to prove

that (N;×) is not automatic [8]. Some more combinatorial and model-theoretical arguments

were used to prove e.g. that the random graph is not automatic [72, 16]. Recently, Tsankov

[114] used advanced techniques from additive combinatorics to prove that (Q;+), the

additive group of the rationals, is not automatic. This illustrates the complexity and depth

4 Chapter 1. Introduction

of research in automatic structures.

Attentions have also turned to characterizing specific subclasses of automatic struc-

tures. There are descriptions of automatic linear orders and trees in terms of model

theoretic concepts such as Cantor-Bendixson ranks [75]. Also, [72] characterised the iso-

morphism types of automatic Boolean algebras; Thomas/Oliver [93] gave a full description

of finitely generated automatic groups using the famous theorem of Gromov about finitely

generated groups with polynomial growth. Some of these results have direct algorithmic

implications. For example, the isomorphism problem for automatic well-ordered sets and

Boolean algebras is decidable.

Most of the results concerning automatic structures, including the ones mentioned

above, demonstrate that in various concrete senses automatic structures are not complex.

However, this intuition can be misleading. For example, Khoussainov/Nies/Rubin/Stephan

in [72] showed that the isomorphism problem for automatic structures isΣ1
1
-complete. This

tells us informally that there is no hope for a description (in a natural logical language)

of the isomorphism types of automatic structures. Also, Khoussainov/Minnes in [69]

provided examples of automatic structures whose Scott ranks can be as high as possible,

fully covering the interval [1, ωCK
1
+ 1] of ordinals (where ωCK

1
is the first non-computable

ordinal). They also showed that the ordinal heights of well-founded automatic relations

can be arbitrarily large ordinals below ωCK
1

.

For introduction and overview of automatic structures, we refer the readers to the theses

of Blumensath [6], Rubin [102], Bárány [3], Minnes [91] as well as the survey papers Khous-

sainov/Minnes [68], Nies [92] and Rubin [103]. We also mention that there is an important

body of work on structures presented by variants of finite automata such as the infi-

nite word (Büchi) automata, and finite/infinite tree automata. See Benedikt/Libkin/Neven

[5], Colcombet [13], Kuske/Lohrey [83], Hjorth/Khoussainov/Montalbán/Nies [53] and

Kaiser/Rubin/Bárány [62]. The algorithmic and logical properties of these alternative

forms of automatic structures are relatively less known compared with the finite-word

counterparts and is beyond the scope of the work at hand.

1.1.3 Computable model theory

A structure is computable if its domain and all relations are computable sets of natural

numbers. The earliest accounts on computable structures trace back to van der Waerden

[115] and Frölich/Shepherdson [29, 30]. Systematic studies on computable structures started

in the 1960s by Rabin [96, 97] and Mal’cev [87]. This is followed by the works of Ershov

[22], Goncharov [37, 38, 39, 40], Metakides/Nerode [89] that lay out the foundation of the

nowadays well-developed computable model theory.

Computable model theory seeks to capture the effective content of model-theoretic

1.2. SUMMARY OF RESULTS 5

constructions and results. Typical topics include constructing models of first order theo-

ries such as prime, homogeneous and saturated models, building isomorphisms between

computable structures, studying the degree spectra of relations, and understanding the

relationship between definability and computability. Techniques in computability theory

have often been used in computable model theory. Such techniques include priority argu-

ment with finite and infinite injuries and constructions that are put on trees. The reader is

referred to Handbooks of recursive mathematics [23], Handbook of computability theory [43] and

the papers [79, 35, 17, 90] for introduction into this exciting field.

1.2 Summary of results

In the following, we present the topics and results obtained in each chapter of the thesis.

Formal definitions and proofs are contained in the corresponding chapters.

Chapter 2. Preliminaries

This chapter presents a necessary background to model theory and computability the-

ory needed throughout the thesis. In particular, the chapter introduces automatic and

computable structures. In this thesis, we assume that all structures are countable and

relational (that is, have no function symbols in their language). We always make this

assumption since functions can be replaced by their graphs.

Definition 2.5.1. A structure is called automatic if its domain is a regular language and all

relations are recognized by synchronous multi-tape automata.

Definition 2.5.10. A structure is called computable if its domain is a computable subset of

natural numbers and all its relations are uniformly computable.

Consider FO+ ∃∞ + ∃m,n, the first-order logic extended by the quantifiers ∃∞ and ∃n,m.

The following theorem from [55, 70, 7] is one of the main motivations for investigating

automatic structures.

Theorem 2.5.11. For an automatic structureA, there is an algorithm that, given a formula

ϕ(x) in FO + ∃∞ + ∃n,m, produces an automaton whose language consists of those tuples a

fromA such thatA |= ϕ(a). Hence, the FO + ∃∞ + ∃n,m theory of any automatic structure

is decidable.

6 Chapter 1. Introduction

Chapter 3. The complexity of Ehrenfeucht-Fraı̈ssé games

This chapter focuses on finite structures. We address the efficiency of deciding the

winners of Ehrenfeucht-Fraı̈ssé games for some standard classes of finite structures. An

Ehrenfeucht-Fraı̈ssé game (EF game for short) is a two-player game played on two struc-

tures A and B of the same signature. We call the two players of the game respectively

Spoiler and Duplicator. For a natural number n ∈ N, the n-round EF-game on A and B,

denoted by Gn(A,B), is played by the two players moving in n rounds. At each round,

Spoiler selects structure A or B, and then selects an element from the selected structure.

Then, Duplicator responds by selecting an element from the other structure. Hence over

a sequence of n rounds, the players produce a sequence a1, . . . , an of elements in A and a

sequence b1, . . . , bn of elements in B such that for 1 ≤ i ≤ n, (ai, bi) is the pair of elements se-

lected by the players in round i. Duplicator wins the play if the mapping ai → bi, i = 1, . . . , n,

is a partial isomorphism betweenA and B. Duplicator wins the game Gn(A,B) if she can

always select elements in a way that wins the play regardless of the sequence of elements

that Spoiler selects.

Informally, Duplicator’s goal is to show that the two structuresA and B are “similar”,

while Spoiler needs to show the opposite. It is clear that when A and B are isomorphic,

Duplicator wins Gn(A,B) for all n ∈ N. On the other hand, when A and B are finite

structures, for large n (where n is greater or equal to the largest cardinality of A and B),

if Duplicator wins the game Gn(A,B) then A and B are isomorphic. It is known that for

all n ∈ N, Duplicator wins the game Gn(A,B) if and only ifA and B satisfy the same first

order formulas of quantifier rank n [28, 20]. Hence, these games can be viewed as a way

for approximating if two structures are isomorphic.

It is thus interesting to develop tools and algorithms for finding winners of EF games.

Grohe [44] studied EF games with a fixed number of pebbles and showed that the problem

of deciding the winner is PTIME-complete. Pezzoili [94] showed that deciding the winner

of EF games is PSPACE-complete. Kolaitis/Panttaja [80] proved that the following problem

is EXPTIME-complete: given a natural number k and structuresA andB, decide the winner

for the k pebble existential EF game onA and B.

Fix a natural number n ∈ N. We concern the following question that we call the

n-Ehrenfeucht-Fraı̈ssé problem.

INPUT: Two relational structuresA and B from a fixed class of structures

QUESTION: Does Duplicator win the n-round EF game Gn(A,B)?

In this chapter, we solve the Ehrenfeucht-Fraı̈ssé problem for the following classes of

finite structures:

1. structures with only unary predicates

1.2. SUMMARY OF RESULTS 7

2. equivalence structures and their extensions

3. trees with height predicates

4. Boolean algebras with distinguished ideals

We provide algorithms for solving the Ehrenfeucht-Fraı̈ssé problem for the structures

mentioned above. The running time of all the algorithms are bounded by constants. We

obtain the values of these constants as functions of n. As an example, we briefly describe

our result for equivalence structures, which are structures of the form (D; E) where E is an

equivalence relation. For any EF game played on two equivalence structures, we define

two conditions, small disparity and large disparity, each of which guarantees winning

for Spoiler. We define these conditions using the numbers of equivalence classes of some

particular sizes in both structures. We then prove that these conditions are necessary for

Spoiler to win the EF game. To do that, assuming neither small nor large disparity occurs,

we describe a strategy for Duplicator that ensures all plays satisfy some invariants at all

rounds of the game. In particular, these invariants imply that the strategy is winning for

Duplicator. Hence, to compute the winner of an EF game played on equivalence structures,

it suffices to check if either small or large disparity occurs, which can be done in constant

time under some assumptions on the representations of the structures. As a result, we

obtain the following theorem:

Theorem 3.3.5. Fix n ∈N. There exists an algorithm that runs in constant time and decides

whether Duplicator wins the game Gn(A,B) on finite equivalence structuresA andB. The

constant that bounds the running time is n.

We then extend the above technique to variants of equivalence structures. For example,

an equivalence structure with s colors is a structures of the type (A; E,P1, . . . ,Ps), where E is

an equivalence relation on A and P1, . . . ,Ps are unary predicates. An embedded equivalence

structure of height h is the form A = (A; E1,E2, ...,Eh) such that each Ei where 1 ≤ i ≤ h is

an equivalence relation and Ei ⊆ E j for i < j. For these extended notions of equivalence

structures, we define different forms of disparities and prove that they are necessary and

sufficient conditions for Spoiler to win the EF game.

Theorem 3.4.10. Fix n ∈ N. There exists an algorithm that runs in constant time and

decides whether Duplicator wins the n-round Ehrenfeucht-Fraı̈ssé game Gn(A,B) on finite

equivalence structures with s colors. The constant that bounds the running time is n2s+1.

Theorem 3.5.6. Fix n ∈N. There exists an algorithm that runs in constant time and decides

whether Duplicator wins game Gn(A,B) on finite embedded equivalence structures of

height h A = (A; E1, ...,Eh) and B = (B; E1, ...,Eh). The constant that bounds the running

time is < (n + 1)...
(n+1)(n+1)

where the tower of (n + 1) has height h.

8 Chapter 1. Introduction

Table 1.1: Deciding the EF games on classes of finite structures

Classes of finite structure Time bound for EF games

Structures with s unary predicates 2s · n

Equivalence structures n

Homogeneously s-colored equivalence structures 2s · n

Equivalence structures with s colors n2s+1

Embedded equivalence structures of height h height h tower (n + 1)...
(n+1)(n+1)

Trees with level predicates of height h height h tower (n + 1)...
(n+1)(n+1)

Boolean algebras with s distinguished ideals 2s · 2n

A tree with level predicates is a structure of the type (T;≤, L0, . . . , Lh) where (T;≤) is a tree

of height h (where the height of a tree is the maximal number of edges along a maximal

path), and for i ∈ {0, . . . , h}, Li is a unary predicate such that an element x ∈ T belongs to

Li if and only if x has level i. The next theorem is obtained using a reduction from the EF

game problem on embedded equivalence structures.

Theorem 3.6.2. Fix n ∈N. There exists an algorithm that runs in constant time and decides

whether Duplicator wins n-round Ehrenfeucht-Fraı̈ssé game Gn(T1,T2) on finite trees with

level predicates T1 and T2 of height h. The constant that bounds the running time is

(n + 1)...
(n+1)(n+1)

where the tower has height h.

Lastly, we look at Boolean algebra with distinguished ideals, which are structures of the

form (A;≤, 0, 1, I1, . . . , Is), where (A;≤, 0, 1) forms a Boolean algebra and each I j is an ideal

of the algebra (A;≤, 0, 1). When the domain A is finite, the structure A can be identified

with the structure

(2XA ;⊆, ∅,XA, 2
A1 , . . . , 2As),

where each ideal Ii, 1 ≤ i ≤ s, is the set 2Ai .

Theorem 3.7.3. Fix n ∈ N. There exists an algorithm that runs in constant time and

decides whether Duplicator wins the game Gn+1(A,B) on finite Boolean algebras A =

(2XA ;⊆, ∅,XA, 2A1 , . . . , 2As) and B = (2XB ;⊆, ∅,XB, 2B1 , . . . , 2Bs). The constant that bounds the

running time is 2s · 2n.

We summarize all these theorems in Table 1.1. Note that all the time complexity listed

are independent on the sizes of the input structures.

The material of this chapter has appeared in Khoussainov/Liu [64, 65].

1.2. SUMMARY OF RESULTS 9

Chapter 4. The complexity of unary automatic structures

This chapter analyses complexity in unary automatic structures. These are infinite struc-

tures whose domain is the regular language 1⋆ and whose relations are recognized by

finite automata over the unary alphabet. These structures form an intermediate class

between finite structures and automatic structures in general and are interesting due to

their proximity to finite structures. One of the advantages possessed by these structures

over the automatic structures is the decidability of their monadic second-order theories.

Many natural graph problems (such as graph connectivity and reachability) are express-

ible in monadic second-order logic and are hence decidable for unary automatic graphs.

However, deciding these questions by a translation of MSO formulae yields very slow

algorithms (super-exponential in the size of the input automatic presentations). In this

chapter, we exploit structural properties of unary automatic graphs to solve these ques-

tions in polynomial-time. Furthermore, special focus will be put on solving the isomorphism

problem on a specific subclassK of unary automatic structures:

INPUT: Given the automatic presentations of two structuresA and B fromK

QUESTION: Decide ifA and B are isomorphic.

This chapter consists of five sections. The first section introduces unary automatic

structures and presents a characterization of these structures. In the second section, we

study algorithms on the class of unary automatic graphs of finite degree. These are infinite

graphs result from a natural unfolding operation applied to finite graphs. In particular, this

class of graphs corresponds exactly to the configuration graphs of one-counter processes

(pushdown automata with just one stack symbol). Such graphs have received increasing

interests in the recent years [33, 107, 112, 32].

We are interested in the following natural decision problem on automatic graphs:

• Connectivity problem: Given an automatic graph G, decide whether G is connected.

• Reachability problem: Given an automatic graphG and two nodes x and y of G, decide

whether there is a path from x to y.

• Infinity testing problem: Given an automatic graphG and a node x, decide whether the

component in G containing x is infinite.

• Infinite component problem: Given an automatic graph G, decide whether G has an

infinite component.

We present explicit algorithms for all of the problems above. The complexity of each

algorithm is polynomial in terms of the sizes of the input automata. For example, we prove

the following results.

10 Chapter 1. Introduction

Table 1.2: Unary automatic graphs of finite degrees

Problems Complexity

Infinite component problem O(n3)

Infinite testing problem O(n3)

Reachability problem O(n4 + |u| + |v|)

Connectivity problem O(n3)

Isomorphism problem Elementary

Theorem 4.2.11. The infinity testing problem for unary automatic graph of finite degree G

is solved in O(n3), where n is the size of the input automaton recognizing G. In particular,

whenG is fixed, there is a constant time algorithm that decides the infinity testing problem

on G.

Theorem 4.2.14. There exists an algorithm that solves the reachability problem on any

unary automatic graph G of finite degree in time O(p4 + |u| + |v|) where u, v are two input

nodes from the graph G and n is the size of the input automaton recognizing G.

Bouajjani/Esparza/Maler in [9, 24, 111] studied the reachability problem on the class of

pushdown graphs which properly contains all unary automatic graphs. They proved that

for a pushdown graph and a node v, there is an automaton Av that recognizes all nodes

reachable from v. This implies decidability of the reachability problem on unary automatic

graphs of finite degree. In this work, we provide an alternative algorithm that constructs

a deterministic unary automaton AReach that accepts the reachability relation of a unary

automatic graphG of finite degree, hence solving the reachability problem uniformly. This

greatly improves the mentioned work of Bouajjani/Esparza/Maler in the class of unary

automatic graphs since the automaton constructed now does not depend on the nodes v.

The size of the automatonAReach depends only on the size n of the input automaton and

the construction takes polynomial time on n.

Corollary 4.2.19. Given a unary automatic graph of finite degree G represented by an

automaton with size n, there is a deterministic automaton AReach with at most 2n4 + n3

states that accepts the reachability relation ofG. Furthermore, the time required to construct

AReach is O(n5).

Table 1.2 lists all the problems and their corresponding time complexity.

The rest of this chapter focuses on some natural subclasses of unary automatic structures

such as equivalence structures, linear orders and trees and analyses the complexity of

deciding the isomorphism problem on these classes of structures.

1.2. SUMMARY OF RESULTS 11

Table 1.3: The isomorphism problem for classes of unary automatic structures.

Classes of structures Complexity for deciding the isomorphism problem

Linear orders O(n2)

Equivalence structures O(n)

Trees O(n4)

Characterizations of classes of unary automatic structures were given in Blumensath

[6] and Khoussainov/Rubin [73]. These results imply that the isomorphism problem for

automatic linear orders and equivalence structures are decidable (through monadic second-

order interpretations). However, the resulting decision procedures are highly inefficient

(doubly- or triply-exponential). In Section 4.3 and Section 4.4, we improve the complexity

by providing explicit algorithms in low polynomial time with respect to the input automata.

Theorem 4.3.5. The isomorphism problem for unary automatic linear orders is decidable

in quadratic time in the sizes of the input automata.

Theorem 4.4.4. The isomorphism problem for unary automatic equivalence structures is

decidable in linear time in the sizes of the input automata.

In Section 4.5, we analyse unary automatic trees. We present a combinatorial charac-

terization for the class of unary automatic trees. This characterization then leads to an

algorithm for solving the isomorphism problem.

Theorem 4.5.9. The isomorphism problem for unary automatic trees is decidable in time

O(n4) in the sizes of the input automata.

This chapter also contains an analysis on the state complexity of the mentioned classes

of unary automatic structures. We define the state complexity of an automatic structure as

the smallest number of states needed for automata to describe the domain and relations of

the structure. We prove that the state complexity of unary automatic equivalence relations,

linear orders and trees are all polynomial with respect to some natural representations of

the structures (For each class, we explicitly describe its representation). The study of state

complexity of automatic structures is a new, and hopefully fruitful, area.

We obtain the mentioned complexity bounds using detailed analysis on the canonical

forms of automatic presentations of structures. The analysis involves lengthy, technical and

carefully designed combinatorial arguments. In addition, the analysis greatly interacts with

properties of underlying structures. Table 1.3 summarizes the classes of unary automatic

structures and their corresponding time complexity for deciding the isomorphism problem.

12 Chapter 1. Introduction

The material in this chapter has appeared in Khoussainov/Liu/Minnes [66, 67] and

Liu/Minnes [86].

Chapter 5. The isomorphism problem for automatic structures

This chapter continues the study of the isomorphism problem for automatic struc-

tures in general. Our goal is to investigate the isomorphism problem for some natural

classes of automatic structures. Khoussainov/Nies/Rubin/Stephan in [72] has showed that

for automatic structures the isomorphism problem is Σ1
1
-complete. The proof exploits

the fact that configuration graphs of Turing machines are automatic structures. By direct

interpretations, it follows that for the following classes the isomorphism problem is still

Σ1
1
-complete [92]: automatic successor trees, automatic undirected graphs, automatic com-

mutative monoids, automatic partial orders, automatic lattices of height 4, and automatic

unary functions. On the other hand, the isomorphism problem is decidable for automatic

ordinals [77] and automatic Boolean algebras [72]. An intermediate class is the class of

locally finite automatic graphs, for which the isomorphism problem is Π0
3
-complete [102].

In this chapter, we solve the following known problems in the area of automatic struc-

tures. These problems appear in the list of open problems on automatic structures by

Khoussainov/Nerode [71] but have been around for more than 10 years.

(1) Is the isomorphism problem for automatic equivalence structures decidable?

(2) Is the isomorphism problem for automatic linear orders decidable?

(3) Provide natural examples of classes of automatic structures for which the isomor-

phism is complete for some levels of the arithmetic hierarchy.

(4) Is there always a computable isomorphism between any two isomorphic automatic

linear orders (trees)?

We show that for questions (1)(2) and (4) the answer is “no”. For question (3) we provide

natural classes of automatic structures whose isomorphism problem is Π0
n-complete for

n ∈N.

Most of the existing hardness proofs about the isomorphism problem of automatic

structures use reductions that involve transition graphs of Turing machines, which are

automatic structures. For the class of automatic equivalence structures, linear orders and

trees (treated as partial orders), this technique seems to fail for inherent reasons. This

is because the relations on these structures are transitive, while the transitive closure of

1.2. SUMMARY OF RESULTS 13

the configuration graph of a Turing machine is not automatic in general. Hence, new

techniques need to be employed. We first prove the following theorem:

Theorem 5.1.5. The isomorphism problem for automatic equivalence relations is Π0
1
-

complete.

The proof of this theorem is inspired by the result of Honkala in [56] who shows that it

is undecidable whether a rational power series has range N. The proof is a reduction from

Hilbert’s 10th problem. We follow the ideas Honkala and provide a reduction from Hilbert’s

10th problem. The problem consists of deciding if for given two polynomials p1(x1, . . . , xk)

and p2(x1, . . . , xk) ∈ N[x1, . . . , xk] the set {(x1, . . . , xk) ∈ Nk | (N;+,×) |= p(x1, . . . , xk) =

p2(x1, . . . , xk)} is non-empty. The celebrated Matiyasevich’s theorem proved that the set

of pairs of polynomials (p1, p2) for which the above set is empty is a Π0
1
-complete set.

The crucial part of the reduction involves constructing, for any polynomial p(x1, . . . , xk) ∈

N[x1, . . . , xk], an automaton RunA[p] over the alphabet {a}k × Σ for some finite alphabet Σ

such that for any x1, . . . , xk ∈ N, RunA[p] accepts exactly p(x1, . . . , xk) convoluted words of

the form ⊗(ax1 , . . . , axk ,w) for some w ∈ Σ⋆. In this manner, we encode a polynomial by a

regular language. Theorem 5.1.5 then follows from a construction that turns RunA[p] into

an automatic equivalence structure.

By a direct interpretation, it follows immediately that the isomorphism problem for

trees of height 2 is alsoΠ1
0
-complete. The next theorem is proved by induction on n, where

the case when n = 2 serves as the base case.

Theorem 5.2.13.

1. For any n ≥ 2, the isomorphism problem for automatic trees of height at most n is

Π0
2n−3

-complete.

2. The isomorphism problem for the class of automatic trees of finite height is com-

putably equivalent to true arithmetic, i.e., the first-order theory of (N;+,×).

Using the same technique and a more elaborate induction, we next prove the following

theorem.

Theorem 5.4.10. The isomorphism problem for automatic linear orders is not arithmetic.

A crucial part of the proof of Theorem 5.4.10 is on describing an automatic presentation

for the shuffle sum (defined in Chapter 5) of a class of automatic linear orders that are

presented in some specific way (see Section 5.4.2.1). Applying Theorem 5.2.13 and Theo-

rem 5.4.10, we obtain information on the Σ0
k
-isomorphisms between automatic structures.

The next corollary suggests that, although automatic structures look simple, there may be

no “simple” isomorphism between two isomorphism automatic structures.

14 Chapter 1. Introduction

Corollary 5.5.1. For any k ∈N, there exists two isomorphic automatic trees of finite height

(and two automatic linear orders) without any Σ0
k
-isomorphisms.

The material in this chapter has appeared in the papers Kuske/Liu/Lohrey [81, 82].

Chapter 6. Computably categorical graphs with finite components

This last chapter focuses on computable structures. In particular, we investigate the

computable categoricity of the class of computable strongly locally finite graphs.

Definition 6.1.1. Two computable graphs G1 and G2 have the same computable isomorphism

type if they are computably isomorphic. The number of computable isomorphism types of

graph G is called the computable dimension of G. If the computable dimension of G equals 1

then G is called computably categorical.

It is easy to provide examples of structures whose computable dimension is ℵ0 (e.g.

(N;≤)). The following theorem is due to Goncharov [41].

Theorem 6.1.5. If any two computable presentations of a structure A are ∆0
2
-isomorphic,

then the computable dimension of A is either 1 or ℵ0.

In the 1990s and 2000s, Khoussainov/Shore [78], Cholak/Goncharov/Khoussaionov/Sho-

re [12], Hirschfeldt [52] provided examples of structures with various properties whose

computable dimensions are natural numbers.

This chapter focuses on the class of computable strongly locally finite graphs. They are

undirected graphs whose components are all finite. By Goncharov’s theorem, it is clear

that the computable dimension of any strongly locally finite graph is either 1 or ℵ0. It

thus makes perfect sense to work towards a characterization of computably categorical

strongly locally finite graphs. This chapter contains a series of results that work towards

this characterization.

First, we prove a necessary and sufficient condition for certain types of strongly locally

finite graphs to be computably categorical. Let G be a computable strongly locally finite

graph. The size function sizeG : N → N of a computable graph G maps each node in G

(recall that each node in G is itself a number) to the size of the component that contains the

node. When sizeG is a computable function, we obtain an effective list (without repetition)

C0,C1, . . . of all components of G. The proper extension function extG : N→N∪{∞}maps any

node v in G to the number of components in G that are proper extensions of the component

of v.

Theorem 6.3.5. Let G be a computable strongly locally finite graph such that sizeG is a

computable function. Then the following are equivalent:

1.2. SUMMARY OF RESULTS 15

1. G is computably categorical.

2. The size function is computable in all computable presentations of G.

3. The function extG is computable and there are only finitely many v such that extG(v) =

∞.

A Scott family for a structureA is an effective sequence (φi(ā, x̄))i∈N of existential formu-

las, where ā is a finite sequence of parameters from A, such that the following properties

are true:

1. Each formula is satisfiable inA,

2. Each tuple ofA satisfies one of the formulas in the sequence, and

3. Any two tuples that satisfy the same formula can be interchanged by an automor-

phism of the structure.

It is easy to see that every structure with a Scott family is computably categorical. One

can easily show that the theorem above has the following corollary:

Corollary. Let G be a computable strongly locally finite graph such that sizeG is a com-

putable function. The graph is computably categorical if and only if it has a Scott family.

Next, we provide a necessary condition for a computable strongly locally finite graph

to be computably categorical in the case when the size function is not computable.

Theorem 6.4.1. Let G be a computable strongly locally finite graph. If there exists an

infinite ∆0
2
-set of nodes X such that extG(v) = ∞ for all v ∈ X, then G is not computably

categorical.

The proof of Theorem 6.4.1 uses the priority argument which constructs a computable

graph H � G that diagonalizes against all computable functions Φe by satisfying the

following requirement for all e ∈N:

Re : the eth computable function Φe is not an isomorphism from G to H.

A natural generalization of the statement in Theorem 6.4.1 is to relax the ∆0
2

condition

for the set X and show that G is not computably categorical whenever there are infinitely

many nodes v with extG(v) = ∞. However, the next theorem refutes this by constructing

a computably categorical strongly locally finite graph that possesses an infinite chain C of

embedded components. By the theorem above this set of nodes from the chain C is not a

∆0
2
-set.

16 Chapter 1. Introduction

Table 1.4: Summary of chapters

Chapter 2: Preliminaries

Chapter 3 Chapter 4,5 Chapter 6

Automatic Structures

Finite Structures
Chapter 4 Chapter 5

Computable Structures
Unary Alphabet General Alphabet

Theorem 6.5.1. There is a strongly locally finite computably categorical graph G that

possesses an infinite chain of properly embedded components. In fact, the set of nodes

{v | extG(v) = ∞} is computable in 0′′.

Let Ge be the eth computable graph. Using the tree argument, the proof of Theorem 6.5.1

constructs a computable graph G that satisfies the following requirements for all e ∈N:

Pe : if Ge � G then Ge and G are computably isomorphic.

we construct G by putting all strategies on the binary tree 2<ω. We satisfy all requirements

by traversing the tree T along paths of the tree. In the construction, for each graph Gi we

select special components Aα in the graph G, where |α| = i. The goal is to ensure that along

the true path δ the sequence of components (Aα)α⊂δ forms a chain. The construction will

guarantee that the true path can be computed in 0′′.

The proofs of both Theorem 6.3.5 and Theorem 6.4.1 as well as the outline of the proof

of Theorem 6.5.1 appeared in Csima/Khoussainov/Liu [14].

As a summary, Table 1.4 illustrates the structures of the topics covered in each chapters

of the thesis.

Chapter 2

Preliminaries

We assume basic familiarity with notions and terminologies in model theory, computability

theory and automata theory. For completeness of the thesis and to fix notations, some

definitions are provided in this chapter. All of the theorems, facts and examples mentioned

in this chapter are provided without proofs since the theorems are known among the

experts in the area. The references to the proofs are provided in the text. Most of these

theorems will be used later.

2.1 Structures

For background on model theory and first-order logic, see standard textbook such as

Hodges[54]. We use x to denote a tuple x1, x2, . . . , xm whose length m does not matter.

The symbol N is used for the natural numbers {0, 1, 2, · · · } and N+ for the positive nat-

ural numbers {1, 2, · · · }. The symbols Z,Q denote respectively the integers and rational

numbers.

A signature is a finite set τ of relational symbols, where each relational symbol S ∈ τ

has an associated arity nS. A (relational) structure over the signature τ (or a τ-structure) is

A = (A; (SA)s∈τ), where A is a set called the universe (or domain) ofA and SA is a relation of

arity nS over the set D, which interprets the relational symbol S. We will assume that every

signature contains the equality symbol = and that =A is the identity relation onA. When

the context is clear, we denote SA withA, and we write a ∈ A for a ∈ A.

Note that a signature τ is defined to contain only relational symbols. We consider an

m-ary function f : Am → A as a relation G(f), defined as follows:

G(f) = {(x, y) | x ∈ Am, y = f (x)}.

The relation G(f) is called the graph of f . When the context is clear we write f for G(f). We

consider constants as 0-ary relations.

17

18 Chapter 2. Preliminaries

A structure is a τ-structure for some signature τ. A structure is finite if its domain is a

finite set; otherwise, the structure is infinite. In this thesis, all structures have countable

domains.

Two τ-structuresA andB are isomorphic, denotedA � B, if there is a bijection f : A→ B

that preserves the relations, i.e.,

∀S ∈ τ∀a1, a2, . . . , anS
∈ A : (a1, · · · , anS

) ∈ SA if and only if (f (a1), · · · , f (anS
)) ∈ SB.

Here we require that f (cA) = cB for all constant symbol c ∈ τ. In this case, we call the

structure B an isomorphic copy ofA. The relation of two structures being isomorphic is an

equivalence relation and we call the equivalence class of A the isomorphism type of A. In

the above definition, the function f is an isomorphism fromA to B. For any τ-structure S,

a substructure of S is the τ-structure induced on a subset of the universe of S. A partial

isomorphism fromA to B is an isomorphism from a substructure ofA to a substructure of

B.

Let A,B are two structures over the same signature and with disjoint domains. We

writeA⊎B for the union of the two structures. Hence, when writingA⊎B, we implicitly

express that the domains ofA and B are disjoint. More generally, if {Ai | i ∈ I} is a class of

pairwise disjoint structures over the same signature, then we denote with ⊎{Ai | i ∈ I} the

union of these structures.

The following lists some typical structures and their associated terminologies.

Example 2.1.1 (Structures with unary predicates) A structure with unary predicates has

signature (P1, · · · ,Ps) (the value of s does not matter) where each Pi, 1 ≤ i ≤ s, is a unary predicate

symbol.

Example 2.1.2 (Graphs) A (directed) graph is considered as a structure G = (V; E)1 where each

element in the domain V is called a node and E ⊆ V2 is the edge relation. The graph is undirected

if for all u, v ∈ V, (u, v) ∈ E if and only if (v, u) ∈ E. The graph G is of finite degree if there are at

most finitely many edges from each vertex v. A component of the graph G is the transitive closure

of a vertex under the edge relation.

Example 2.1.3 (Equivalence structures) An equivalence structure is E = (E;≡) where ≡⊆ E2

is an equivalence relation (reflexive, symmetric and transitive). For each element e ∈ E, the set

[e]≡ = {x ∈ E | e ≡ x} is the ≡-equivalence class of e. The set of equivalence classes partitions the

universe E. When the context is clear, we simply write [e] for [e]≡. By convention, we sometimes

use (D; E) to denote an equivalence structure with domain D and equivalence relation E ⊆ D2.

1By convention, we use V instead of G to denote the domain of a graph G.

2.2. THEORIES 19

Example 2.1.4 (Linear orders) A linear order is written as L = (L;≤) where ≤ is a total partial

order. That is, a binary relation on L that is reflexive, anti-symmetric, transitive and for all x, y ∈ L,

it is either (x, y) ∈≤ or (y, x) ∈≤. By convention, we write x ≤ y for (x, y) ∈≤. Typical examples

of infinite linear orders are (N;≤), (Z;≤) and (Q;≤). By convention, we use ω (resp. ζ) to denote

the isomorphism type of (N;≤) (resp. (Z;≤)), ω∗ to denote the isomorphism type of the negative

numbers and n to denote the finite linear order of size n.

We define the following operations on linear orders. For given linear orders L1 = (L1;≤L1
) and

L2 = (L2;≤L2
), we denote byL1+L2 the linear order (L1×{1}∪L2×{2};≤) where ≤ is the relation

{
((x1, 1), (x2, 1)) | x1, x2 ∈ L1, x1 ≤L1

x2

}
∪
{
((y1, 2), (y2, 2)) | y1, y2 ∈ L2, y1 ≤L2

y2

}
∪

{
((x, 1), (y, 2)) | x ∈ L1, y ∈ L2

}
.

Example 2.1.5 (Trees) A tree is a structure T = (T;≤T), where ≤T is a partial order on T with a

least element, called the root of T , and such that for every x ∈ T, the order ≤T restricted to the set

{y | y ≤T x} is a finite linear order. We call the relation ≤T the ancestry order or the tree order

of T and a node y is an ancestor of x (or x is a descendent of y) if y ≤T x. The parent of x is

the immediate ancestor of x (undefined when x is the root) and y is a child of x if x is the parent of

y. Elements without children are called leaves. Two elements x, y are incomparable, denoted by

x|T y, if neither x ≤T y nor y ≤T x.

The disjoint union of trees form a forest. We generally use the letter F to denote a forest and

≤F to denote the corresponding ancestry order.

Example 2.1.6 (Boolean algebra) A Boolean algebra is a structure B = (B;≤, 0, 1) where ≤ is

a partial order on B with the maximum element 1 and the minimum element 0 and satisfies the

following properties:

1. For all x, y ∈ B, the supremum sup{x, y} and infimum inf{x, y} both exist.

2. For all x ∈ B, there is a unique y ∈ B with sup{x, y} = 1 and inf{x, y} = 0.

2.2 Theories

For a signature τ, a τ-formula is a formula which uses symbols from τ as non-logical

symbols. A τ-sentence is a τ-formula without free variables. We use FO to denote the first-

order logic. Second-order logic extends FO by including second-order variables that range

over relations on the universe, and quantifications over such variables. Monadic second-

order logic, denoted by MSO, is the fragment of second-order logic where all second-order

variables range over unary relations, i.e., subsets of the universe. By convention, first-order

variables are written in small cases: x, y, z, . . ., while monadic second-order variables are

20 Chapter 2. Preliminaries

written in upper cases: X,Y,Z, . . . Without explicitly mention, we write τ-formula (resp.

-sentences) for τ-formula (resp. -sentences) in FO.

For a logic L and a τ-structureA, the L-theory ofA is the collection of all τ-sentences in

L that are satisfied inA. This theory is decidable if there is an algorithm that tells whether a

given sentence belongs to the theory.

Fix a logic L. Given a τ-structure A, an m-ary relation R ⊂ (DA)m is τ-definable in L if

there is a τ-formula ϕ(x1, . . . , xm) in L such that

∀x1, . . . , xm ∈ A : (x1, . . . , xm) ∈ R if and only if ϕ(x1, . . . , xm) is satisfied inA.

In this case we say that ϕ(x1, . . . , xm) is an L-definition of R. Similarly, a class of τ-structures

K is τ-definable in L if there is a τ-sentence ϕ in L such that K contains exactly those τ-

structures that satisfy ϕ. For convenience, we will omit the signature τ when the context is

clear.

Example 2.2.1 (Binary relations) Let E be a binary relation symbol. We define the following

{E}-sentence:

– ref: ∀x : (x, x) ∈ E

– sym: ∀x, y : (x, y) ∈ E→ (y, x) ∈ E

– trans: ∀x, y, z : (x, y) ∈ E ∧ (y, z) ∈ E→ (x, z) ∈ E

– antisym: ∀x, y : (x, y) ∈ E ∧ (y, x) ∈ E→ x = y

– tot: ∀x, y : (x, y) ∈ E ∨ (y, x) ∈ E

Hence the class of equivalence structures (resp. linear orders) (V; E) is defined by the first-order

sentence ref ∧ sym ∧ trans (resp. ref ∧ antisym ∧ trans ∧ tot).

Example 2.2.2 (Trees) The class of trees (T;≤T) can be defined by the conjunction of ref ∧
antisym ∧ trans (treated as a {≤T }-sentence) and the following sentence:

(
∀x, y, z : (y ≤T x ∧ z ≤T x)→ (y ≤T z ∨ z ≤T y)

)
∧
(
∃x∀y : x ≤T y

)
.

One may also view a tree as a graph (T; E), where there is an edge (u, v) ∈ E if and only if u is the

parent of v. It is clear that the edge relation E is {≤T }-definable. Given a tree T , the level of an

element u ∈ V is the length of the path from the root to u, where the length of a path is the number

of E-edges along the path. The height of T is the supremum of the levels of all nodes in V. When

the tree T has height h ∈N, the tree order ≤T is {E}-definable:

x ≤T y⇔
∨

0≤i≤h

(
∃x1 . . .∃xi : x1 = x ∧ xi = y ∧

∧

0≤ j<i

(x j, x j+1) ∈ E
)

2.3. THE ARITHMETIC HIERARCHY 21

2.3 The arithmetic hierarchy

For background on Turing machines and computably enumerable sets and degrees, see

standard textbooks such as [100, 109]. We use standard Gödel numbering to encode (tuples

of) finite objects, e.g., finite sets, finite words, finite structures, automata or machines,

etc., into natural numbers. By computable functions, we mean partial functions defined on

natural numbers that are computable by a Turing machine. It is well-known that there is

an effectively list of all computable functions

Φ0,Φ1,Φ2, . . .

By ΦX
e,s(x) = y, we mean that e, x, y ≤ s and the eth computable function, running on input

x, with an oracle tape written X outputs y in no more than s steps. We use ΦX
e (x) = y to

denote that

∃s ∈N : ΦX
e,s(x) = y.

We say that Φe converges on x with oracle X, denoted by ΦX
e (x) ↓, if ∃y : ΦX

e (x) ↓. Otherwise,

Φe diverges on x with oracle X, and it is denoted by ΦX
e (x) ↑. In the notations above, we omit

the oracle symbol X if X = ∅. For e ∈N, let We = {x | Φe(x) ↓}.

The characteristic string of a set X ⊆ N is an infinite word wX ∈ {0, 1}ω such that its ith

position wX[i] = 1 if and only if i ∈ X, i ∈ N. A set S ⊆ N is computable in X, denoted by

S ≤T X, if there is e ∈N such that ΦX
e is a total function and ΦX

e (n) = wS[n] for all n ∈N.

Definition 2.3.1 A set S ⊆ N is computably enumerable in X or c.e. in X if there is a

computable function Φe such that for all n ∈ N, n ∈ S if and only if ΦX
e (x) ↓. When X = ∅, S is

computably enumerable.

A typical example of a set which is computably enumerable but not computable is the

halting problem K = {e | Φe(e) ↓}. It is well-known that a set is computable if and only if both

it and its complement are computably enumerable. Therefore the set N \ K = {e | Φe(e) ↑}

is not computably enumerable.

In computability theory, the arithmetic hierarchy is used to classify subsets of natural

numbers with certain first-order definitions.

Definition 2.3.2 For n ∈N, the class Σ0
n contains all sets A that can be written in the form:

A = {x | (N;+,×) |= Q1y1 · · ·Qnyn : ϕ(x, y1, . . . , yn)}

where Q1,Q2, · · · are the quantifiers ∃,∀, · · · and ϕ(x, y1, . . . , yn) is a quantifier free formula. The

class Π0
n contains all sets N \ A where A ∈ Σ0

n. The set ∆0
n is Σ0

n ∩Π
0
n .

Equivalently, the classes Σ0
n, Π0

n, and ∆0
n can be defined in terms of the relative com-

putability of sets:

22 Chapter 2. Preliminaries

Σ0
1

∆0
1

= the computable sets

Π0
1

Σ0
2

∆0
2

Π0
3

...

Σ0
0
= Π0

0
= ∆0

0

Figure 2.1: The arithmetic hierarchy

– Base case: The class ∆0
1

contains all computable subsets of N. The class Σ0
1

contains

all computably enumerable subsets of N and the class Π0
1

contains all subsets of N

whose complements belong to Σ0
1
.

– Inductive step: The class ∆0
n+1

contains all subsets of N computable in some Σ0
n sets.

The class Σ0
n+1

contains all sets that are computably enumerable in some Σ0
n set. The

class Π0
n+1

contains all complements of Σ0
n+1

sets.

The sets Σ0
n and Π0

n, n ∈ N, make up the arithmetic hierarchy. See Figure 2.1 for an

inclusion diagram (all inclusions are proper). By fixing some effective encoding of strings

by natural numbers, we can talk about Σ0
n-sets and Π0

n-sets of strings over an arbitrary

alphabet. A typical example of a set, which does not belong to the arithmetical hierarchy

is true arithmetic, i.e., the first-order theory of (N;+,×), which we denote by FOTh(N;+,×).

We say that a set A ⊆ N m-reduces to a set B ⊆ N, A ≤m B, if there is a computable

function f : N→N such that for all x ∈N, x ∈ A if and only if f (x) ∈ B.

If C is a class of sets, we say that a set A ⊆ M is complete for C (or C-complete) if A ∈ C

and for all B ∈ C, B ≤m A. We say that two sets A and B are computably equivalent if A ≤m B

and B ≤m A.

Example 2.3.3 (Turing jumps) For a set A ⊆ N, the Turing jump of A is the set A′ = {x ∈N |

ΦA
x (x) ↓}. The nth-jump of A is defined such that A(0) = A and A(n+1) = A(n)′. We use 0(n) to

denote the set ∅(n). Note that 0′ = K. It is well-known that for n ∈N, 0(n) is Σ0
n-complete.

Example 2.3.4 (Index sets) The following index sets are Turing-complete for respective levels of

the arithmetic hierarchy (See [109]):

– K0 = {e |We , ∅} and K1 = {(e, x) | x ∈We} are both Σ0
1
-complete.

– EMPTY = {e |We = ∅} is Π0
1
-complete.

– INF = {e |We is infinite } is Π0
2
-complete.

2.4. AUTOMATA AND LANGUAGES 23

– FIN = {e | We is finite } is Σ0
2
-complete.

Example 2.3.5 (Hilbert’s 10th problem) Hilbert’s 10th problem asks for deciding if a given Dio-

phantine equation p(x1, . . . , xk) = 0 has a solution in N+ (for technical reasons, it is useful to

exclude 0 in solutions). The problem is well-known to be undecidable. The celebrated result

of Matiyesevich (See [88]) constructed from a given (index of a) computably enumerable set

X ⊆ N a polynomial p(x1, . . . , xk) ∈ Z[x1, . . . , xk] such that for all n ∈ N+: n ∈ X if and

only if ∃y2, · · · , yk ∈ N+ : p(n, y2, . . . , yk) = 0. Using a standard encoding of polynomials in

Z[x1, . . . , xk] by natural numbers, the following set is Turing complete for Σ0
1
:

{p(x1, . . . , xk) ∈ Z[x1, . . . , xk] | ∃x1, · · · , xk : p(x1, x2, . . . , xk) = 0}.

2.4 Automata and languages

For backgrounds on automata and language, see standard textbooks such as [57]. In this

thesis, by an “automaton”, we mean a finite word automaton. Formally, for a fixed alphabet

Σ, a nondeterministic finite automaton (NFA) is a tupleA = (S,∆, I, F) where S is a set of states,

∆ ⊆ S × Σ × S is the transition relation, I ⊆ S is a set of initial states, and F ⊆ S is the set

of accepting states. We use Σ⋆ to denote the set of all finite words over alphabet Σ. For

w ∈ Σ⋆, |w| denotes the length of w.

A run ofA on a word u = a1a2 · · · an ∈ Σ
⋆ is a word of the form

r = (q0, a1, q1)(q1, a2, q2) · · · (qn−1, an, qn) ∈ ∆⋆,

where q0 ∈ I. If moreover qn ∈ F, then r is an accepting run of A on u. We will only use

these definitions in case n > 0, i.e., we will only speak of nonempty (accepting) runs. The

automaton A is deterministic if |I| = 1 and for all q ∈ S, σ ∈ Σ, there is exactly one p with

(q, σ, p) ∈ ∆. Hence, a deterministic automaton has precisely one run on each word r ∈ Σ⋆.

The automatonA is a unary automaton if the alphabet Σ = {1}.

We say the automatonA accepts u if there is an accepting run ofA on u. The language

accepted by A, denoted by L(A), is the collection of all words over alphabet Σ that are

accepted byA. A language is regular if it is accepted by some automaton.

The concatenation operation on two language L1, L2 is defined as L1 ·L2 = {xy | x ∈ L1, y ∈

L2}. Let ε denote the empty string and L0 = {ε}. For n ∈ N, let Ln+1 = L · Ln. The Kleene’s

star operation is defined as L⋆ = ∪n∈NLn. The following classical results provide ways to

decide if a language is regular.

Kleene’s theorem. A language L ⊆ Σ⋆ is regular if and only if it can be generated from

the empty set and singletons by applying a finite number of union, concatenation and the

Kleene star operation.

24 Chapter 2. Preliminaries

Closure property. The class of regular languages is closed under the set operations, namely,

union, intersection and complementation.

Pumping lemma. Suppose L ⊆ Σ⋆ is a regular language and n is the number of states of an

NFA that accepts L. For any word w ∈ L with |w| > p, there are words x, y, z ∈ Σ⋆ such that

|y| > 1, |xy| ≤ n and xyiz ∈ L for all i ∈N.

By the pumping lemma, it is easy to prove that the language {0n1n | n ∈ N} is not

regular.

Example 2.4.1 (Unary regular languages) The transition diagram of any automaton over the

unary alphabet {1} is of the following form (See Fig 2.2), where i < j are natural numbers. Hence, a

language U ⊆ {1}⋆ is regular if and only if there are numbers t, ℓ ∈ N such that L = L1 ∪ L2 with

L1 ⊆ {0, · · · , t − 1} and L2 is a finite union of sets in the form { j + iℓ}i∈N, where t ≤ j < t + ℓ.

q0 q1 qi

qi+1

q j

1
. . .

1

1 1

1

Figure 2.2: NFA over the unary alphabet {1}.

An NFA A can be considered as a (finite) representation of the set L(A) ⊆ Σ⋆. This

notion can be generalized to relations over Σ⋆ of arbitrary arity n using synchronous n-tape

automata. Such automata have n input tapes; each of which contains one of the input words.

Bits of the n input words are read in parallel until all input strings have been completely

processed.

Formally, let Σ⋄ = Σ ∪ {⋄}where ⋄ is a symbol not in Σ. Given n words w1,w2, . . . ,wn ∈

Σ⋆, the convolution of (w1, . . . ,wn) is a word ⊗(w1, . . . ,wn) over the alphabet (Σ⋄)
n with

length max{|w1|, . . . , |wn|}. The kth symbol of ⊗(w1, . . . ,wn) is (σ1, . . . , σn) where σi is the

kth symbol of wi if k ≤ |wi| and ⋄ otherwise. The relation accepted by a synchronous n-tape

automatonA is

{(w1, . . . ,wn) | w1, . . . ,wn ∈ Σ
⋆,⊗(w1, . . . ,wn) ∈ L(A)}.

An n-ary relation is FA-recognizable or regular if it is accepted by some synchronous n-

tape automaton. When the context is clear, we refer to a synchronous n-tape automaton,

n ∈ {1, 2, . . .}, simply as an NFA. It implies from the closure property that the class of n-ary

regular relations is closed under union, intersection and complementation.

2.5. AUTOMATIC STRUCTURES AND COMPUTABLE STRUCTURES 25

For i ∈ {1, . . . , n}, the projection operation of the ith coordinate produces from an n-ary

relation R an (n − 1)-ary relation

πi(R) = {(x1, . . . , xi−1, xi+1, . . . , xn) | ∃xi : (x1, . . . , xn) ∈ R}.

From an NFAA recognizing R ⊆ (Σ⋆)n and i ∈ {1, . . . , n}, one effectively constructs an NFA

A′ recognizing πi(R). The automaton A′ can be constructed form A by omitting the ith

tape.

Example 2.4.2 (Linear orderings on words) Let Σ be a finite alphabet. In the following we

describe important examples of regular linear orders over Σ.

– We write ≤pref for the prefix order on Σ⋆, which is defined such that for all x, y ∈ Σ⋆,

x ≤pref y if and only if x is a prefix of y. The order ≤pref is the language

{⊗(x, x) | x ∈ Σ⋆} · {⊗(ε, y) | y ∈ Σ⋆}

and is recognized by the NFA depicted in Figure.2.3.

1 2

∀σ ∈ Σ : (σ, σ) ∀σ ∈ Σ : (⋄, σ)

∀σ ∈ Σ : (⋄, σ)

Figure 2.3: The automaton recognizing the prefix order

– Fix a linear order < on Σ. We write ≤lex for the lexicographic order (induced by <) on

Σ⋆, which is defined such that:

x <lex y ⇐⇒ x <pref y or ∃z ∈ Σ⋆∃σ, τ ∈ Σ : x = zσx′, y = zτy′, σ < τ.

The order ≤lex is the language

{⊗(x, x) | x ∈ Σ⋆} · {(σ, τ) ∈ Σ2 | σ < τ} · {⊗(y, z) | y, z ∈ Σ⋆}.

– We write ≤llex for the length-lexicographic ordering on Σ⋆, which is defined as follows:

x <llex y ⇐⇒ |x| < |y| or (|x| = |y| ∧ x <lex y).

2.5 Automatic structures and computable structures

For detailed background on automatic structures, see the theses [102, 3, 91].

26 Chapter 2. Preliminaries

Definition 2.5.1 Let σ be a signature. An automatic structure of signature σ is a σ-structureA

whose domain is a regular language and for each R ∈ σ, RA is FA-recognizable. Any tuple P of

automata that accept the domain and the relations ofA is called an automatic presentation ofA;

in this case, we writeA(P) forA.

If an automatic structureA is isomorphic to a structureA′, thenA is called an automatic copy

ofA′ andA′ is automatically presentable. In this thesis we sometimes abuse the terminology

referring to A′ as simply automatic and calling an automatic presentation of A also an

automatic presentation ofA′. We also simplify our statements by saying “given/compute

an automatic structureA” for “given/compute an automatic presentation P of a structure

A(P)”.

A structure is unary automatic if it is automatic and it has an automatic presentation over

the unary alphabet {1}. All finite structures are automatic. The following list important

examples of infinite automatic structures.

Example 2.5.2 (A unary automatic structure) The structure (N;≤) is (unary) automatic. An

automatic copy of (N;≤) is (1⋆; {(1m, 1n) | m ≤ n}).

The following proposition from [6] shows that the restriction to a unary alphabet is a natural

special case of automatic structures.

Proposition 2.5.3 Every automatic structure has an automatic copy over the binary alphabet {0, 1}.

Example 2.5.4 (Presburger arithmetic) The structure (N;+) is automatic but not unary auto-

matic. An automatic copy of the structures is ({0, 1}⋆ · 1;+2) where +2 is binary addition when

the binary strings are interpreted as the least significant bit first base-2 expansion of the natural

numbers. See Figure. 2.4 for the state diagram of an automaton recognizing +2.

1 2

(1, 1, 0)

(0, 0, 1)

(σ, ⋄, σ)
(⋄, σ, σ)
(σ, 0, σ)
(0, σ, σ)

(0, 1, 1)(1, 0, 1)
(0, 0, 0)

(σ, ⋄, 1 − σ)
(⋄, σ, 1 − σ)
(σ, 0, 1 − σ)
(0, σ, 1 − σ)
(1, 0, 0)(0, 1, 0)
(1, 1, 1)

Figure 2.4: The automaton recognizing +2

The following theorem from [102] shows that problems on automatic structures can in

fact be reduced to automatic graphs. In this sense, equivalence structure, linear orders,

trees can all be considered as special classes of graphs.

2.5. AUTOMATIC STRUCTURES AND COMPUTABLE STRUCTURES 27

Theorem 2.5.5 (Reduction to automatic graphs) For every structureA there is a graph G(A)

such thatA is automatic if and only if G(A) is automatic. Furthermore, an automatic presentation

of G(A) can be constructed in linear time in the size of an automatic presentation ofA.

Example 2.5.6 (Dense linear order) The dense linear order (Q;≤) is automatic. An automatic

copy of the structure is ({0, 1}⋆ · 1;≤lex). To see this, one only needs to prove that the linear order

({0, 1}⋆ · 1;≤lex) is dense and without endpoints. For denseness, take any w1,w2 ∈ {0, 1}⋆ · 1 where

w1 <lex w2. Then we have two cases:

- Case 1: w2 = w1 · x for some x ∈ {0, 1}⋆ · 1. Then we have

w1 <lex w10|x|1 <lex w2.

- Case 2: w1 = x0y and w2 = x1z for some x, y, z ∈ {0, 1}⋆ · 1. Then we have

w1 <lex x0y1 <lex w2

To show that no endpoint exists, take any w ∈ {0, 1}⋆, and we have

w01 <lex w1 <lex w11.

Therefore

({0, 1}⋆ · 1;≤lex) � (Q;≤).

Example 2.5.7 (An automatic equivalence structure) Let L ⊆ Σ⋆ be a regular language. Then

the structure (L;≡len) is automatic, where x ≡len y if and only if x and y have the same length.

Example 2.5.8 [Configuration graphs of TMs] Let M be a Turing machine over input alphabet

Σ. The configuration graph of M is a graph whose set of nodes consists of all configurations

ofM, and whose edge relation corresponds to single transitions of M. It is well-known that the

configuration graph of any Turing machine is an automatic graph (see Rubin[102]).

From this fact, it is clear that the reachability problem for automatic graphs is not decidable.

Example 2.5.9 (Non-automaticity) Examples of structures that are not automatic include:

– (N;×), (N;÷).

– The linear order ωω.

– Atomless Boolean algebra.

– The random graph.

28 Chapter 2. Preliminaries

– The torsion-free Abelian group (Q;+) [114].

As discussed in Chapter 1, the class of automatic structures form a (proper) subset of

the class of computable structures.

Definition 2.5.10 A structure is called computable if its domain is a computable subset of natural

numbers and all its relations are uniformly computable.

The definition easily implies that the atomic diagram of a computable structure is

computable. On the other hand, almost all other natural properties are undecidable over

computable structures. These include reachability, connectedness and even the existence

of isolated nodes. Automatic structures possess several nice logical and computability-

theoretical properties over the computable structures. Most prominently, the first-order

theory of any automatic structure is decidable. The next theorem from [70, 55, 7, 102]

singles out this fact as it serves as the main motivation for research in automatic structures.

Let FO + ∃∞ + ∃n,m denote the first-order logic extended by the quantifier ∃∞ (there exist

infinitely many) and ∃n,m (there exist finitely many and the exact number is congruent to n

modulo m, where m, n ∈N).

Theorem 2.5.11 From an automatic presentation P and a formula ϕ(x) ∈ FO + ∃∞ + ∃n,m in the

signature of A(P), one can compute an automaton whose language consists of those tuples a from

A(P) that make ϕ true. In particular, the FO + ∃∞ + ∃n,m theory of any automatic structure A is

(uniformly) decidable.

Chapter 3

The Complexity of

Ehrenfeucht-Fraı̈ssé Games

In finite model theory, Ehrenfeucht-Fraı̈ssé game is an important tool in illustrating the

expressive power of first-order logic. In particular, for two structures A and B with the

same signature, Duplicator wins the n-round Ehrenfeucht-Fraı̈ssé game onA and B if and

only ifA and B agree on all FO sentences of quantifier rank up to n. Hence, Ehrenfeucht-

Fraı̈ssé games reveal information on the degree of “similarity” between structures. We

concern the following problem: Given n ∈ ω as a parameter, and two relational structures

A and B with the same signature, who is the winner of the n-round EF game played on

A and B? In this chapter, we focus on the efficiency of answering the above question for

standard classes of structures such as trees, Boolean algebras, equivalence structures and

some of their expansions. All structures we consider are finite. For each of the studied

classes, we provide an algorithm that decides the winner of an n-round EF games played

on structures in the class. Assuming n is a constant, all algorithms run in constant time.

The values of the constants are bounded by functions on n. Clearly, the constants obtained

depend on the representations of the structures. In each case, it will be clear from the

content how we represent our structures.

3.1 Ehrenfeucht-Fraı̈ssé games

Ehrenfeucht-Fraı̈ssé (EF) games constitute an important tool in both finite and infinite

model theory. For example, in infinite model theory these games can be used to prove the

Scott isomorphism theorem which states that all countable structures are described (up to

isomorphism) in the infinitary logic Lω1,ω [106]. In finite model theory, these games and

their different versions are used to establish expressibility results in first-order logic and its

extensions [63]. The reader can find these results in standard books on finite and infinite

29

30 Chapter 3. The Complexity of Ehrenfeucht-Fraı̈sseé Games

model theory (e.g. [54, 85]) and in relatively recent papers (e.g. [15]).

Definition 3.1.1 Let A and B be structures and n ∈ N. We define the n-round EF game on

A and B, denoted by Gn(A,B), as follows. There are two players, Duplicator and Spoiler, both

are provided with A and B. The game consists of n rounds. Informally, Duplicator’s goal is to

show that these two structures are similar, while Spoiler needs to show the opposite. At round i,

Spoiler selects structureA or B, and then takes an element from the selected structure. Duplicator

responds by selecting an element from the other structure.

A k-round play, k ≤ n, produced by the players is a sequence of elements (a1, b1), · · · , (ak, bk),

where ai ∈ A and bi ∈ B for i = 1, . . . , k; and if Spoiler selects ai (or bi) then Duplicator select

bi (or ai). Duplicator wins an n-round play if the mapping ai → bi, i = 1, . . . , n, extended by

mapping the element cA to cB where c is a constant symbol in the signature ofA andB, is a partial

isomorphism betweenA and B.

We are concerned with the n-Ehrenfeucht-Fraı̈ssé problem, where n ∈N, defined as follows:

INPUT: Two structuresA and Bwith the same signature

QUESTION: Does Duplicator win the game Gn(A,B)?

It is clear that if A and B are isomorphic then Duplicator wins the game Gn(A,B)

regardless of the value of n. The opposite is not always true. The quantifier rank of a

τ-formula ϕ, qr(ϕ), measures the depth of quantifier nesting in ϕ and is defined as follows:

qr(ϕ) =



0 if ϕ is atomic

max{qr(ϕ1),qr(ϕ2)} if ϕ is ϕ1OPϕ2, OP ∈ {∨,∧}

qr(ϕ0) if ϕ is ¬ϕ0

qr(ϕ0) + 1 if ϕ is Qx : ϕ0(x), Q ∈ {∃,∀}

We use FO[n] to denote the set of all first-order sentences of quantifier rank up to n. The

following fundamental theorem provides the main motivation for studies on EF games.

Theorem 3.1.2 (Ehrenfeucht-Fraı̈ssé) For n ∈ N, Duplicator wins the n-round EF game

Gn(A,B) on two structures A and B in the same signature if and only if A and B agree on

FO[n].

LetA and B be two finite structures in the same signature and n = min{|A|, |B|}. Since

two finite structures are elementary equivalent if and only if they are isomorphic (see

for example [54]), by Theorem 3.1.2, Duplicator wins the EF game Gn(A,B) if and only

if A � B. Thus, we can consider solving the n-EF problem as an approximation to the

isomorphism problem.

One can do the following rough estimates for finding the winner of the game Gn(A,B).

There are finitely many, up to logical equivalence, formulas ϕ1, . . . , ϕk of quantifier rank

3.2. SIMPLE EXAMPLE: STRUCTURES WITH UNARY PREDICATES 31

n (see for example [85]). By Theorem 3.1.2, answering the Ehrenfeucht-Fraı̈ssé problem

on A and B reduces to checking whether for all i ∈ {1, . . . , k}, the structure A satisfies

ϕi if and only if B satisfies ϕi. Since A and B are finite, this problem can be solved in

polynomial time in terms of the sizes of A and B. However, there are two important

issues here. The first issue concerns the number k that depends on n; k is approximately

bounded by the n-repeated exponentiation of 2. The second issue concerns the degree of

the polynomial for the running time that is bounded by n. Thus, questions arise as to for

which standard structures the value of k is feasible as a function of n, and whether the

degree of the polynomial for the running time can be made small.

As an example, for the class of finite linear orders, the following theorem is well-known

(see [42]).

Theorem 3.1.3 For any n ∈ N and finite linear orders L1,L2, Dupicator wins the EF game

Gn(L1,L2) if and only if |L1| = |L2| or |L1| ≥ 2n − 1 and |L2| ≥ 2n − 1.

The above theorem suggests an algorithm such that, assuming the lengths of the input

finite linear orders are given explicitly in their representations, the n-Ehrenfeucht-Fraı̈ssé

problem on the class of finite linear orders can be answered in constant time. Therefore in

this example, the number k roughly equals to 2n, and the degree of the polynomial for the

running time is 0.

In the subsequent sections, we exploit structural properties in structures with unary

predicates, equivalence structures, trees and Boolean algebra to obtain algorithms for

solving the n-Ehrenfeucht-Fraı̈ssé problem.

3.2 Simple example: structures with unary predicates

This is an elementary section that gives a full solution for EF games in the case when the

language contains unary predicates only. Here is the main result of this section.

Theorem 3.2.1 Fix the signature σ = {P1, . . . ,Ps}, where each Pi is a unary predicate symbol. Let

n ∈ ω. There exists an algorithm that runs in constant time and decides whether Duplicator wins

the game Gn(A,B) on finite σ-structures A and B. The constant that bounds the running time is

2s · n.

Letσ = {P1, . . . ,Ps}be a collection of unary predicate symbols andA = (A; P1,P2, · · · ,Ps),

B = (B; P1,P2, · · · ,Ps) be two σ-structures. For any σ-structure C, set PC
s+1
=
⋂

i C \ PC
i

. We

prove Theorem 3.2.1 using the following two lemmas.

Lemma 3.2.2 Suppose P1,P2, · · · ,Ps are pairwise disjoint. Then Duplicator wins Gn(A,B) if and

only if for all i ∈ {1, . . . , s + 1} if |PA
i
| < n or |PB

i
| < n then |PA

i
| = |PB

i
|. In particular, when

Duplicator wins, it is the case that for all i ∈ {1, . . . , s + 1}, |PA
i
| > n if and only if |PB

i
| > n.

32 Chapter 3. The Complexity of Ehrenfeucht-Fraı̈sseé Games

Proof. To prove the lemma, suppose that there is i ∈ {1, . . . , k + 1} such that |PA
i
| < n but

|PA
i
| , |PB

i
|. Assume |PB

i
| < |PA

i
|. Then Spoiler selects |PA

i
| elements from PA

i
. This strategy

is clearly winning for Spoiler as in the first |PB
i
| rounds, Duplicator has to respond by

choosing distinct elements from PB
i

and in the |PB
i
| + 1th round, an element not in PB

i
has

to be chosen and the partial isomorphism cannot be maintained. Similarly, if |PB
i
| > |PA

i
|,

Spoiler wins by selecting min{n, |PB
i
|} elements from PB

i
.

Conversely, assume that for all i ∈ {1, . . . , s + 1}, it is either that |PA
i
| = |PB

i
| or |PA

i
|

and |PB
i
| are both greater than n. Duplicator has a winning strategy as follows: At round

k, assume that the players have produced the k-round play (a1, b1), · · · , (ak, bk). If Spoiler

selects ak+1 ∈ A, then Duplicator responds by selecting bk+1 ∈ B where

– If ak+1 = ai for some i ∈ {1, . . . , k} then bk+1 = bi.

– Otherwise, let j ∈ {1, . . . , s + 1} be such that ak+1 ∈ PA
j

, there must be some b ∈ PB
j

such that b < {b1, . . . , bk}. Let bk+1 = b.

The cases when Spoiler selects an element from B are treated similarly. The strategy is

clearly winning.

Now assume that for a structure A, the unary predicates P1,P2, . . . ,Ps are not necessarily

pairwise disjoint. For each element x ∈ A, define the characteristic of x, ch(x), as a binary

word t1t2 · · · ts ∈ {0, 1}s such that for each 1 ≤ i ≤ s, ti = 1 if x ∈ Pi and ti = 0 otherwise.

There are 2s pairwise distinct characteristics, and we order them in lexicographic order:

c1, . . . , c2s . Construct the structure A′ = (A; Q1, · · · ,Q2s) such that for all 1 ≤ i ≤ 2s,

Qi = {x ∈ A | ch(x) = ci}. The following is now an easy lemma.

Lemma 3.2.3 Duplicator wins Gn(A,B) if and only if Duplicator wins Gn(A′,B′).

Proof of Theorem 3.2.1. The above lemmas give us the following algorithm for solving the

game Gn(A,B): We represent each ofA and B by 2s lists, and the ith list lists all elements

with characteristic ci. By Lemma 3.2.3, to solve the game Gn(A,B), it is sufficient to solve

the game Gn(A′,B′). The algorithm then checks the conditions in Lemma 3.2.2 by reading

the lists. In each list it reads at most n elements. Hence, the process takes time bounded by

2s · n.

3.3 Equivalence structures

In this section we study EF games played on equivalence structures. For a finite equivalence

structure E, we list all the equivalence classes of E as E1, . . . ,Ek such that |Ei| ≤ |Ei+1| for all

1 ≤ i < k. Let qE be the number of equivalence classes in E; for each t < n, let qEt be the

number of equivalence classes in Ewith size t. Finally, let qE≥r be the number of equivalence

classes in E of size at least r. LetA and B be two finite equivalence structures.

3.3. EQUIVALENCE STRUCTURES 33

Lemma 3.3.1 If Duplicator wins the game Gn(A,B) on equivalence structuresA and B, then the

following must be true:

(1) If qA < n or qB < n then qA = qB; and

(2) qA ≥ n if and only if qB ≥ n.

Proof. To prove the lemma, we assume that one of the two statements (1) or (2) is false.

Suppose (1) is false and Say qA < n. If qA < qB (qB < qA), Spoiler wins the game Gn(A,B)

by first selecting qA (qB) pairwise-nonequivalent elements from A (B) and then selecting

an element inB (A) that is not equivalent to any elements selected by Duplicator. Suppose

(2) is false. Say qA ≥ n but qB < n. Spoiler wins the game by selecting n elements from

distinct equivalence classes inA. Hence the lemma is proved.

By Lemma 3.3.1, in our analysis below, we always assume that qA = qB or qA ≥ n if and

only if qB ≥ n. We need the following notation for the next lemma and definition. For

t ≤ n, let qt = min{qA
≥t, q

B
≥t}. LetAt and Bt be equivalence structures obtained by taking out

exactly qt equivalence classes of size ≥ t fromA and B respectively. We also set n− qt to be

0 in case qt ≥ n; and otherwise n − qt has its natural meaning.

Lemma 3.3.2 Spoiler wins the game Gn(A,B) when any one of the following holds:

1. There is some t < n such that qAt , qBt and n −min{qAt , q
B
t } > t.

2. There is some t ≤ n such that n− qt > 0 and one of the structuresAt orBt has an equivalence

class of size ≥ n − qt and the other structure does not.

Proof. To prove the first part of the lemma, assume that qAt > qBt and n − qBt > t. Spoiler’s

strategy is the following: First, select elements a1, . . . , aqBt
from distinct equivalence classes

of size t in A. Duplicator must select elements b1, . . . bqBt
also from distinct equivalence

classes of size t in B as otherwise, Duplicator will clearly lose. Next, Spoiler selects t

distinct elements x1, . . . , xt in the equivalence class of size t in A. If Duplicator responds

by choosing elements y1, . . . , yt in an equivalence class of size < t then Duplicator would

clearly lose. Hence Duplicator must select all y1, . . . , yt from an equivalence class Y of size

> t. After t moves, Spoiler selects a new element in Y, thus winning the game. The case

when qBt > qAt and n − qAt > t is proved similarly.

For the second part, assume At has an equivalence class of size ≥ n − qt and Bt does

not, Spoiler has the following winning strategy. Spoiler selects qt pairwise non-equivalent

elements a1, . . . , aqt in A from equivalence classes of size greater than or equal to t. Let

b1, . . . , bqt be elements selected by Duplicator. Note that for each i, the size of the equivalence

class [bi] is greater than or equal to t. Otherwise, if the size of [bi] were smaller than t, then

the size of [bi] would be smaller than n − qt. Hence, in this case, Spoiler would win by

34 Chapter 3. The Complexity of Ehrenfeucht-Fraı̈sseé Games

selecting elements from [ai]. Now let X be an equivalence class of size ≥ n− qt as stipulated

in the lemma. Spoiler wins the game by selecting n − qt distinct elements in X.

We now single out the hypothesis of the lemma above and give the following definition.

Definition 3.3.3 1. We say that Gn(A,B) has small disparity if there is some t < n such that

qAt , qBt and n −min{qAt , q
B
t } > t.

2. We say that Gn(A,B) has large disparity if there is some t ≤ n such that n− qt > 0 and one

of the structures At or Bt has an equivalence class of size ≥ n − qt and the other structure

does not.

Lemma 3.3.4 Duplicator wins the game Gn(A,B) if and only if Gn(A,B) has neither small nor

large disparity.

Proof. The previous lemma proves one direction. For the other, we assume that neither

small nor large disparity occurs in the game. We describe a winning strategy for Duplicator.

Let us assume that the players have produced a k-round play (a1, b1), (a2, b2), . . . , (ak, bk).

In case k = 0, we are at the start of the game Gn(A,B). Our inductive assumptions on this

k-round play are the following:

(1) For all i, j ∈ {1, . . . , k}, ai ≡
A a j if and only if bi ≡

B b j, and the map ai → bi is injective.

(2) For all i ∈ {1, . . . , k}, |[ai]| ≥ n − i if and only if |[bi]| ≥ n − i.

(3) For all i ∈ {1, . . . , k}, |[ai]| < n − i then |[ai]| = |[bi]|.

(4) Let A′ and B′ be the equivalence structures obtained by removing the equivalence

classes [a1], . . . , [ak] from A and the equivalence classes [bi], . . . , [bk] from B, respec-

tively. We assume thatA′ and B′ satisfy the following conditions:

(a) In game Gn−k(A′,B′) no small disparity occurs.

(b) In game Gn−k(A′,B′) no large disparity occurs.

Assume that Spoiler selects an element ak+1 ∈ A. Duplicator responds to this move by

choosing bk+1 as follows: If ak+1 = ai then bk+1 = bi. Otherwise, if E(ai, ak+1) is true inA then

Duplicator chooses a new bk+1 such that E(bi, bk+1) is true inB. Assume ak+1 is not equivalent

to any of the elements a1, . . . , ak. If |[ak+1]| ≥ n−k then Duplicator chooses any bk+1 that is not

equivalent to any of the elements b1, . . . , bk and |[bk+1]| ≥ n − k. Duplicator can select such

an element as otherwise large disparity would occur in the game. If |[ak+1]| < n − k then

Duplicator chooses bk+1 such that |[bk+1]| = |[ak+1]| and bk+1 is not equivalent to any of the

elements b1, . . . , bk. There exists such an element bk+1 for Duplicator to choose as otherwise

3.3. EQUIVALENCE STRUCTURES 35

small disparity would occur in the game. The case when Spoiler selects an element from B

is treated similarly.

We now show that the (k + 1)-round play (a1, b1), (a2, b2), . . . , (ak, bk), (ak+1, bk+1) satisfies

the inductive assumptions. Inductive assumptions (1), (2), and (3) can easily be checked

to be preserved. To show that assumption (4) is preserved, consider the equivalence

structures A′′ and B′′ obtained by removing the equivalence classes [a1], . . ., [ak], [ak+1]

from A and the equivalence classes [b1], . . ., [bk], [bk+1] from B, respectively. In game

Gn−k−1(A′′,B′′) small disparity does not occur as otherwise game Gn−k(A′,B′) would have

small disparity. Thus, assumption (4a) is also preserved. Similarly, if Gn−k−1(A′′,B′′) had

large disparity then game Gn−k(A′,B′) would also have large disparity contradicting the

inductive assumption. Hence the strategy described must be a winning strategy due to the

fact that Duplicator preserves the inductive assumption (1) at each round.

Theorem 3.3.5 Fix n ∈ N. There exists an algorithm that runs in constant time and decides

whether Duplicator wins the game Gn(A,B) on finite equivalence structures A and B. The

constant that bounds the running time is n.

Proof. This result follows from Lemma 3.3.4. We represent each equivalence structureA

andB in two lists. For example, the first list for the structureA lists all equivalence classes

of A in increasing order; the second list is qA, qA
1

, qA
≥1

, qA
2

, qA
≥2

, The algorithm runs

through the second lists for bothA and B, and for each t ≤ n checks whether or not small

or large disparity occurs. If the algorithm detects disparity then Spoiler wins, otherwise,

Duplicator wins.

This theorem can be extended to equivalence structures expanded with unary predicates

that act on equivalence classes uniformly as explained in the following definition.

Definition 3.3.6 A homogeneously colored equivalence structure is (A;≡,P1, . . . ,Ps) where

– (A;≡) is an equivalence structure; and

– Each Pi is a homogeneous unary relation on A meaning that for all x, y ∈ A if x ≡ y then

x ∈ Pi if and only if y ∈ Pi.

Let A = (A; E,P1, . . . ,Ps) be a homogeneously colored equivalence structure. As in the

previous section, we define the characteristic ch(x) of an element x ∈ A as a binary word

t1t2 . . . ts ∈ {0, 1}s such that for each 1 ≤ i ≤ s, ti = 1 if x ∈ Pi and ti = 0 otherwise. Since

each predicate Pi is homogeneous, any pair of equivalent elements of A have the same

characteristics. We put all 2s characteristics in a list c1, c2, . . . , c2s . Therefore we can represent

A as a disjoint union of equivalence structures A1, . . . ,A2s , where Aε is the subset of A

consisting of elements with characteristic cε. The above theorem can thus be extended to

the following result:

36 Chapter 3. The Complexity of Ehrenfeucht-Fraı̈sseé Games

Theorem 3.3.7 There exists an algorithm that runs in constant time and decides whether Dupli-

cator wins the game Gn(A,B) on finite homogeneously colored equivalence structures A and B.

The constant that bounds the running time is 2s · n.

3.4 Equivalence structures with colors

In this section we study structuresA of the form (A; E,P1, . . . ,Ps), where E is an equivalence

relation on A and P1, . . . ,Ps are unary predicates on A. Note that P1, ...,Ps are not necessarily

homogeneous unary predicates. We call these structures equivalence structures with s colors.

Our goal is to give a full solution for EF games played on equivalence structures with s

colors. We start with the case when s = 1. The case for s > 2 will be explained later.

Let A = (A; E,P) be a finite equivalence structure with one color. We say x ∈ A is

colored if P(x) is true; otherwise x is uncolored. We say that an equivalence class X has type

tp(X) = (i, j) ∈ N2, if the number of colored elements of X is i, non-colored elements is j;

thus i + j = |X|.

Definition 3.4.1 Given two types (i, j) and (i′, j′) respectively. We say that (i, j) is colored

n-equivalent to (i′, j′), denoted by (i, j) ≡C
n (i′, j′), if the following holds.

1. If i < n then i′ = i, otherwise i′ ≥ n.

2. If j < n − 1 then j′ = j, otherwise j′ ≥ n − 1.

We say that (i, j) is non-colored n-equivalent to (i′, j′), denoted by (i, j) ≡N
n (i′, j′), if the following

holds.

1. If j < n then j′ = j, otherwise j′ ≥ n;

2. If i < n − 1 then i′ = i, otherwise i′ ≥ n − 1.

For X ⊆ A, we use (X; E ↾ X,P ↾ X) to denote the equivalence structure obtained by

restricting E and P on X. Note that given two equivalence classes X and Y of types (i, j) and

(i′, j′) respectively, if (i, j) is colored (non-colored) n-equivalent to (i′, j′), then Duplicator

wins the n-round game played on structures (X; E ↾ X,P ↾ X) and (Y,E ↾ Y,P ↾ Y), given the

fact that Spoiler chooses a colored (non-colored) element in the first round. The following

lemma follows from the definition above.

Lemma 3.4.2 If (i′, j′) ≡C
n (i, j) or (i′, j′) ≡N

n (i, j), then (i′, j′) ≡C
n−1

(i, j) and (i′, j′) ≡N
n−1

(i, j).

For a finite equivalence structure A = (A; E,P) with one color, we need the following

notations:

3.4. EQUIVALENCE STRUCTURES WITH COLORS 37

– For type (i, j) and k ≥ 1, set CA
(i, j),k

as the set

{X | X is an equivalence class ofA and tp(X) ≡C
k (i, j)}.

Set NA
(i, j),k

as the set

{X | X is an equivalence class ofA and tp(X) ≡N
k

(i, j)}.

– For type (i, j) and k ≥ 1, set

qA,C
(i, j),k
= |CA

(i, j),k| and qA,N
(i, j),k
= |NA

(i, j),k|.

– ForA and B, set

qC
(i, j),k = min{qA,C

(i, j),k
, qB,C

(i, j),k
} and qN

(i, j),k = min{qA,N
(i, j),k

, qB,N
(i, j),k
}.

– SetAC((i, j), k) as the structure obtained fromA by removing qC
(i, j),k

equivalence classes

in CA
(i, j),k

.

– SetAN((i, j), k) as the structure obtained fromAby removing qN
(i, j),k

equivalence classes

in NA
(i, j),k

.

Observe the following: If Spoiler selects a colored element from an equivalence class X

inA and Duplicator responds by selecting another colored elements from an equivalence

class Y in B such that tp(Y) ≡C
n tp(X), there is no point for Spoiler to keep playing inside

X because this will guarantee a win for Duplicator. Conversely, suppose Spoiler selects a

colored element from an equivalence class X in A, and there is no equivalence class in B

whose type is colored n-equivalent to tp(X). Then Spoiler has a winning strategy for the

game by playing inside X and Y.

Definition 3.4.3 Consider game Gn(A,B) played on equivalence structures with one color. We

say that a colored disparity occurs if there exists a type (i, j) and n > k ≥ 0 such that the following

holds:

1. k = qC
(i, j),n−k

;

2. In one of AC((i, j), n − k) and BC((i, j), n − k), there is an equivalence class whose type is

colored (n− k)-equivalent to (i, j), and no such equivalence class exists in the other structure.

We say that a non-colored disparity occurs if there exists a type (i, j) and k ∈ {0, · · · , n − 1}

such that the following holds:

38 Chapter 3. The Complexity of Ehrenfeucht-Fraı̈sseé Games

1. k = qN
(i, j),n−k

;

2. In one of AN((i, j), n − k) and BN((i, j), n − k), there is an equivalence class whose type

is non-colored (n − k)-equivalent to (i, j), and no such equivalence class exists in the other

structure.

Lemma 3.4.4 Suppose A and B are two finite equivalence structures with one color. Duplicator

wins the game Gn(A,B) if and only if neither colored disparity nor non-colored disparity occurs in

the game.

Proof. Suppose a colored disparity occurs in game Gn(A,B) as witnessed by (i, j) and

k. Suppose in AC((i, j), n − k) there is an equivalence class whose type is colored (n − k)-

equivalent to (i, j), and no such equivalence class exists in the other structure. We describe

a winning strategy for Spoiler. The case when a non-colored disparity occurs is treated in

a similar manner. To win the game, Spoiler selects k = qC
(i, j),n−k

pairwise non-equivalent

elements a1, ..., ak inA from equivalence classes in CA
(i, j),n−k

. Let b1, ..., bk be elements selected

by Duplicator in response. For each ℓ ∈ {1, . . . , k}, let [bℓ] be the equivalence class of bℓ. Note

that tp([bℓ]) ≡
C
n−k

(i, j) as otherwise Spoiler would win. Now let X be an equivalence class

inA such that tp(X) ≡C
n−k

(i, j) as stipulated in the lemma. Spoiler selects a colored element

x ∈ X. Let y be the element selected by Duplicator in response to x and set Y = [y]. Note

that tp(Y) cannot be colored (n− k)-equivalent to tp(X). By definition of (n− k)-equivalence,

from now on, Spoiler uses a winning strategy inside X and Y and wins the game Gn(A,B).

Conversely, suppose neither colored disparity nor non-colored disparity occurs in game

Gn(A,B), we then describe a strategy for Duplicator. Let us assume that the players have

produced a k-round play (a1, b1), (a2, b2), ..., (ak, bk). Let (iℓ, jℓ) and (i′ℓ, j′ℓ) be respectively the

types of aℓ and bℓ, with 1 ≤ ℓ ≤ k. Our inductive assumptions on this k-round play are the

following:

(I1) For any ℓ ∈ {1, . . . , k}, aℓ is a colored element if and only if bℓ is a colored element.

(I2) For any ℓ,m ∈ {1, . . . , k}, E(aℓ, am) if and only if E(bℓ, bm).

(I3) For any ℓ ∈ {1, . . . , k}, (iℓ, jℓ) ≡
C
n−ℓ

(i′ℓ, j′ℓ) and (iℓ, jℓ) ≡
N
n−ℓ (i′ℓ, j′ℓ).

(I4) Let A′ and B′ be the equivalence structures obtained by removing equivalence

classes [a1], ..., [ak] from A and [b1], ..., [bk] from B, respectively. We assume in game

Gn−k(A′,B′) that neither colored disparity nor non-colored disparity occurs.

Assume that Spoiler selects an element ak+1 ∈ A. Duplicator responds to this move by

choosing bk+1 as follows: If ak+1 = al then bk+1 = bl. Otherwise, if E(ak+1, al) is true in A,

then Duplicator chooses a new bk+1 such that E(bk+1, bl) and ak+1 is a colored element if and

only if bk+1 is a colored element. By (I3), Duplicator can always select such an element bk+1.

3.4. EQUIVALENCE STRUCTURES WITH COLORS 39

Assume ak+1 is not equivalent to any of the elements a1, ..., ak. Let X be the equivalence

class of ak+1 in A. If ak+1 is a colored element, then Duplicator chooses a colored element

bk+1 from an equivalence class Y of B such that tp(X) ≡C
n−k

tp(Y). If ak+1 is a non-colored

element, then Duplicator chooses a non-colored bk+1 from an equivalence class Y of B such

that tp(X) ≡N
n−k

tp(Y). Note that such an equivalence class Y must exist in B, as otherwise

either colored or non-colored disparity would occur in Gn−k(A′,B′) as witnessed by tp(X)

and 0. The case when Spoiler selects an element from B is treated in a similar manner.

On the play (a1, b1), ..., (ak, bk), (ak+1, bk+1), inductive assumption (I1) and (I2) can be easily

checked to hold. To prove that inductive assumption (I3) holds, let (ik+1, jk+1) and (i′
k+1
, j′

k+1
)

be the type of [ak+1] and [bk+1], respectively. The strategy ensures one of (ik+1, jk+1) ≡C
n−k

(i′
k+1
, j′

k+1
) and (ik+1, jk+1) ≡N

n−k
(i′

k+1
, j′

k+1
) is true, and by Lemma 3.4.2, (ik+1, jk+1) ≡C

n−k−1

(i′
k+1
, j′

k+1
) and (ik+1, jk+1) ≡N

n−k−1
(i′

k+1
, j′

k+1
).

It remains for us to prove that inductive assumption (I4) is preserved. Consider the

structureA′′ and B′′ obtained by removing [a1], ..., [ak+1] fromA and [b1], ..., [bk+1] from B,

respectively. Suppose a colored disparity occurs in Gn−k−1(A′′,B′′) as witnessed by some

type (i, j) and t ∈ {0, . . . , n − k − 2}. There are two cases. If (i, j) ≡C
n−k−t−1

(ik+1, jk+1), then

by Lemma 3.4.2, (i, j) ≡C
n−k−t−1

(i′
k+1
, j′

k+1
), and a colored disparity occurs in Gn−k(A′,B′) as

witnessed by (i, j) and t + 1; If (i, j) .C
n−k−t−1

(ik+1, jk+1), then by Lemma 3.4.2, (i, j) .C
n−k−t−1

(i′
k+1
, j′

k+1
), and a colored disparity occurs in Gn−k(A′,B′) as witnessed by (i, j) and t, contra-

dicting our assumption. The case when a non-colored disparity occurs in Gn−k−1(A′′,B′′)

is treated in a similar way.

Hence the strategy is a winning strategy for Duplicator by inductive assumptions (1)

and (2). The lemma is proved.

Theorem 3.4.5 Fix n ∈ N. There exists an algorithm that runs in constant time and decides

whether Duplicator wins game Gn(A,B) on finite equivalence structures with one colorA and B.

The constant that bounds the running time is n3.

Proof. This result follows from the lemmas above. We present colored equivalence struc-

tures A in three lists. The first one lists equivalence classes of A in increasing order of

their types; the second and the third one list the sequence {qA,C
(i, j),k
}0≤i, j,k≤n and {qA,N

(i, j),k
}0≤i, j,k≤n

respectively. The algorithm checks whether a colored or a non-colored disparity occurs by

reading the second and third list. If the algorithm detects a disparity then Spoiler wins,

otherwise, Duplicator wins. The running time for the process is bounded by n3.

Fix s > 1, letA be an equivalence structure with s colors. For each element x ofA, define the

characteristic of x, ch(x), as a binary sequence t1t2...ts ∈ {0, 1}s such that for each i ∈ {1, . . . , s},

ti = 1 if x ∈ Pi and ti = 0 otherwise. There are 2s pairwise distinct characteristics, and we

order them in lexicographic order: c1, ..., c2s . Construct the structureA′ = (A; E,Q1, ...,Q2s)

such that for all 1 ≤ i ≤ 2s, Qi = {x ∈ A | ch(x) = ci}.

40 Chapter 3. The Complexity of Ehrenfeucht-Fraı̈sseé Games

The following is an easy lemma:

Lemma 3.4.6 LetA = (A; E,P1, ...,Ps) be an equivalence structure with s unary predicates.

1. For any two distinct characteristics ci and c j, we have Qi ∩Q j = ∅.

2. A and B are isomorphic if and only ifA′ and B′ are isomorphic.

For an equivalence class X, we define the type of X, tp(X), as a tuple (i1, i2, ..., i2s) ∈ N2s

such that in X, the number of elements with characteristic c j is i j for all 1 ≤ j ≤ 2s; thus∑2s

j=1 i j = |X|.

Definition 3.4.7 Let κ = (i1, ..., i2s) and λ = (i′
1
, ..., i′

2s) be two types of equivalence classes. For

1 ≤ j ≤ 2s, we say that κ is (j, n)-equivalent to λ, denoted by κ ≡
j
n λ, if the following holds.

1. If i j < n then i′
j
= i j, otherwise i′

j
≥ n; and

2. For all 1 ≤ ℓ ≤ 2s where ℓ , j, if iℓ < n − 1 then i′ℓ = iℓ, otherwise i′ℓ ≥ n − 1.

Let X and Y be equivalence classes of types κ and λ respectively. If κ ≡
j
n λ, then

Duplicator wins the n-round EF game played on structures (X; E ↾ X,P1 ↾ X, ...,Ps ↾ X) and

(Y; E ↾ Y,P1 ↾ Y, ...,Ps ↾ Y), given that Spoiler selects an element x ∈ X with characteristic

c j.

Similar to the case of equivalence structures with one color, we introduce the following

notions:

– For type λ, 1 ≤ j ≤ 2s and k ≥ 1, we set C
A, j
λ,k

as the set

{X | X is an equivalence class ofA and tp(X) ≡
j

k
λ}.

– For type λ, 1 ≤ j ≤ 2s and k ≥ 1, set

q
A, j
λ,k
= |C

A, j
λ,k
|

– ForA and B, set

q
j

λ,k
= min{q

A, j
λ,k
, q
B, j
λ,k
}

– SetA j(λ, k) as the structure obtained fromA by removing q
j

λ,k
equivalence classes in

C
A, j
λ,k

.

Definition 3.4.8 Consider game Gn(A,B) played on equivalence structures with s colors. For

1 ≤ j ≤ 2s, we say that a disparity occurs with respect to c j if there exists a type λ = (i1, ..., i2s)

and n > k ≥ 0 such that the following holds:

3.5. EMBEDDED EQUIVALENCE STRUCTURES 41

1. k = q
j

λ,n−k
;

2. In one of A j(λ, n − k), there is an equivalence class whose type is (j, n − k)-equivalent to λ,

and no such equivalence class exists in the other structure.

Essentially the same proof of Lemma 3.4.4 can be used to prove the following lemma.

Lemma 3.4.9 SupposeA andB are two equivalence structures with s colors. Duplicator wins the

game Gn(A,B) if and only if disparity does not occur with respect to c j for any 1 ≤ j ≤ 2s.

By the lemma above, we can extend Theorem 3.4.5 to the following results.

Theorem 3.4.10 Fix n ∈ ω. There exists an algorithm that runs in constant time and decides

whether Duplicator wins the game Gn(A,B) on finite equivalence structures with s colors. The

constant that bounds the running time is n2s+1.

3.5 Embedded equivalence structures

In this section we study embedded equivalence structure of height h; these are structures of the

formA = (A; E1,E2, ...,Eh) such that each Ei where 1 ≤ i ≤ h is an equivalence relation and

Ei ⊆ E j for i < j. Such hierarchical structures may appear as models of university or large

company databases. For example, in a university database there could be the SameFaculty
and SameDepartment relations. The first relation stores all tuples (x, y) such that x and y

belong to the same faculty; similarly, the second relation stores all tuples (u, v) such that u

and v are in the same department. These relations are equivalence relations. Moreover, a

natural connection between these two relations is as sets the relation SameDepartment is

a subset of the relation SameFaculty. In this section, we give a full solution for EF games

played on embedded equivalence structures of height h. We start with the case where h = 2.

The case for h > 2 will be explained later.

Let A = (A; E1,E2) be a finite embedded equivalence structure of height 2. We say

that an E2-equivalence class X has type tp(X) = (q1, . . . , qt) if the largest E1-equivalence

class contained in X has size t and for all 1 ≤ i ≤ t, qi is the number of E1-equivalence

classes of size i contained in X. Thus,
∑t

i=1(qi × i) = |X|. For two types σ = (q1, . . . , qt1
) and

τ = (q′
1
, . . . , q′t2

), we say σ = τ if t1 = t2 and qi = q′
i

for all i ∈ {1, . . . , t1}.

For X ⊆ A, we use (X; E1 ↾ X) to denote the equivalence structure obtained by restricting

E1 on X. Given two E2-equivalence classes X and Y of types σ and τ respectively, we say

that σ is n-equivalent to τ, denoted by σ ≡n τ, if Duplicator wins the n-round game played

on structures (X; E1 ↾ X) and (Y; E1 ↾ Y). Note that if σ ≡n τ, then σ ≡i τ for all i ≤ n.

We need the following notations:

42 Chapter 3. The Complexity of Ehrenfeucht-Fraı̈sseé Games

– For type σ and i ≥ 1, set

CAσ,i = {X | X is an E2-equivalence class ofA ∧ tp(X) ≡i σ}.

– Set qAσ,i = |C
A
σ,i|.

– For finite embedded equivalence structureA and B, set qσ,i = min{qAσ,i, q
B
σ,i}.

– Set A(σ, i) be the embedded equivalence structure of height 2 obtained from A by

removing qσ,i equivalence classes whose types are i-equivalent to σ.

Observe that in round k of game Gn(A,B), if Spoiler selects an element from an E2-

equivalence class X in A, and Duplicator responds by selecting another element from an

E2-equivalence class Y inB such that tp(Y) ≡n−k tp(X), there is no reason for Spoiler to keep

playing inside X because this will guarantee a win for Duplicator. Intuitively, A(σ, n − k)

contains all the E2-equivalence classes for Spoiler to choose elements from after qσ,n−k many

E2-equivalence classes whose types are (n − k)-equivalent to σ have been chosen.

Definition 3.5.1 Consider a game Gn(A,B) played on finite embedded equivalence structures of

height 2. We say that a disparity occurs if there exists a type σ and n > k ≥ 0 such that the

following holds.

1. k = qσ,n−k.

2. In one ofA(σ, n − k) and B(σ, n − k), there is an E2-equivalence class whose type is (n − k)-

equivalent to σ, and no such E2-equivalence class exists in the other structure.

Lemma 3.5.2 Suppose A and B are two finite embedded equivalence structures of height 2. Du-

plicator wins the game Gn(A,B) if and only if no disparity occurs.

Proof. Suppose disparity occurs in game Gn(A,B) as witnessed by σ and k, in A(σ, n − k)

there is an E2-equivalence class whose type is (n − k)-equivalent to σ, and no such E2-

equivalence class exists in B(σ, n − k). We describe a winning strategy for Spoiler as

follows: Spoiler selects k = qσ,n−k pairwise non-E2-equivalent elements a1, . . . , ak inA from

E2-equivalence classes whose types are (n − k)-equivalent to σ. Let b1, . . . , bk be elements

selected by Duplicator in response. For each i ∈ {1, . . . , k}, let [bi]E2 be E2-equivalence class

that bi is in. Note that tp([bi]) ≡n−k σ as otherwise Spoiler would win. Now let X be an

equivalence class inA such that tp(X) ≡n−k σ as stipulated in the lemma. Spoiler selects an

element x ∈ X. Let y be the element selected by Duplicator in response to x and set Y = [y]E2 .

Note that tp(Y) cannot be (n − k)-equivalent to tp(X). By definition of (n − k)-equivalence,

henceforth Spoiler uses a winning strategy inside X and Y and wins game Gn(A,B).

3.5. EMBEDDED EQUIVALENCE STRUCTURES 43

Conversely, suppose no disparity occurs in the game Gn(A,B), we then describe a

strategy for Duplicator. Let us assume that the players have produced a k-round play

(a1, b1), (a2, b2), . . . , (ak, bk). Let σi and τi be the types of ai and bi, respectively with 1 ≤ i ≤ k.

Our inductive assumptions on this k-round play are the following:

1. The map ai → bi is partial isomorphism.

2. For all 1 ≤ i ≤ k, σi ≡n−i τi.

3. LetA′ andB′ be the equivalence structures obtained by removing the E2-equivalence

classes [a1]E2 , . . . , [ak]E2 from A and the equivalence classes [b1]E2 , . . . , [bk]E2 from B,

respectively. We assume in game Gn−k(A′,B′) that no disparity occurs.

Assume that Spoiler selects an element ak+1 ∈ A. Duplicator responds to this move by

choosing bk+1 as follows. If ak+1 = ai then bk+1 = bi. Otherwise, if E1(ai, ak+1) is true in A,

then Duplicator chooses a new bk+1 such that E1(bi, bk+1). If E2(ai, ak+1) is true in A and

there is no j such that E1(a j, ak+1), then Duplicator chooses a new bk+1 such that E2(bi, bk+1)

and there is no j such that E1(b j, bk+1). By (2) of the inductive assumption Duplicator can

always select such an element bk+1 by following its winning strategies.

Assume ak+1 is not equivalent to any of the elements a1, ..., ak. Let X be the E2-equivalence

class in A that contains ak+1. Duplicator selects bk+1 from an E2-equivalence class Y in B

such that tp(X) ≡n−k tp(Y). Duplicator is able to select such an element as otherwise

disparity would occur as witnessed by the type of X and 0.

The case when Spoiler selects an element from B is treated similarly.

Inductive assumption (1) and (2) can be easily checked to hold on the play (a1, b1), . . . ,

(ak, bk), (ak+1, bk+1). To show that assumption (3) is preserved, consider the structures A′′

andB′′ obtained by removing [a1]E2 , . . . , [ak]E2 , [ak+1]E2 and [b1]E2 , . . . , [bk]E2 , [bk+1]E2 fromA

andB, respectively. Suppose disparity occurs in Gn−k−1(A′′,B′′) as witnessed by some type

τ and t < n − k − 1. There are two cases. If tp([ak+1]) ≡n−k−t−1 τ, then tp([bk+1]) ≡n−k−t−1 τ,

and disparity must occur in Gn−k(A′,B′) as witnessed by τ and t+1. If tp([ak+1]) .n−k−t−1 τ,

then tp([bk+1]) .n−k−t−1 τ, and disparity must occur in Gn−k(A′,B′) as witnessed by τ and t,

contradicting our assumption. Hence the strategy is a winning strategy for Duplicator by

inductive assumption (1).

Theorem 3.5.3 Fix n ∈ N. There exists an algorithm that runs in constant time and decides

whether Duplicator wins game Gn(A,B) on finite embedded equivalence structures of height 2. The

constant that bounds the running time is (n + 1)n.

Proof. This result follows from Lemma 3.5.2. We represent structure A = (A; E1,E2) by a

tree and a list. The tree has height 3. The leaves of the tree are all elements in A. Two

44 Chapter 3. The Complexity of Ehrenfeucht-Fraı̈sseé Games

leaves x, y have the same parent if E1(x, y), and x, y have the same ancestor at level 1 if

E2(x, y). Intuitively, we can view the root of tree as A, the internal nodes at level 1 represent

all E2-equivalence classes on A, and the children of each E2-equivalence class X at level 2

are all E1-equivalence classes contained in X. We further require that representations of E2

and E1-equivalence classes are put in left-to-right order according to their cardinalities.

The list is qAσ1,1
, ..., qAσt,1

, qAσ1,2
, ..., qAσ1,2

, ..., qAσ1,n, ..., q
A
σt,n where each σi is a type of E2-equivale-

nce class, and qAσi, j
is as defined above. Each qAσi, j

has a value between 0 and n and if it is

greater than n, we set it to n.

The algorithm checks whether disparity occurs in Gn(A,B) by examining the list. There

can be at most (n + 1)n pairwise non-n-equivalent types. Therefore, checking disparity

requires a time bounded by (n + 1)n+1.

For the case when A and B are two embedded equivalence structures of height h, where

h > 2, we give a similar definition of the type of an Eh-equivalence class. We can then

describe the winning conditions for Spoiler and Duplicator in a similar way.

Let A be an embedded equivalence structure of height h where h > 2. For an Eh-

equivalence class X, we recursively define tp(X), the type of X. Set tp(X) be (qσ1
, . . . , qσt)

that satisfies the following properties.

1. Each σi is the type of an Eh−1-equivalence class.

2. σt is the maximum type in lexicographic order among all types of Eh−1-equivalence

classes contained in X.

3. The list σ1, ..., σt contains all possible types of Eh−1-equivalence classes less or equal

to σt ordered lexicographically.

4. For all 1 ≤ i ≤ t, qσi
is the number of all Eh−1-equivalence classes contained in X whose

type are σi.

Let κ = (qσ1
, ..., qσs) and λ = (q′σ1

, ..., q′σt
) be types of two Eh-equivalence classes X and Y,

respectively. We say κ = λ if s = t and qσi
= q′σi

for all i ∈ {1, . . . , s}. We say κ ≡n λ if the

structures (X; E1 ↾ X, . . . ,Eh−1 ↾ X) and (Y; E1 ↾ Y, . . . ,Eh−1 ↾ Y) are n-equivalent.

The following proposition shows that tp(X) are isomorphism invariants of the Eh-

equivalence classes.

Proposition 3.5.4 Let X and Y be two Eh-equivalence classes in a finite embedded equivalence struc-

tureA = (A; E1, ...,Eh). Then tp(X) = tp(Y) if and only if the structures (X; E1 ↾ X, . . . ,Eh−1 ↾ X)

and (Y; E1 ↾ Y, . . . ,Eh−1 ↾ Y) are isomorphic. In particular, the isomorphism problem for embedded

equivalence structure of height h is linear on the size of the structure.

3.6. TREES WITH LEVEL PREDICATES 45

Proof. The first part of the proposition easily follows from the definition of the types. To

prove the second part of the proposition, supposeA andB are two embedded equivalence

structures of height h. We represent them by listing Eh-equivalence classes in a manner

that their types are lexicographically ordered. SupposeA and B are represented by listing

Eh-equivalence classes X1,X2, . . . ,Xk1
and Y1,Y2, . . . ,Yk2

, respectively. Then A and B are

isomorphic if and only if k1 = k2 and for all 1 ≤ i ≤ k1, (Xi; E1 ↾ Xi) � (Yi; E1 ↾ Yi), which is

same as tp(Xi) = tp(Yi).

Similarly to the case of embedded equivalence structures of height 2, we re-introduce the

notions CAσ,i, qAσ,i, qσ,i, A(σ, i) and disparity in game Gn(A,B). The only difference would

be that in the new definition, we refer to the Eh-equivalence classes wherever we refer to

E2-equivalence classes in the original definition. The following lemma can thus be proved

in a similar manner as Lemma 3.5.2.

Lemma 3.5.5 SupposeA and B are two finite embedded equivalence structures of height h where

h ≥ 2. Duplicator wins game Gn(A,B) if and only if no disparity occurs.

A simple calculation reveals that the number of pairwise non-n-equivalent types of Eh-

equivalence classes is at most (n+1)...
(n+1)n

where the tower of (n+1) has height h. Therefore,

by Lemma 3.5.5, we can extend Theorem 3.5.3 to the following result.

Theorem 3.5.6 Fix n ∈ N. There exists an algorithm that runs in constant time and decides

whether Duplicator wins game Gn(A,B) on finite embedded equivalence structures of height h

A = (A; E1, ...,Eh) and B = (B; E1, ...,Eh). The constant that bounds the running time is <

(n + 1)...
(n+1)(n+1)

where the tower of (n + 1) has height h.

3.6 Trees with level predicates

In this section we study EF games played on trees with level predicates; these are structures

of the type T = (T;≤, L0, . . . , Lh), where (T;≤) is a tree of height h, and for 0 ≤ i ≤ h, Li is

a unary predicate such that an element x ∈ T belongs to Li if and only if x has level i. We

fix number h ≥ 2 and restrict ourselves to the class Kh of finite trees with level predicates

of height at most h. Deciding EF games on trees from Kh can be done directly by using

the techniques from the previous section. Instead, we reduce the problem of deciding EF

games on trees with level predicates in Kh to one for embedded equivalence structures of

height h + 1.

We transform trees from the class Kh into the class of embedded equivalence structures

of height h in the following manner. Let T be a tree in Kh. We now define an embedded

equivalence structureA(T) as follows. The domain A ofA(T) is now T∪ {ax | x is a leaf of

46 Chapter 3. The Complexity of Ehrenfeucht-Fraı̈sseé Games

T }. We define the equivalence relation Ei, 1 ≤ i ≤ h, on the domain as follows. The relation

E1 is the minimal equivalence relation that contains {(x, ax) | x is a leaf of T }. Let x1, . . .,

xs be all elements of T at level h − i + 1 where 1 ≤ i < h. Let T1, . . ., Ts be the subtrees of

T whose roots are x1, . . ., xs, respectively. Set Ei be the minimal equivalence relation that

contains Ei−1 ∪ T2
1
∪ . . . ∪ T2

s . It is clear that Ei ⊆ Ei+1 for all 1 ≤ i ≤ h. Thus we have the

embedded equivalence structureA(T) = (A; E1, ...,Eh).

Lemma 3.6.1 For trees T1 and T2 , T1 � T2 if and only if A(T1) � A(T2). In particular,

Duplicator wins game Gn(T1,T2) if and only if Duplicator wins Gn(A(T1),A(T2)).

Proof. SupposeT is a tree in the class Kh. Take an element x ∈ T. By construction ofA(T),

the following statements are true.

– x is a leaf in T if and only if |{y | E1(x, y)}| = 2 inA(T).

– x is the root of T if and only if |{y | Eh(x, y)}| = 1 inA(T).

We define the level of x in A(T) as follows. If x is the root of T , the level of x is

0. Otherwise, if x is an internal node, the level of x in A(T) is the largest ℓ such that

|{y | Eh−ℓ+1(x, y)}| > 1. If x is a leaf, we define the level of x in A(T) to be the largest ℓ + 1

such that there is an internal node y such that Eh−l+1(x, y).

By definition, for all x ∈ T, the level of x in T coincides with the level of x inA(T). For

x, y ∈ T, x ≤ y in T if and only in A(T) x has level s and y has level t such that s ≥ t and

Eh−t+1(x, y). Therefore given two trees from Kh, T1 and T2, and a mapping f : T1 → T2, f is

an isomorphism betweenT1 and T2 if and only if f is an isomorphism betweenA(T1) and

A(T2).

To prove the second part of the lemma, assume that there is a winning strategy for

Spoiler on game Gn(T1,T2). It is easy to see that this strategy is also a winning strategy for

Spoiler on game Gn(A(T1),A(T2)), as otherwise Duplicator would win the game Gn(T1,T2).

Conversely, assume that there is a winning strategy for Duplicator on the n-round

game Gn(T1,T2). We describe a strategy for Duplicator on the game Gn(A(T1),A(T2))

where A(T1) = (A1; E1, ..., Eh) and A(T2) = (A2; E1, ...,Eh). Let us assume that the players

have produced a k-round play (x1, y1), (x2, y2), . . . , (xk, yk). Assume on this k-round play

that the map xi → yi is a partial isomorphism betweenA(T1) andA(T2).

Assume that Spoiler selects an element xk+1 ∈ A1. Duplicator responds to this move by

choosing xk+1 as follows. If xk+1 = xi then yk+1 = yi. Otherwise, if xk+1 ∈ T1, then Duplicator

selects an element yk+1 ∈ T2 according to its winning strategy on Gn(T1,T2). If xk+1 = ax for

some leaf x ∈ T1, then Duplicator responds by selecting yk+1 = ay where y is the leaf in T2

that corresponds to x in Duplicator’s winning strategy in Gn(T1,T2). It is clear that xi → yi

where 1 ≤ i ≤ k + 1 is also a partial isomorphism betweenA(T1) andA(T2). Therefore the

strategy described is a winning strategy for Duplicator on game Gn(A(T1),A(T2)).

3.7. BOOLEAN ALGEBRAS WITH DISTINGUISHED IDEALS 47

Theorem 3.6.2 Fix n ∈ N. There exists an algorithm that runs in constant time and decides

whether Duplicator wins game Gn(T1,T2) on finite trees with level predicates T1 and T2 from the

class Kh. The constant that bounds the running time is < (n+1)...
(n+1)(n+1)

where the tower has height

h.

Proof. To prove the theorem, the trees with level predicates T1 and T2 are represented by

the two embedded equivalence structures of height h A(T1) and A(T2), respectively. By

Lemma 3.6.1, Duplicator wins game Gn(A(T1),A(T2)) if and only if Duplicator wins game

Gn(T1,T2). By Theorem 3.5.6, we have a constant time algorithm that decides the winner

of the EF game Gn(A(T1),A(T2)) in which the constant is bounded by (n+1)...
(n+1)(n+1)

where

the tower has height h.

3.7 Boolean algebras with distinguished ideals

In this section we study EF games played on Boolean algebras with distinguished ideals; these

are structures of the formA = (A;≤, 0, 1, I1, . . . , Is), where (A;≤, 0, 1) forms a Boolean algebra

and each I j is an ideal of the algebra (A;≤, 0, 1). The set of atoms of A, denoted At(A), is

the set {a | ∀y : 0 ≤ y ≤ a → y = 0 ∨ y = a}. Since we restrict ourselves to finite structures,

the Boolean algebra (A;≤, 0, 1) can be identified with the structure (2XA ;⊆, ∅,XA), where

XA = At(A) and 2XA is the collection of all subsets of XA. Moreover, for each ideal I j there

exists a set A j ⊂ At(A) such that I j = 2A j . Hence the original structureA can be identified

with the following structure:

(2XA ;⊆, ∅,XA, 2
A1 , . . . , 2As).

For each element x ∈ At(A), define the characteristic of x, ch(x), as a binary word t1t2...ts ∈

{0, 1}s such that for each i ∈ {1, . . . , s}, ti ∈ {0, 1} and ti = 1 if and only if x ∈ Ai. For each

characteristic ǫ ∈ {0, 1}s consider the set Aǫ = {x ∈ At(A) | ch(x) = ǫ)}. This defines the ideal

Iǫ in the Boolean algebra (2XA ;⊆, ∅,XA). Moreover, we can also identify this ideal with the

Boolean algebra (2Aǫ ;⊆, ∅,Aǫ). There are 2s pairwise distinct characteristics. Let ǫ1, . . ., ǫ2s

be the list of all characters. We denote byA′ the following structure:

(2X;⊆, ∅,X, 2Aǫ1 , . . . , 2Aǫ2s).

The following is an easy lemma:

Lemma 3.7.1 LetA = (2XA ;⊆, ∅,XA, 2A1 , . . . , 2As) be a Boolean algebra with distinguished ideals.

1. For any two distinct characteristics ǫ and δ we have Iǫ ∩ Iδ = {∅}.

2. For any element a ∈ 2XA there are elements aǫi
∈ Iǫi

for i ∈ {1, . . . , 2s} such that a = ∪1≤i≤2s aǫi
.

48 Chapter 3. The Complexity of Ehrenfeucht-Fraı̈sseé Games

3. The Boolean algebra (2XA ;⊆, ∅,XA) is isomorphic to the Cartesian product of the Boolean

algebras Iǫi
, 1 ≤ i ≤ 2s.

4. A and B are isomorphic if and only ifA′ and B′ are isomorphic.

The next lemma connects the structureA′ andA in terms of characterizing the winner

of the game Gn(A,B).

Lemma 3.7.2 Duplicator wins the game Gn+1(A,B) if and only if each of the following two

conditions are true:

1. For each characteristic ǫ, |Aǫ| ≥ 2n if and only if |Bǫ| ≥ 2n.

2. For each characteristic ǫ, if |Aǫ| < 2n then |Aǫ| = |Bǫ|.

Proof. Assume that for some ǫ, we have |Aǫ| , |Bǫ| and |Bǫ| < 2n. Let us assume that

|Aǫ| ≥ 2n. The case when |Aǫ| < 2n is treated in a similar manner. We describe a winning

strategy for Spoiler. Spoiler starts by taking elements a1, a2, . . . in Aǫ. For each i ≤ n the

element ai is such that |At(ai)| ≥ 2n−i where At(a) denotes the set of atoms below a. The

elements a1, a2, . . . are such that for each i, either ai ⊂ ai−1 or ai ∩ ai−1 = ∅. Consider the k

round play (a1, b1), . . . , (ak, bk) where k < n. Let e < k be the last round for which ak ⊂ ae. If

no such e exists, let ae = 2Aǫ and be = 2Bǫ . We have the following inductive assumptions.

– |At(ak)| ≥ 2n−k and |At(ae \ (ae+1 ∪ . . . ∪ ak))| ≥ 2n−k.

– Either |At(bk)| < 2n−k or |At(be \ (be+1 ∪ . . . ∪ bk))| < 2n−k.

There are two cases.

Case 1. Assume that |At(bk)| < 2n−k and |At(ak)| ≥ 2n−k. In this case, Spoiler selects

ak+1 such that ak+1 ⊂ ak, ak+1 , ∅, |At(ak+1)| ≥ 2n−k−1, and |At(ak \ ak+1)| ≥ 2n−k−1. Note

that Duplicator must choose bk+1 strictly below bk. Then either |At(bk+1)| < 2n−k−1 or

|At(bk \ bk+1)| < 2n−k−1

Case 2. Assume that |At(bk)| ≥ 2n−k and |At(ak)| ≥ 2n−k. In this case, Spoiler selects

ak+1 such that ak+1 ⊂ ae, ak+1 , ∅, ak+1 ∩ (ae+1 ∪ . . . ∪ ak) = ∅, |At(ak+1)| ≥ 2n−k−1, and

|At(ae \ (ae+1 ∪ . . . ∪ ak+1))| ≥ 2n−k−1. Note that by definition of e, |At(be)| < 2n−k and

for each e + 1 ≤ i ≤ k − 1, |At(bi)| ≥ 2n−i as otherwise bk would be below bi. Hence

|At(bk \ (be+1 ∪ . . . ∪ bk))| < 2n−k. Duplicator must choose bk+1 strictly below be and disjoint

with be+1, . . . , bk. Therefore, either |At(bk+1)| < 2n−k−1 or |At(be)\At(be+1∪ . . .∪bk+1)| < 2n−k−1.

After n rounds, by the inductive assumption, it is either |At(bn)| = 0 or |At(be \ (be+1 ∪

. . .∪ bn))| = 0. If the former, then Spoiler wins by selecting an+1 ⊂ At(an);otherwise, Spoiler

wins by selecting an+1 ⊂ ae \ (ae+1 ∪ . . . ∪ an).

We now prove that the conditions stated in the lemma suffice Duplicator to win the

(n + 1)-round game Gn+1(A,B). Let us assume that the players have produced a k-round

3.7. BOOLEAN ALGEBRAS WITH DISTINGUISHED IDEALS 49

play (a1, b1), (a2, b2), ..., (ak, bk). Our inductive assumptions on this k-round play are the

following:

1. The map ai → bi is a partial isomorphism.

2. For each ai, i ∈ {1, . . . , k}, let ai = ∪ǫaǫ be as stipulated in Lemma 3.7.1(2). For each

aǫ, let e be the last round such that aǫ ⊆ ae; if there is no such round, then assume

ae = At(Iǫ). Let d be the last round such that ad ⊆ aǫ; if there is no such round, then

assume ad = ∅. Let bi = ∪ǫbǫ. The conditions for bǫ are the following:

– |At(aǫ \ ad)| ≥ 2n−i if and only if |At(bǫ \ ad)| ≥ 2n−i; |At(ae \ aǫ)| ≥ 2n−i if and only

if |At(be \ bǫ)| ≥ 2n−i.

– If |At(aǫ \ ad)| < 2n−i then |At(bǫ \ ad)| = |At(aǫ \ ad)|; If |At(ae \ aǫ)| < 2n−i then

|At(be \ bǫ)| = |At(ae \ aǫ)|.

Assume that Spoiler selects an element ak+1 ∈ A. Duplicator responds to this move

by choosing bk+1 as follows. If ak+1 = ai then bk+1 = bi. Otherwise, suppose ak+1 = ∪aǫ
as stipulated in Lemma 3.7.1(2). For each aǫ, let d, e be as described in the inductive

assumptions. We select each bǫ by the following rules.

– If |At(aǫ\ad)| ≥ 2n−k−1 then select bǫ such that |At(bǫ\ad)| ≥ 2n−k−1; If |At(ae\aǫ)| ≥ 2n−k−1

then |At(be \ bǫ)| ≥ 2n−k−1.

– If |At(aǫ \ad)| < 2n−k−1 then select bǫ such that |At(bǫ \ad)| = |At(aǫ \ad)|; If |At(ae \aǫ)| <

2n−k−1 then |At(be \ bǫ)| = |At(ae \ aǫ)|.

Finally, Duplicator selects bk+1 ∈ B such that bk+1 = ∪ǫbǫ.

Note the inductive assumptions guarantee that Duplicator is able to make such a

move. It is clear that the inductive assumptions also hold on the (k + 1)-round play

(a1, b1), . . . , (ak+1, bk+1). Hence the strategy described must be a winning strategy due to

the fact that Duplicator preserves inductive assumption (1) at each round. The lemma is

proved.

Theorem 3.7.3 Fix n ∈ N. There exists an algorithm that runs in constant time and de-

cides whether Duplicator wins the game Gn+1(A,B) on finite Boolean algebras A = (2XA ;⊆

, ∅,XA, 2A1 , . . . , 2As) and B = (2XB ;⊆, ∅,XB, 2B1 , . . . , 2Bs). The constant that bounds the running

time is 2s · 2n.

Proof. In order to prove the theorem, we represent the Boolean algebras by listing their

atoms in 2s lists. The ith list lists all atoms with characteristic ǫi. To solve game Gn+1(A,B),

the algorithm checks the condition in the lemma above by reading the lists. In each list, it

reads at most 2n elements. Therefore the process requires time bounded by 2s · 2n.

50 Chapter 3. The Complexity of Ehrenfeucht-Fraı̈sseé Games

Chapter 4

The Complexity of Unary Automatic

Structures

This chapter focuses on the class of unary automatic structures, i.e., structures presented

by finite automata over the unary alphabet {1}. This class of structures closely resembles

finite structures and enjoys some nice algorithmic and logical properties over automatic

structures in general. In this chapter, we will study the computational complexity in

solving some natural decision problems on these structures. The structures we study are

in the signature {R} where R is binary relation, i.e., graphs. In particular, we focus on the

following classes: graphs of finite degree, equivalence structures, linear orders and trees.

For graphs of finite degree, we provide algorithms of deciding 1) whether there exists

an infinite component 2) whether a node belongs to an infinite component 3) whether a

node is reachable from another node 4) whether the graph is connected and 5) whether

two graphs are isomorphic. The first four algorithms run in polynomial time and are

uniform in the automatic presentation of the input graphs, while the fifth algorithm has

an elementary time upperbound. For equivalence structures, linear orders and trees, we

study the complexity of deciding the membership problem and the isomorphism problem.

We also address their state complexities that indicate the sizes of the smallest automata

that represent these structures.

4.1 Unary automatic structures

4.1.1 MSO-decidability

The theory of automatic structures can be viewed as an extension of finite model theory

in which one studies the interaction between logical definability and computational com-

plexity. In a similar way to the use of finite model theory in reasoning about databases,

51

52 Chapter4. The Complexity of Unary Automatic Structures

automatic structures have been applied to areas where one is interested in the algorith-

mic properties of infinite structures such as databases and computer-aided verifications

[118, 117]. However, this approach has limitations. In particular, since the configuration

graph of a Turing machine is automatic (See Example 2.5.8), reachability is undecidable

for automatic structure in general. On the other hand, unary automatic structures have

decidable monadic second-order theories and hence decidable reachability relation.

Recall that a structure is unary automatic if it is automatic over the alphabet {1}. In this

chapter, we use x to denote the word 1x and thus N is the language 1⋆. By [6], a structure

is unary automatic if and only if it is FO-interpretable in the structure U = (N; 0, <, s, {

mod m}m>1), where s is the successor relation and x mod my if and only if x ≡ y mod m.

Using a monadic second order interpretation ofU in (N; s) and the decidability of S1S[11],

one easily get the following result.

Theorem 4.1.1 The MSO-theory of any unary automatic structure is decidable. Furthermore, from

a given MSO-sentence ϕ in the signature of the structure, one can construct a Büchi automatonM

such that ϕ holds if and only if L(M) , ∅.

The reachability relation on graphs is the transitive closure of the edge relation. Hence,

we say a node y is reachable from another node x, denoted Reach(x, y), if there is a path that

goes from x to y. From the above theorem, it is not hard to see that the relation Reach is

decidable for unary automatic graphs.

The restriction to a unary alphabet is a natural special case of automatic structures

because any automatic structure has an isomorphic copy over the binary alphabet (See

Prop. 2.5.3). Moreover, even for an intermediate class of automatic structures, e.g., those

structures whose domain are encoded as finite strings over 1⋆2⋆, reachability is still not

decidable as infinite grid can be coded automatically over 1⋆2⋆ and counter machines can

be coded into the grid. Thus, the class of unary automatic structures is a sensible context

where reachability is decidable.

4.1.2 A characterization theorem

We re-state Example 2.4.1 as the following lemma.

Lemma 4.1.2 A set L ⊆ N is unary automatic if and only if there are numbers t, ℓ ∈ N such that

L = L1 ∪ L2 with L1 ⊆ {0, 1, . . . , t − 1} and L2 is a finite union of sets in the form { j + iℓ}i∈N where

t ≤ j < t + ℓ.

We will use the numbers t, ℓ associated with a unary automatic edge relation as parameters

in complexity-analysis for classes of unary automatic structures.

Figure 4.1 gives the general shape of a 2-tape unary automaton. We first fix some

terminologies. States reachable from the initial state by reading inputs from (1, 1)⋆ are

4.1. UNARY AUTOMATIC STRUCTURES 53

called (1, 1)-states. The set of (1, 1)-states is a disjoint union of a tail and a loop. We label the

(1, 1)-states as q0, . . . , qt, . . . , qℓ where q0, . . . , qt−1 form the (1, 1)-tail and there is a transition

from qℓ to qt to close the (1, 1)-loop. States reachable from a (1, 1)-state by reading inputs

from (1, ⋄)⋆ are called (1, ⋄)-states. The set of (1, ⋄)-states reachable from any given qi consists

of a tail and a loop, called the (1, ⋄)-tail and loop from qi, respectively. The (⋄, 1)-tails and

loops are defined similarly. The tail length of the automaton is t, the length of its (1, 1)-tail;

the loop length is ℓ, the length of its (1, 1)-loop.

(1, 1)-tail

(1,⋄)-loop

(1,⋄)-tail

(1, 1)-loop

(⋄, 1)-tail

(⋄, 1)-loop

Figure 4.1: General shape of a deterministic 2-tape unary automaton

Khoussainov/Rubin [74] and Blumensath [6] gave a characterization of all unary auto-

matic binary relations on N. Let F = (VF; EF) and D = (FD; ED) be finite graphs. Let R1,R2

be subsets of VD × VF, and R3,R4 be subsets of VF × VF. Similarly, let L1, L2 be subsets of

VF × VD and L3, L4 be subsets of VF × VF.

Consider the graph D followed by countably infinitely many copies of F, ordered as

F0, F1, F2, Formally, the node set of Fi is VF × {i}, and we write bi = (b, i) for b ∈ VF and

i ∈N, the edge set of Fi is denoted by Ei. We define the infinite graph unwind(F,D, R̄, L̄) as

follows: Its nodes are VD ∪
⋃

i∈N Vi
F

and its edge set contains ED ∪
⋃

i∈N Ei as well as the

following edges, for all a, b ∈ VF, d ∈ VD, and i, j ∈N:

• (d, b0) when (d, b) ∈ R1, and (d, bi+1) when (d, b) ∈ R2,

• (ai, bi+1) when (a, b) ∈ R3, and (ai, bi+2+ j) when (a, b) ∈ R4,

• (b0, d) when (b, d) ∈ L1, and (bi+1, d) when (b, d) ∈ L2,

• (ai+1, bi) when (a, b) ∈ L3, and (ai, bi+2+ j) when (a, b) ∈ L4.

See Figure 4.2 for an example of an unwinded graph.

Theorem 4.1.3 ([6, 74]) A graph is unary automatic if and only if it is isomorphic to the graph

unwind(F,D, R̄, L̄) for some parameters F,D, R̄, L̄.

54 Chapter4. The Complexity of Unary Automatic Structures

D

F . . .

R1

R1

R3 R3 R3

R4 R4 R4

(1, 1) (1, 1) (1, 1)
(1, 1)

(1, 1)

(⋄, 1) (⋄, 1)

(⋄, 1)

(⋄, 1) (⋄, 1)

(⋄, 1) (⋄, 1)(⋄, 1) (⋄, 1)

Figure 4.2: An example of unwind(F,D, R̄, L̄) and the synchronous 2-tape automaton for
its edge relation. If we label VF = {a, b} and VD = {0, 1, 2} then ED = {(0, 1)}, EF = ∅,
R1 = {(1, a), (2, b)}, R2 = ∅, R3 = {(2, b)}, R4 = {(2, b)} and L1 = L2 = L3 = L4 = ∅.

4.1.3 Decision problems on unary automatic structures

We investigate from an algorithmic and complexity-theoretical point of view the following

problems on unary automatic graphs:

• Connectivity problem: Given an automatic graph G, decide whether G is connected.

• Reachability problem: Given an automatic graphG and two nodes x and y of the graph,

decide whether there is a path from x to y.

• Infinity testing problem: Given an automatic graphG and a node x, decide whether the

component of G containing x is infinite.

• Infinite component problem: Given an automatic graph G, decide whether G has an

infinite component.

For the class of automatic graphs in general, all of the above problems are undecidable.

In fact, one can provide exact bounds on their undecidability: The connectivity problem is

Π0
2
-complete; the reachability problem is Σ0

1
-complete; the infinite component problem is

Σ0
3
-complete; and the infinity testing problem is Π0

2
-complete [102].

On the other hand, by Theorem 4.1.1 it is not hard to prove that all the problems above

are decidable for unary automatic graphs. The focus here is thus put on the computational

complexity for deciding these problems. Direct constructions using the MSO-definability

yield algorithms with exponential or super-exponential time bounds since one needs to

transform MSO-formulas into automata. The question then is whether we can answer the

above questions more efficiently than the direct constructions.

Furthermore, we explore algorithms for deciding the following problems:

• Membership problem: For a fixed class K of structure, decide whether a given unary

automatic structure belongs to K.

• Isomorphism problem: Decide whether two given automatic structures are isomorphic.

4.1. UNARY AUTOMATIC STRUCTURES 55

Alternatively, the membership problem can be stated as follows: Fix a theory T, decide

if a given unary automatic structure is a model of T. If T is finitely-axiomatizable, then

by Theorem 2.5.11 the problem is clearly decidable. In this case, the focus is put on the

computational complexity for deciding this problem.

4.1.4 State complexity of unary automatic structures

The notion of state complexity measures the descriptive complexity of regular languages,

context-free grammars, and other classes of languages with finite representations. The

state complexity (with respect to automata) of a regular language L is defined to be the size

of the smallest automaton with language L. Research into state complexity with respect to

automata has been well-established since the 1950s [104, 119, 120]. A key motivation for it

is in designing automata for real-time computation where the running time of algorithms

depends on the number of states of the automata. In the following definitions, we generalize

the notion of state complexity to (unary) automatic structures.

Definition 4.1.4 The state complexity of an (unary) automatic structure A is the size of the

smallest (unary) automaton M such thatM recognizes an automatic copy of A. We call M the

optimal (unary) automaton forA.

Definition 4.1.5 Let K be a class of (unary) automatic structures such that each member A of K

has a finite representation RA which is independent on the automatic presentation, i.e., for B ∈ K,

A � B if and only if RA = RB. Let |RA| denote the size of RA. The (unary) state complexity of

the class K is a function f such that f (n) is the largest (unary) state complexity of allA ∈ K with

|RA| ≤ n.

When measuring the state complexity, we make the following assumptions:

1. Without explicitly mention, all automata are deterministic. Hence, the state complex-

ity that we study here are actually deterministic state complexity.

2. All structures are infinite with domain N. Lemma 4.1.6 justifies this assumption.

Hence, in this chapter, we assume that an automatic presentation of a structure (N; R)

consists of only the single automaton recognizing R. By an ”automaton” recognizing

a structure (N; R), we mean the automaton for R.

3. We assume the sets of (1, 1)-, (⋄, 1)-, and (1, ⋄)- states are pairwise disjoint. Therefore

no (1, 1)-state is also a (⋄, 1)-state etc.

Lemma 4.1.6 Let (D; R), D ⊂ N, be a unary automatic binary relation presented byAD andAR.

There is a deterministic 2-tape unary automatonAR′ , |AR′ | ≤ |AR|, such that (N; L(AR′)) � (D; R).

56 Chapter4. The Complexity of Unary Automatic Structures

Proof. Let t and ℓ be as described in Lemma 4.1.2. We outline the proof in the case when

the parameter t associated with L1 is 0. Let k1, k2, . . . , kr list all numbers j ∈ {0, . . . , ℓ − 1}

such that { j + iℓ}i∈N ⊆ L2 (where L2 is as defined in Lemma 4.1.2).

Since the binary relation R is defined on the domain D, AR must satisfy the following

requirements: the (1, 1)-tail has length c′ℓ for some constant c′; the (1, 1)-loop has length

cℓ for some constant c; the lengths of all loops and tails containing accepting states are

multiples of ℓ; and, there are no accepting states on any tail or loops off any (1, 1)-states of

the form qh where h < J. The isomorphism between D andNwill be given by iℓ+k j 7→ ir+ j.

Therefore, define AR′ to have a (1, 1)-tail of length c′r, a (1, 1)-loop of length cr, and copy

the information from the state iℓ + k j inAR to state i · r+ j inAR′ (modifying the lengths of

(⋄, 1)- and (1, ⋄)-tails and loops appropriately). Then, (N; L(AR′)) � (D; R) and since r ≤ ℓ,

AR′ has no more states thanAR.

4.2 Unary automatic graphs of finite degree

4.2.1 Characterizations of unary automatic graphs of finite degree

This section studies the algorithmic properties of unary automatic graphs of finite degree.

We make use of the following canonical form for 2-tape unary automata:

Definition 4.2.1 A one-loop automaton is an automaton whose transition diagram contains

exactly one loop, the (1, 1)-loop, and the lengths of all the tails and loops of the automata equals some

number p, called the loop constant.

Note that one-loop automata are non-deterministic. If A is a standard automaton recog-

nizing a binary relation, it has exactly 2p (1,1)-states. On each of these states, there is a

(1, ⋄)-tail and a (⋄, 1)-tail of length exactly p. Therefore if n is the number of states in A,

then n = 4p2 + 2p. The following is an easy proposition.

Proposition 4.2.2 Let A be an n state unary automaton recognizing a binary relation R on 1⋆.

Then R has finite degree if and only if there exists a one-loop automaton recognizing R with loop

constant p ≤ n.

By the above proposition, we always first convert the input automaton A into an

equivalent one-loop automatonB. In the rest of the paper, we will state all results in terms

of the loop constant p (ofB) instead of n, the number of states of the input automaton. Since

p ≤ n, for any constant c > 0, an O(pc) algorithm can also be viewed as an O(nc) algorithm.

Given two unary automatic graphs of finite degreeG1 = (V; E1) andG2 = (V; E2) (where

we recall the convention that the domain of each graph is 1⋆), we can form the union graph

G1⊕G2 = (V; E1∪E2) and the intersection graph G1⊗G2 = (V; E1∩E2). Automatic graphs of

4.2. UNARY AUTOMATIC GRAPHS OF FINITE DEGREE 57

finite degree are closed under these operations. Indeed, for i ∈ {1, 2}, let Ai be a one-loop

automaton recognizing Ei with loop constants pi. The standard construction that builds

automata for the union and intersection operations produces a one-loop automaton whose

loop constant is p1 · p2. We now introduce another operation. Consider the new graph

G′
1
= (V; E′

1
), where the set E′

1
of edges is defined as follows: a pair (1n, 1m) is in E′ if and

only if (1n, 1m) < E and |n −m| ≤ p1. The relation E′
1

is recognized by the same automaton

as E1, but modified so that all (⋄, 1)-states that are final are declared non-final, and all the

(⋄, 1)-states that are non-final are declared final. Thus, we have the following proposition.

Proposition 4.2.3 IfG1 andG2 are automatic graphs of finite degree, then so are G1⊕G2, G1⊗G2

and G′
1
.

We next present an alternative description of the class of unary automatic graphs with

finite degree. A one-counter process(OCP) is a tuple O = (Q,P, {Qp | p ∈ P}, δ0, δ>0) where P

is a countable set of propositions, Q is a finite set of control locations, Qp ⊆ Q for all p ∈ P

with Qp = ∅ for all but finitely many p ∈ P, δ0 ⊆ Q×{0, 1}×Q is a set of zero-transitions, and

δ>0 ⊆ Q× {−1, 0, 1} ×Q is a set of positive-transitions. Recently, verification on one-counter

processes has received increasing interests; see for example [33, 107, 112, 32].

Model checking algorithms over a one-counter process O work on the graph G(O),

which is defined as follows: The set of nodes of G(O) is Q ×N and the edges are

{((a, 0), (b, k)) | (a, k, b) ∈ δ0, k ∈ {0, 1}} ∪ {((a, i), (b, i + k)) | (a, k, b) ∈ δ>, i ∈N, k ∈ {−1, 0, 1}}

The OCPs can be considered as pushdown automata with just one stack symbol, where the

stack serves as a counter. The graph G(O) corresponds to the configuration graph of the

pushdown automaton. By Theorem 4.1.3 it is easy to see that the graph G(O) is a unary

automatic graph with finite degrees. The following is an easy proposition:

Proposition 4.2.4 Let G be a graph with finite degree. The following statements are equivalent:

– G is unary automatic.

– G � unwind(F,D, R̄, L̄) for some F,D, R̄, L̄ where R2 = R4 = L2 = L4 = ∅.

– G � G(O) for some OCP O.

For convenience, in the rest of the section we always assume the unary automatic graphs

are undirected. Therefore, the parameter L is symmetric with R and is hence omitted. The

case when the graphs are directed is treated in a similar manner. In the following we recast

Theorem 4.1.3 for graphs of finite degree. Our analysis will show that, in contrast to the

general case for automatic graphs, the parameters F,D, and R for graphs of finite degree

can be extracted in linear time.

58 Chapter4. The Complexity of Unary Automatic Structures

Definition 4.2.5 (Unfolding Operation) LetD = (VD; ED) andF = (VF ; EF) be finite graphs.

Consider the finite sets ΣD,F consisting of all mappings η : VD → P(VF), and ΣF consisting of

all mappings σ : VF → P(VF). Any infinite sequence α = ησ0σ1 . . . where η ∈ ΣD,F and σi ∈ ΣF

for each i ∈N, defines the infinite graph Gα = (Vα; Eα) as follows:

– Vα = VD ∪ {(v, i) | v ∈ VF , i ∈ ω}.

– Eα = ED ∪ {(d, (v, 0)) | v ∈ η(d)} ∪ {((v, i), (v′, i)) | (v, v′) ∈ EF , i ∈ ω} ∪ {((v, i), (v
′, i+ 1)) |

v′ ∈ σi(v), i ∈ ω}.

Thus Gα is obtained by takingD together with an infinite disjoint union of F such that

edges between D and the first copy of F are put according to the mapping η, and edges

between successive copies of F are put according to σi.

Figure 4.3 illustrates the general shape of a unary automatic graph of finite degree that

is build fromD, F , η, and σω, where σω is the infinite word σσσ · · · .

Figure 4.3: Unary automatic graph of finite degree Gησω

Theorem 4.2.6 A graph of finite degree G = (V; E) possesses a unary automatic presentation if

and only if there exist finite graphs D,F and mappings η : VD → P(VF) and σ : VF → P(VF)

such that G is isomorphic to Gησω .

Proof. Let G = (V; E) be a unary automatic graph of finite degree. Let A be a one-loop

automaton recognizing E with loop constant p. We construct the finite graphD by setting

VD = {q0, q1, . . . , qp−1}, where q0 is the starting state, q0, . . . , qp−1 are all states on the (1, 1)-tail

such that qi is reached from qi−1 by reading (1, 1) for i > 0; and for 0 ≤ i ≤ j < p, (qi, q j) ∈ ED
iff there is a final state q f on the (⋄, 1)-tail out of qi, and the distance from qi to q f is j − i.

We construct the graph F similarly by setting VF = {q
′
0
, . . . , q′

p−1
} where q′

0
, . . . , q′

p−1
are

all states on the (1, 1)-loop. The edge relation EF is defined in a similar way as ED. The

mapping η : VD → P(VF) is defined for any m, n ∈ {0, . . . , p − 1} by putting q′n in η(qm) if

and only if there exists a final state q f on the (⋄, 1)-tail out of qm, and the distance from qm

to q f equals p + n − m. The mapping σ is constructed in a similar manner by reading the

4.2. UNARY AUTOMATIC GRAPHS OF FINITE DEGREE 59

(⋄, 1)-tails out of the (1, 1)-loop. It is clear from this construction that the graphsG and Gησω

are isomorphic.

Conversely, consider the graph Gησω for some η ∈ ΣD and σ ∈ ΣF . Assume that

VD = {q0, . . . , qℓ−1}, VF = {q
′
0
, . . . , q′

p−1
}. A one-loop automaton A recognizing the edge

relation of Gησω is constructed as follows. The (1, 1)-tail of the automaton is formed by

{q0, . . . , qℓ−1} and the (1, 1)-loop is formed by {q′
0
, . . . , q′

p−1
}, both in natural order. The initial

state is q0. If for some i < j, {qi, q j} ∈ ED , then put a final state q f on the (⋄, 1)-tail starting

from qi such that the distance from qi to q f is j − i. If q′
j
∈ η(qi), then repeat the process but

make the corresponding distance p + j − i. The set of edges EF and mapping σ are treated

in a similar manner by putting final states on the (⋄, 1)-tails from the (1, 1)-loop.

Again, we see thatA represents a unary automatic graph that is isomorphic to Gησω .

The proof of the above theorem also gives us the following corollary.

Corollary 4.2.7 IfG is a unary automatic graph of finite degree, the parametersD, F , σ and η can

be extracted in O(p2) time, where p is the loop constant of the one-loop automaton representing the

graph. Furthermore, |VF | = |VD| = p.

4.2.2 Deciding the infinite component problem

Recall the graphs are undirected and a component of G is the transitive closure of a node

under the edge relation. The infinite component problem asks whether a given graph G has

an infinite component.

Theorem 4.2.8 The infinite component problem for unary automatic graph of finite degree G is

solved in O(n3), where p is the loop constant of the one-loop automaton recognizing G.

By Theorem 4.2.6, let G = Gησω . We observe that it is sufficient to consider the case in

which D = ∅ (hence G = Gσω) since Gησω has an infinite component if and only if Gσω has

one.

Let F i be the ith copy of F in G. Let xi be the copy of node x in F i. We construct

a finite directed graph F σ = (Vσ,Eσ) as follows. Each node in Vσ represents a distinct

connected component in F . For simplicity, we assume that |Vσ| = |VF | and hence use x to

denote its own component in F . The case in which |Vσ| < |VF | can be treated in a similar

way. For x, y ∈ VF , put (x, y) ∈ Eσ if and only if y′ ∈ σ(x′) for some x′ and y′ that are in

the same component as x and y, respectively. Constructing F σ requires finding connected

components of F hence takes time O(p2). To prove the above theorem, we make essential

use of the following definition. See also [49].

60 Chapter4. The Complexity of Unary Automatic Structures

Definition 4.2.9 An oriented walk in a directed graph G is a subgraph P of G that consists of a

sequence of nodes v0, ..., vk such that for i ∈ {1, . . . , k}, either (vi−1, vi) or (vi, vi−1) is an edge in G,

and for each i ∈ {0, . . . , k}, exactly one of (vi−1, vi) and (vi, vi−1) belongs to P. An oriented walk is

an oriented cycle if v0 = vk and there are no repeated nodes in v1, ..., vk.

In an oriented walk P, an edge (vi, vi+1) is called a forward edge and (vi+1, vi) is called a

backward edge. The net length of P is the difference between the number of forward edges

and backward edges. Note the net length can be negative. The next lemma establishes a

connection between oriented cycles in F σ and infinite components in G.

Lemma 4.2.10 There is an infinite component in G if and only if there is an oriented cycle in F σ

such that the net length of the cycle is positive.

Proof. Suppose there is an oriented cycle P from x to x in F σ of net length m > 0. For all

i ≥ p, P defines the path Pi in G from xi to xi+m where Pi lies in F i−p ∪ · · · ∪ F i+p. Therefore,

for a fixed i ≥ p, all vertex in the set {x jm+i | j ∈ ω} belong to the same component of G. In

particular, this implies that G contains an infinite component.

Conversely, suppose there is an infinite component D inG. Since F is finite, there must

be some x in VF such that there are infinitely many copies of x in D. Let xi and x j be two

copies of x in D such that i < j. Consider a path between xi and x j. We can assume that

on this path there is at most one copy of any node y ∈ VF apart from x (otherwise, choose

x j to be the copy of x in the path that has this property). By definition of Gσω and F σ, the

node x must be on an oriented cycle of F σ with net length j − i.

Proof of Theorem 4.2.8 By the equivalence in Lemma 4.2.10, it suffices to provide an al-

gorithm that decides if F σ contains an oriented cycle with positive net length. Notice that

the existence of an oriented cycle with positive net length is equivalent to the existence

of an oriented cycle with negative net length. Therefore, we give an algorithm that finds

oriented cycles with non-zero net length.

For each node x in F σ, we search for an oriented cycle of positive net length from x by

creating a labeled queue of nodes Qx which are connected to x.

An important property of this algorithm is that when we are building a queue for node

x and are processing z, both d(z) and d′(z) represent net lengths of paths from x to z.

We claim that the algorithm returns true if and only if there is an oriented cycle in F σ

with non-zero net length. Suppose the algorithm returns true. Then, there is a base node

x and a node z such that d(z) , d′(z). This means that there is an oriented walk P from x

to z with net length d(z) and there is an oriented walk P′ from x to z with net length d′(z).

Consider the oriented walk P
←−
P′, where

←−
P′ is the oriented walk P′ in reverse direction.

Clearly this is an oriented walk from x to x with net length d(z) − d′(z) , 0. If there are

no repeated nodes in P
←−
P′, then it is the required oriented cycle. Otherwise, let y be a

4.2. UNARY AUTOMATIC GRAPHS OF FINITE DEGREE 61

Algorithm 1 OrientedCycle(F σ).

1: Pick node x ∈ Vσ for which a queue has not been built.
2: Set the queue Qx to empty. d(x)← 0 and put x in Qx.
3: unprocessed(x)← true.
4: while ∃y ∈ Qx : unprocessed(y) do

5: for z ∈ {z | (y, z) ∈ Eσ ∨ (z, y) ∈ Eσ} do

6: if (y, z) ∈ Eσ then d′(z)← d(y) + 1. end if

7: if (z, y) ∈ Eσ then d′(z)← d(y) − 1. end if

8: if z < Qx then

9: d(z)← d′(z), put z into Qx, unprocessed(z)← true end if

10: if z ∈ Qx then

11: if d(z) = d′(z) then continue;
12: if d(z) , d′(z) then return true end if

13: end for

14: unprocessed(y)← false
15: end while

16: return false.

repeated node in P
←−
P′ such that no nodes between the two occurrences of y are repeated.

Consider the oriented walk between these two occurrences of y, if it has a non-zero net

length, then it is our required oriented cycle; otherwise, we disregard the part between the

two occurrences of z and make the oriented walk shorter without altering its net length.

Conversely, suppose there is an oriented cycle P = x0, . . . , xm of non-zero net length

where x0 = xm. However, we assume for a contradiction that the algorithm returns false.

Consider how the algorithm acts when we pick x0 at step (1). For each i ∈ {0, 1, . . . ,m}, one

can prove the following statements by induction on i.

(⋆) xi always gets a label d(xi)

(⋆⋆) d(xi) equals the net length of the oriented walk from x0 to xi in P.

By the description of the algorithm, x0 gets the label d(x0) = 0. Suppose the statements

holds for xi, 0 ≤ i < m, then at the next stage, the algorithm labels all nodes in {z |

(z, xi) ∈ Eσ or (xi, z) ∈ Eσ}. In particular, it calculates d′(xi+1). By the inductive hypothesis,

d′(xi+1) is the net length of the oriented walk from x0 to xi+1 in P. If xi+1 has already

had a label d(xi+1) and d(xi+1) , d′(xi+1), then the algorithm would return true. Therefore

d(xi+1) = d′(xi+1). By assumption on P, d(xm) , 0. However, since x0 = xm, the induction

gives that d(xm) = d(x0) = 0. This is a contradiction, and thus the above algorithm is correct.

In summary, the following algorithm solves the infinite component problem. Suppose

we are given an automaton (with loop constant p) which recognizes the unary automatic

graph of finite degree G. Recall that p is also the cardinality of VF . We first compute F σ,

62 Chapter4. The Complexity of Unary Automatic Structures

in time O(p2). Then we run Algorithm 1 to decide whether F σ contains an oriented cycle

with positive net length. For each node x in F σ, the process runs in time O(p2). Since F σ

contains p number of nodes, this takes time O(p3).

4.2.3 Deciding the infinity testing problem

We next turn our attention to the infinity testing problem for unary automatic graphs of finite

degree. Recall that this problem asks for an algorithm that, given a node v and a graph G,

decides if v belongs to an infinite component. We prove the following theorem.

Theorem 4.2.11 The infinity testing problem for unary automatic graph of finite degreeG is solved

in O(p3), where p is the loop constant of the one-loop automaton A recognizing G. In particular,

whenA is fixed, there is a constant time algorithm that decides the infinity testing problem on G.

For a fixed input xi, we have the following lemma.

Lemma 4.2.12 If xi is connected to some y j such that | j− i| > p, then xi is in an infinite component.

Proof. Suppose such a y j exists. Take a path P in G from xi to y j. Since p is the cardinality

of VF , there is z ∈ VF such that zs and zt appear in P with s < t. Therefore all nodes in the

set {zs+(t−s)m | m ∈ ω} are in the same component as xi.

Let i′ = min{p, i}. To decide whether xi and y j are in the same component, we run a

breadth first search inG starting from xi and going through all nodes in F i−i′ , . . . ,F i+p. See

Algorithm 2 as follows:

Algorithm 2 FiniteReach(G, xi).

1: i′ ← min{p, i}.
2: Set the queue Q to be empty.
3: Put (x, 0) into Q; unprocessed(x, 0)← true.
4: while ∃(y, d) ∈ Q: unprocessed(y, d) do

5: for z ∈ {z | (y, z) ∈ Eσ ∨ (z, y) ∈ Eσ} do
6: if (y, z) ∈ Eσ then d′ ← d + 1 end if

7: if (z, y) ∈ Eσ then d′ ← d − 1 end if

8: if −i′ ≤ d′ ≤ p and (z, d′) < Q then

9: Put (z, d′) into Q; unprocessed(z, d′)← true. end if

10: end for

11: unprocessed(y, d)← false.
12: end while

Note that any y j is reachable from xi on the graph G restricted on F i−i′ , . . . ,F i+p if and

only if after running the FiniteReach(G, xi), the pair (y, j − i) is in Q. When running the

4.2. UNARY AUTOMATIC GRAPHS OF FINITE DEGREE 63

algorithm we only use the exact value of the input i when i < p (we set i′ = p− 1 whenever

i ≥ p), so the running time of FiniteReach(G, xi) is bounded by the number of edges in G

restricted to F 0, . . . ,F 2p. Therefore the running time is O(p3). Let B = {y | (y, p) ∈ Q}.

Lemma 4.2.13 Let x ∈ VF . xi is in an infinite component if and only if B , ∅.

Proof. Suppose a node y ∈ B, then there is a path from xi to yi+p. By Lemma 4.2.12, xi is

in an infinite component. Conversely, if xi is in an infinite component, then there must be

some nodes in F i+p reachable from xi. Take a path from xi to a node yi+p such that yi+p is

the first node in F i+p appearing on this path. Then y ∈ B.

Proof of Theorem 4.2.11 We assume the input node xi is given by the pair (x, i). The above

lemma suggests a simple algorithm to check whether xi is in an infinite component.

Algorithm 3 InfiniteTest(G, xi).

1: Run FiniteReach(G, xi), computing the set B while building the queue Q.
2: for y ∈ B do

3: if ∃z : (y, z) ∈ Eσ then
4: Return true

5: end for. Return false

Running FiniteReach(G, xi) takes time O(p3) and checking for edge (y, z) takes O(p2).

The running time is therefore O(p3). Since x is bounded by p, ifA is fixed, checking whether

xi belongs to an infinite component takes constant time.

4.2.4 Deciding the reachability problem

The reachability problem is studied in [9, 24, 111] on configuration graphs of pushdown

automata, i.e., pushdown graphs. It is proved that for a pushdown graph G, given a node

v, there is an automaton that recognizes all nodes reachable from v. The number of states in

the automaton depends on the input node v. Since unary automatic graphs is a subclass of

pushdown graphs, this result implies that there is an algorithm that decides the reachability

problem on unary automatic graphs of finite degree. However, there are several issues with

this algorithm. The automata constructed by the algorithm are not uniform in v in the sense

that different automata are built for different input nodes v. Moreover, the automata are

non-deterministic. Hence, the size of the deterministic equivalent automata is exponential

in the size of the representation of v.

In this section, we present an alternative algorithm to solve the reachability problem

on unary automatic graphs of finite degree uniformly. This new algorithm constructs a

deterministic automaton AReach that accepts the relation Reach. Hence, the reachability

relation of any unary automatic graph is also unary automatic. The size of AReach only

64 Chapter4. The Complexity of Unary Automatic Structures

depends on the number of states of the automaton n, and constructing the automaton

requires polynomial time in n. The practical advantage of such a uniform solution is that

when AReach is built, deciding whether node v is reachable from u by a path takes only

linear time. Our goal in this section is to prove the following theorem.

Theorem 4.2.14 There exists an algorithm that solves the reachability problem on any unary

automatic graph G of finite degree in time O(p4 + |u| + |v|) where u, v are two input nodes from the

graph G and p is the loop-constant of the one-loop automaton representing G.

We restrict to the case whenG = Gσω . The proof can be modified slightly to work in the

more general case, G = Gησω .

Since, by Theorem 4.2.11, there is an O(p3)-time algorithm to check whether xi is in a

finite component, we can work on the two possible cases separately. We first deal with the

case when the input xi is in a finite component. By Lemma 4.2.12, xi and y j are in the same

(finite) component if and only if after running FiniteReach(G, xi), the pair (y, j − i) is in the

queue Q.

Corollary 4.2.15 If all components of G are finite and we represent (xi, y j) as (xi, y j, j − i), then

there is an O(p3)-algorithm that decides whether xi and y j are in the same component.

Now, suppose that xi is in an infinite component. We start with the following question:

given y ∈ VF , are xi and yi in the same component in G? To answer this, we present an

algorithm that computes all nodes y ∈ VF whose ith copy lies in the same G-component as

xi. The algorithm is the same as FiniteReach(G, xi), except that it does not depend on the

input xi. Hence in Line 1 of Algorithm 2 we set i′ = p, as opposed to i′ = min{p, i}.

We use this modified algorithm to define the set Reach(x) = {y | (y, 0) ∈ Q}. Intuitively,

we can think of the algorithm as a breadth first search through F 0 ∪ · · · ∪ F 2p which

originates at xp. Therefore, y ∈ Reach(x) if and only if there exists a path from xp to yp in G

restricted to F 0 ∪ · · · ∪ F 2p.

Lemma 4.2.16 Suppose xi is in an infinite component. The node yi is in the same component as xi

if and only if yi is also in an infinite component and y ∈ Reach(x).

Proof. Suppose yi is in an infinite component and y ∈ Reach(x). If i ≥ p, then the

observation above implies that there is a path from xi to yi in F i−p ∪ · · · ∪ F i+p. So, it

remains to prove that xi and yi are in the same component even if i < p.

Since y ∈ Reach(x), there is a path P in G from xp to yp. Let ℓ be the least number such

that F ℓ ∩ P , ∅. If i ≥ p − ℓ, then it is clear that xi and yi are in the same component. Thus,

suppose that i < p − ℓ. Let z be such that zℓ ∈ P. Then P is P1P2 where P1 is a path from

xp to zℓ and P2 is a path from zℓ to yp. Since xi is in an infinite component, it is easy to see

4.2. UNARY AUTOMATIC GRAPHS OF FINITE DEGREE 65

that xp is also in an infinite component. There exists an r > 0 such that all nodes in the set

{xp+rm | m ∈ ω} are in the same component. Likewise, there is an r′ > 0 such that all nodes

in {yp+r′m | m ∈ ω} are in the same component. Consider xp+rr′ and yp+rr′ . Analogous to the

path P1, there is a path P′
1

from xp+rr′ to zℓ+rr′ . Similarly, there is a path P′
2

from zℓ+rr′ to

yp+rr′ . We describe another path P′ from xp to yp as follows. P′ first goes from xp to xp+rr′ ,

then goes along P′
1
P′

2
from xp+rr′ to yp+rr′ and finally goes to yp. Notice that the least ℓ′ such

that Fℓ′ ∩ P′ , ∅ must be larger than ℓ. We can iterate this procedure of lengthening the

path between xp and yp until i < p − ℓ′, as is required to reduce to the previous case.

To prove the implication in the other direction, we assume that xi and yi are in the same

infinite component. Then yi is, of course, in an infinite component. We want to prove that

y ∈ Reach(x). Let i′ = min{p, i}. Suppose there exists a path P in G from xi to yi which stays

in F i−i′ ∪ · · · ∪F i+p. Then, indeed, y ∈ Reach(x). On the other hand, suppose no such path

exists. Since xi and yi are in the same component, there is some path P from xi to yi. Let

ℓ(P) be the largest number such that P ∩ F ℓ(P) , ∅. Let ℓ′(P) be the least number such that

P∩ F ℓ′(P) , ∅. We are in one of two cases: ℓ(P) > i + p or ℓ′(P) < i − p. We will prove that if

ℓ(P) > i + p then there is a path P′ from xi to yi such that ℓ(P′) < ℓ(P) and ℓ′(P′) ≥ i − p. The

case in which ℓ′(P) < i − p can be handled in a similar manner.

Without loss of generality, we assume ℓ′(P) = i since otherwise we can change the input

x and make ℓ′(P) = i. Let z be a node in F such that zℓ(P) ∈ P. Then P is P1P2 where P1 is a

path from xi to zℓ(p) and P2 is a path from zℓ(p) to yi. Since ℓ(P) > i + p, there must be some

s j and s j+k in P1 such that k > 0. For the same reason, there must be some tm and tm+n in P2

such that n > 0. Therefore, P contains paths between any consecutive pair of nodes in the

sequence (xi, s j, sk+ j, zp, tm+n, tm, yi). Consider the following sequence of nodes:

(xi, s j, tm+n−k, tm−k, s j−n, s j+k−n, tm, yi).

It is easy to check that there exists a path between each pair of consecutive nodes in the

sequence. Therefore the above sequence describes a path P′ from xi to yi. It is easy to see

that ℓ(P′) = ℓ(P) − n. Also since ℓ′(P) = i, ℓ′(P′) > i − p. Therefore P′ is our desired path.

In the following, we abuse notation by using Reach and σ on subsets of VF . We inductively

define a sequence Cl0(x),Cl1(x), . . . such that each Clk(x) is a subset of VF . Let Cl0(x) =

Reach(x) and For k > 0, we define Clk(x) = Reach(σ(Clk−1(x))). The following lemma is

immediate from this definition.

Lemma 4.2.17 Suppose xi is in an infinite component, then xi and y j are in the same component

if and only if y j is also in an infinite component and y ∈ Cl j−i(x).

We can use the above lemma to construct a simple-minded algorithm that solves the

reachability problem on inputs xi, y j.

66 Chapter4. The Complexity of Unary Automatic Structures

Algorithm 4 NaiveReach(G, xi, y j).

1: Check whether each of xi, y j are in an infinite component (using Alg. 3).
2: if exactly one of xi and y j is in a finite component then return false. end if

3: if both xi and y j are in finite components then

4: run FiniteReach(G, xi); check whether (y, j − i) ∈ Q
5: end if

6: if both xi and y j are in infinite components then

7: compute Cl j−i(x).
8: if y ∈ Cl j−i(x) then return true

9: else return false. end if
10: end if

We now consider the complexity of this algorithm. The set Cl0(x) can be computed in

time O(p3). Given Clk−1(x), we can compute Clk(x) in time O(p3) by computing Reach(y) for

any y ∈ σ(Clk−1(x)). Therefore, the total running time of NaiveReach(G, xi, y j) is (j − i) · p3.

We want to replace the multiplication with addition and hence tweak the algorithm.

From Lemma 4.2.13, xi is in an infinite component in G if and only if FiniteReach(G, xi)

finds a node yi+p connecting to xi. Now, suppose that xi is in an infinite component. We

can use FiniteReach(G, xi) to find such a y, and a path from xi to yi+p. On this path, there

must be two nodes zi+ j, zi+k with 0 ≤ j < k ≤ p. Let r = k − j. Note that r can be computed

from the algorithm. It is easy to see that all nodes in the set {xi+mr | m ∈ ω} belong to the

same component.

Lemma 4.2.18 Cl0(x) = Clr(x).

Proof. By definition, y ∈ Cl0(x) if and only if xp and yp are in the same component of G.

Suppose that there exists a path in G from xp to yp. Then there is a path from xp+r to yp+r.

Since xp and xp+r are in the same component of G, xp and yp+r are in the same component.

Hence y ∈ Clr(x).

For the reverse inclusion, suppose y ∈ Clr(x). Then there exists a path from xp to yp+r.

Therefore, xp+r and yp+r are in the same component. Since r ≤ p, xp and yp are in the same

component.

Using the above lemma, we define a new algorithm NewReach(G, xi, y j) by replacing the

last if-statement (Line 6-10) in Alg. 4. See below.

6: if xi and y j belong to infinite components then

7: Compute Cl0(x), . . . ,Clr−1(x)

8: if ∃k < r : y ∈ Clk(x) ∧ j − i ≡ k mod r then return true.

4.2. UNARY AUTOMATIC GRAPHS OF FINITE DEGREE 67

9: else return false end if

10: end if

Proof of Theorem 4.2.14. Say input nodes are given as xi and y j. By Lemma 4.2.17 and

Lemma 4.2.18, the NewReach(G, xi, y j) algorithm returns true if and only if xi and y j are

in the same component. Since r ≤ p, calculating Cl0(x), . . . ,Clr−1(x) requires time O(p4).

Therefore the running time of NewReach(G, xi, y j) on input xi, y j is O(i + j + p4).

Notice that, in fact, the algorithm produces a number k < p such that in order to check

whether xi, y j (j > i) are in the same component, we need to test if j − i < p and if j − i = k

mod p. Therefore if G is fixed and we compute Cl0(x), . . . ,Clrx−1(x) for all x beforehand,

then deciding whether two nodes u, v belong to the same component takes linear time. The

above proof can also be used to build an automaton that decides reachability uniformly:

Corollary 4.2.19 Given a unary automatic graph of finite degree G represented by an automaton

with loop constant p, there is a deterministic automaton AReach with at most 2p4 + p3 states that

accepts the reachability relation of G. Furthermore, the time required to constructAReach is O(p5).

Proof. For all 0 ≤ x < p, i ∈ ω, let string 1ip+x represent node xi inG. Suppose ip+x ≤ jp+ y,

we construct an automaton AReach that accepts (1ip+x, 1 jp+y) if and only if xi and y j are in

the same component in G.

1. AReach has a (1, 1)-tail of length p2. Let the states on the tail be q0, q1, . . . , qp2−1, where

q0 is the initial state. These states represent nodes in F 0,F 1, . . . ,F p−1.

2. From qp2−1, there is a (1, 1)-loop of length p. We call the states on the loop q′
0
, q′

1
, . . . , q′

p−1
.

These states represent nodes in F p.

3. For 0 ≤ x, i < p, there is a (⋄, 1)-tail from qip+x of length p2 − x. We denote the states on

this tail by q1
ip+x

, . . . , q
p2−x

ip+x
. These states represent nodes in F i,F i+1, . . . ,F i+p−1.

4. For 0 ≤ x, i ≤ p, if xi is in an infinite component, then there is a (⋄, 1)-loop of length

r×p from q
p2−x

ip+x
. The states on this loop are called q̌1

ip+x
, . . . , q̌

rp

ip+x
. These states represent

nodes in F i+p, . . . ,F i+p+r−1.

5. For 0 ≤ x ≤ p, if xp is in a finite component, then there is a (⋄, 1)-tail from q′x of length

p2. These states are denoted q̂1
x, . . . , q̂

p2

x and represent nodes in Fp, . . . ,F2p−1.

6. If xp is in an infinite component, from q′x, there is a (⋄, 1)-loop of length r×p. We write

these states as q̃1
x, . . . , q̃

rp
x .

68 Chapter4. The Complexity of Unary Automatic Structures

The final (accepting) states ofAReach are defined as follows:

1. States q0, . . . , qp2−1, q
′
0
, . . . , qp−1 are final.

2. For i < p, if xi is in a finite component, run the algorithm FiniteReach(G, xi) and

declare state q
jp+y−x

ip+x
final if (y, j) ∈ Q.

3. For i < p, if xi is in an infinite component, compute Cl0(x), . . . ,Clr−1(x).

(a) Make state q
jp+y−x

ip+x
final if yi+ j is in an infinite component and y ∈ Cl j(x).

(b) Make state q̌
jp+y−x

ip+x
final if y ∈ Cl j(x)

4. If xp is in a finite component, run the algorithm FiniteReach(G, xp) and make state

q̂
jp+y−x
x final if (y, j) ∈ Q.

5. If xp is in an infinite component, compute Cl0(x), . . . ,Clr−1(x). Declare state q̃
jp+y−x
x

final if y ∈ Cl j(x).

One can show that AReach is the desired automaton. To compute the complexity of

buildingAReach, we summarize the computation involved.

1. For all xi in F 0 ∪ · · · ∪ F p, decide whether xi is in a finite component. This takes time

O(p5) by Theorem 4.2.11.

2. For all xi in F 0 ∪ · · · ∪ F p such that xi is in a finite component, run FiniteReach(G, xi).

This takes time O(p5) by Corollary 4.2.15.

3. For all x ∈ VF such that xp is in an infinite component, compute the sets Cl0(x),

. . . ,Clr−1(x). This requires time O(p5) by Theorem 4.2.14.

Therefore the running time required to constructAReach is O(p5).

4.2.5 Deciding the connectivity problem

We now present a solution to the connectivity problem on unary automatic graphs of finite

degree. Recall a graph is connected if there is a path between any pair of nodes. The con-

struction ofAReach from the last section suggests an immediate solution to the connectivity

problem.

The above algorithm takes time O(p5). Note that AReach provides a uniform solution

to the reachability problem on G. Given the “regularity” of the class of infinite graphs we

are studying, it is reasonable to believe there is a more intuitive algorithm that solves the

connectivity problem. It turns out that this is the case.

4.2. UNARY AUTOMATIC GRAPHS OF FINITE DEGREE 69

Algorithm 5 NaiveConnect(G).

1: Construct the automatonAReach.
2: if all states inAReach are final states then return true

3: else return false end if

Theorem 4.2.20 The connectivity problem for unary automatic graph of finite degree G is solved

in O(p3), where p is the loop constant of the automaton recognizing G.

Observe that if G does not contain an infinite component, then G is not connected.

Therefore we suppose G contains an infinite component C.

Lemma 4.2.21 For all i ∈N, there is a node in F i belonging to C.

Proof. Since C is infinite, there is a node xi and s > 0 such that all nodes in {xi+ms | m ∈ ω}

belong to C and i is the least such number. By minimality, i < s. Take a walk along the path

from xi+s to xi. Let ys be the first node in F s that appears on this path. It is easy to see that

y0 must also be in C. Therefore, C has a non-empty intersection with each copy of F in G.

Pick an arbitrary x ∈ VF and run FiniteReach(G, x0) on x0 to compute the queue Q. Set

R = {y ∈ VF | (y, 0) ∈ Q}.

Lemma 4.2.22 Suppose G contains an infinite component, then G is connected if and only if

R = VF .

Proof. Suppose there is a node y ∈ VF \ R. Then there is no path in G between x0 to y0.

Otherwise, we can shorten the path from x0 to y0 using an argument similar to the proof of

Lemma 4.2.16, and show the existence of a path between x0 to y0 in the subgraph restricted

on F 0, . . . ,F p. Therefore G is not connected. Conversely, if R = VF , then every set of the

form {y ∈ VF | (y, i) ∈ Q} for i ≥ 0 equals VF . By Lemma 4.2.21, all nodes are in the same

component.

Proof of Theorem 4.2.20. By the above lemma, the following algorithm decides the con-

nectivity problem on G:

Solving the infinite component problem takes time O(p3) by Theorem 4.2.8. Running

FiniteReach(G, x0) also takes time O(p3). Therefore the Connectivity(G) algorithm takes

time O(p3).

70 Chapter4. The Complexity of Unary Automatic Structures

Algorithm 6 Connectivity(G)

Use the algorithm proposed by Theorem 4.2.8 to decide whether there is an infinite
component in G.
Pick an arbitrary x ∈ VF , run FiniteReach(G, x0) to compute the queue Q.
Let C = {y | (y, 0) ∈ Q}.
if C = VF then return true. else return false. end if

4.2.6 Deciding the isomorphism problem

We next prove the decidability of the isomorphism problem for unary automatic graphs

of finite degree. Instead of the combinatorial approach adopted to solve the other deci-

sion problems above, we decide the isomorphism problem using MSO-decidablity (Theo-

rem 4.1.1).

Theorem 4.2.23 The isomorphism problem for unary automatic graphs of finite degree is decidable

in elementary time.

By Theorem 4.2.6, any infinite component in G has nonempty intersection with almost

all Fi’s. We say a component C starts in Fi if C ∩ Fi , ∅ and for j < i, C ∩ F j = ∅.

Lemma 4.2.24 For any finite graph H , there are infinitely many components in G isomorphic to

H if and only ifH � C for some component C starting in Fp.

Proof. Suppose C � H and C starts in Fp. For each j, {xi+ j | xi ∈ C} is a finite component

isomorphic toH . On the other hand, ifH is isomorphic to infinitely many components in

G, it is isomorphic to some C′ that starts in Fk for k ≥ p. Then {xi+p−k | xi ∈ C′} is the desired

component.

Let GFin be the subgraph of G containing only its finite components. By Theorem 4.2.6 and

Lemma 4.2.24, if C is any finite component of G then either C ∩ F j , ∅ for some j < ℓ or C

has infinitely many isomorphic copies inG. By Lemma 4.2.24, inGFin there are only finitely

many isomorphism classes of finite components of G, and we can decide which of these

classes correspond to infinitely many components in G. Since finite graph isomorphism is

decidable, given two graphs G,G′ we can decide whether GFin � G
′
Fin.

Since G contains only finitely many infinite components, it remains to prove that,

given two infinite components of unary automatic graphs, we can check whether they are

isomorphic. Note that each infinite component of G is recognizable by a unary automaton

using operations on the automaton AReach described in Corollary 4.2.19. Therefore, it

suffices to prove that we can decide whether two infinite connected unary automatic

graphs are isomorphic.

4.2. UNARY AUTOMATIC GRAPHS OF FINITE DEGREE 71

To prove Theorem 4.2.23, we will give an (MSO + ∃∞)-definition of the isomorphism

type of a connected graphG = (N; E) and then use the decidability of the (MSO+∃∞)-theory

of unary automatic structures. We first define auxiliary MSO-formulae.

For a fixed set S and k ∈N, let PartitionS
k (P1, . . . ,Pk) be the formula




k∧

i=1

∃∞x : x ∈ Pi


 ∧


∧

1≤i, j≤k

Pi ∩ P j = ∅


 ∧

S =

k⋃

i=1

Pi




In other words: S is partitioned into k infinite subsets P1, . . . ,Pk.

For a finite graph F = ({v1, . . . , vk}; EF), TypeF (X,Y1, . . . ,Yk) is

∃x1, . . . , xk :

k∧

i=1

(
xi ∈ X ∩ Yi ∧ ∀y : y ∈ X ∩ Yi → xi = y

)
∧

X = {x1, . . . , xk} ∧

k∧

i, j=1

E(xi, x j)↔ EF (vi, v j)

In other words: the set X contains exactly one node xi from each of the sets Yi, 1 ≤ i ≤ k,

and the mapping xi 7→ vi is an isomorphism between the induced graph on X and F . Note

that this formula implies that the graph F has size exactly k.

For a finite graph F of size k and a mapping σ : VF → P(VF), let F×3 be the finite

subgraph of Fσω induced on the first three copies of F and let VF×3
denote its set of nodes.

Label VF×3
by v1, . . . , v3k where {vik+1, . . . , v(i+1)k} belong to the ith copy of F for i ∈ {0, 1, 2}

and for each j ∈ {1, . . . , k}, the nodes v j, vk+ j, v2k+ j all correspond to the same node in F .

Define the formula SuccFσ (X,Y,Z1, . . . ,Z3k) to be

TypeF (X,Z1, . . . ,Z3k) ∧ TypeF (Y,Z1, . . . ,Z3k) ∧ (X ∩ Y = ∅)

∧
∧

(i, j):v j∈σ(vi)

∀x ∈ X ∩ Z2k+i∀y ∈ Z j : E(x, y)

∧
∧

(i, j):v j<σ(vi)

∀x ∈ X ∩ Z2k+i∀y ∈ Z j : ¬E(x, y)

∧
∧

(i, j)<{2k+1,...,3k}×{1,...,k}

∀x ∈ X ∩ Zi∀y ∈ Z j : ¬E(x, y).

In other words: the induced graphs on X and Y form two disjoint copies of F (in the sense

as described for TypeF (X,Y1, . . . ,Yk)) which has size 3k, and these two copies of F are

connected via edges between X ↾ Z2k+1 ∪ . . . ∪ Z3k and Y ↾ Z1 ∪ . . . ∪ Zk that respect the

mapping σ.

We are now ready to prove the theorem.

72 Chapter4. The Complexity of Unary Automatic Structures

Proof of Theorem 4.2.23. VF = {v0, . . . , vk} and recall the definition of F×3 above.

We define ϕG as ∃P1 · · · ∃P3k : ψG(P1, . . . ,P3k), where ψG(Z) is the conjunction of the

following formulas:

1. PartitionN3k(Z)

2. ∀x∃X : x ∈ X ∧ TypeF×3(X,Z)

3. ∀X : TypeF×3(X,Z)→ ∃=1Y : SuccFσ (X,Y,Z)

4. ∃X : TypeF×3(X,Z) ∧ ∀Y : (TypeF×3(Y,Z) ∧X ∩ Y = ∅)

→ [¬SuccFσ (X,Y,Z) ∧ ∃=1W : SuccFσ (W,Y,Z)]]]

Claim. IfH is an infinite connected graph,H |= ϕG if and only ifH � G.

Proof of claim. IfH � G then clearly H |= ϕG. On the other hand, supposeH |= ϕG. Then

H can be partitioned into 3k sets P1, . . . ,P3k. Take a subgraphM of 3k nodes inH . We say

thatM is a F×3-type ifM intersects with each Pi at exactly one node, and if we let vi be the

unique node inM∩Pi, then the three sets of nodes {v1, . . . , vk}, {vk+1, . . . , v2k}, {v2k+1, . . . , v3k}

respectively form three copies of F , with vi, vk+i, v2k+i corresponding to the same node in

F . Also, the edge relation between these three copies of F respects the mapping σ.

Since H |= ϕG, each node v in H belongs a unique subgraph that is a F×3-type; and,

for each F×3-typeM, there is a unique F×3-type N that is a successor ofM, i.e., all edges

between M and N are from the last copy of F in M to the first copy of F in N such

that they respect the mapping σ. Lastly there exists a unique F×3-type M0 which is not

the successor of any other F×3-types and any other F×3-type is the successor of a unique

F×3-type. Note that the successor relation between the F×3-types resembles the unfolding

operation on finite graphs.

Therefore, to set up an isomorphism fromH toG, we only need to mapM0 isomorphi-

cally to the first 3 copies ofF inG, and then map the other nodes according to the successor

relation and mapping σ.

By Theorem 4.1.1, satisfiability of any MSO-sentence is decidable for unary automatic

graphs. Therefore the isomorphism problem for unary automatic graphs of finite degree

is decidable. Since ϕG contains a fixed number of nested quantifiers (regardless of the size

of the automaton presenting it), the decision procedure is elementary in terms of the size

of the input automaton.

4.3. UNARY AUTOMATIC LINEAR ORDERS 73

4.3 Unary automatic linear orders

4.3.1 A characterization theorem

Recall that a linear orderL is a total partial order. Note that linear orders, when considered

as graphs, may not have finite degree. Therefore, in this and the subsequent sections we do

not assume the input automata are one-loop automata. The following lemma is immediate.

Proposition 4.3.1 The membership problem for automatic linear orders is decidable in time O(n3)

where n is the number of states in the automata recognizing the input linear orders.

Proof. Let (N; R) be a unary automatic structure where R is binary. SupposeAR (n states) is

a deterministic finite automata recognizing R. To check whether R is reflexive, we construct

an automaton for {x | (x, x) ∈ R} and check whether {x | (x, x) ∈ R} = N. This takes time O(n).

To decide whether R is antisymmetric, we construct an automaton for S = {(x, y) | x , y}

and determine whether R ∩ S = ∅. This takes time O(n2). To decide whether R is total,

we construct an automaton for S1 = {(y, x) | (x, y) ∈ R} and decide whether R ∪ S1 = N
2.

This takes time O(n2). Finally, to settle whether R is transitive, we construct the automaton

{(x, y, z) | R(x, y) ∧ R(y, z) ∧ ¬R(x, z)} and check whether its language is empty. This takes

time O(n3).

Recall that ω,ω∗, ζ and n denote respectively the linear order of the natural numbers,

negative numbers, integers and finite linear order of length n. The following theorem was

proved by Blumensath [6] and Khoussainov/Rubin [74] and characterizes unary automatic

linear orders.

Theorem 4.3.2 A linear order is unary automatic if and only if it is isomorphic to a finite sum of

linear orders of type ω,ω∗ or n where n ∈N.

By Theorem 4.3.2, L is a linear order of the form α1 + · · · + αk where each αi, 0 ≤ i ≤ k,

is one of the linear order in {ω,ω∗, ζ, (n)n∈ω}. Thus we denote L by the canonical word

αL = α1 · · ·αk ∈ {ω,ω∗, (n)n∈ω}
⋆. Without loss of generality, we assume further that αL has

no substring of the form ω∗ω, nω, ω∗n or n1n2 for n, n1, n2 ∈ N. The following lemma is

immediate.

Lemma 4.3.3 Two unary automatic linear orders L1,L2 are isomorphic if and only if αL1
= αL2

.

Corollary 4.3.4 The isomorphism problem for unary automatic linear orders is decidable.

Proof. Let L = (N;≤L) be a unary automatic linear order. We will define a (FO + ∃∞)-

formula ϕL such that a linear order L1 has canonical word αL1
= αL if and only if L1 |=

74 Chapter4. The Complexity of Unary Automatic Structures

ϕL. By Lemma 4.3.3 and Theorem 2.5.11 this proves the decidability of the isomorphism

problem.

To define ϕL, we define the following auxiliary formulas. For x, y ∈ N, let FinDis(x, y)

be

x <L y ∧ ¬∃∞z : x <L z ∧ z <L y.

For x ∈ ω, let Inω(x) be the formula

[
∃∞y : x <L y ∧ FinDis(x, y)

]
∧ [∀z <L x : ¬FinDis(z, x)]

Let Inω
∗

(x) be the formula

[
∃∞y : y <L x ∧ FinDis(y, x)

]
∧ [∀z >L x : ¬FinDis(x, z)]

Let Inζ(x) be the formula

[
∃∞y : x <L y ∧ FinDis(x, y)

]
∧ [∃∞z : z <L x ∧ FinDis(z, x)]

For any n ∈ ω, let Inn(x) be the formula

∃y1, . . . , yn−1 :x <L y1 ∧

n−2∧

i=1

(yi <L yi+1) ∧ ∀z : ¬FinDis(z, x)∧

∀z : FinDis(x, z)→ z = x ∨

n−1∨

i=1

(z = yi)

Recall that αL = α1 · · ·αk is the canonical word of L. Hence, we define ϕL as follows

∃x0, . . . , xk−1 :

k−2∧

i=0

(xi <L xi+1) ∧

k−1∧

i=0

Inαi(xi)∧

∀y :

k−1∨

i=0

(FinDis(xi, y) ∨ FinDis(y, xi))

The sentence ϕL contains three alternations of quantifiers. To decide whether automatic

linear orders L,L′ are isomorphic, we check whether L′ � ϕL (by Theorem 2.5.11). An

exponential runtime blow-up occurs for each alternation of quantifiers in ϕL [70] and

hence the algorithm takes triply exponential time in the size of the input automata. Fur-

thermore, the algorithm is non-uniform as it requires that the formula ϕL (and hence the

canonical word αL) is known beforehand. We now provide an alternative algorithm which

4.3. UNARY AUTOMATIC LINEAR ORDERS 75

significantly improves the time complexity and is uniform in the input automata.

4.3.2 An efficient solution to the isomorphism problem

Theorem 4.3.5 The isomorphism problem for unary automatic linear orders is decidable in time

quadratic in the sizes of the input automata.

SupposeA = (Q,∆, I, F) is a unary automaton that represents a linear orderL = (N;≤L).

We use the notation from Section 4.1.2: the parameters t, ℓ are resp. the lengths of the (1, 1)-

tail and (1, 1)-loop inA. For i ∈ {0, . . . , t−1}, let Wi be the singleton {i}. For i ∈ {t, . . . , t+ℓ−1},

let Wi be the set of numbers {t + i + jℓ | j ∈N}. Note that

N =

t+ℓ−1⋃

i=0

Wi. (4.1)

In the following, we will decompose the unary automatic linear orders as a sequence of

copies of ω,ω∗,n (with no ζ).

Lemma 4.3.6 For any t ≤ j < t + ℓ, we have the following:

1. If ∆(q j, (⋄, 1)ℓ) ∈ F, the set W j forms an increasing chain j <L j + ℓ <L j + 2ℓ <L · · ·

2. If ∆(q j, (⋄, 1)ℓ) < F, the set W j forms an decreasing chain j >L j + ℓ >L j + 2ℓ >L · · ·

3. For any i ∈N, there are only finitely many elements between j + iℓ and j + (i + 1)ℓ.

Proof. If ∆(q j, (⋄, 1)ℓ) is an accepting state then j+ iℓ <L j+ (i+1)ℓ for all i so (j+ iℓ)i∈N is an

increasing chain inL. Otherwise, totality ofL implies that ∆(q j, (1, ⋄)ℓ) ∈ F hence (j+ iℓ)i∈N

is a decreasing chain in L. This proves (1)(2) in the lemma.

For (3), we only prove the case when (j + iℓ)i∈N forms an increasing chain. The other

case can be proved in a similar way. Let t1, t2 be the lengths of the (⋄, 1)- and (1, ⋄)- tails

off q j; let ℓ1, ℓ2 be the lengths of the (⋄, 1)- and (1, ⋄)- loops off q j. We consider two cases.

First, suppose ℓ1 = ℓ2 = 1. Since (j + iℓ)i∈N is increasing, ∆(q j, (⋄, 1)cℓ) ∈ F for all c. Hence,

∆(q j, (⋄, 1)t1) ∈ F. Similarly, ∆(q j, (⋄, 1)t2) < F. Therefore, each x > j + (i + 1)ℓ +max{t1, t2}

satisfies x >L j + (i + 1)ℓ and there are only finitely many elements <L-below j + (i + 1)ℓ.

This leaves only finitely many possible elements <L-between j + iℓ and j + (i + 1)ℓ.

On the other hand, suppose ℓ1ℓ2 > 1. Let k = max{t1, t2} + ℓ. Suppose there is i ≥ 0 and

r = j + iℓ + k + s, s ≥ 0 such that

j + iℓ <L r <L j + (i + 1)ℓ.

76 Chapter4. The Complexity of Unary Automatic Structures

The first inequality is equivalent to∆(q j, (⋄, 1)k+s) ∈ F and hence for any c, j+ iℓ+cℓ <L r+cℓ.

The second inequality implies that ∆(q j, (1, ⋄)k+s−ℓ) ∈ F and is in the (1, ⋄)-loop off q j. So,

for any c′ ≥ 0, r + c′ℓ2 <L j + (i + 1)ℓ. Therefore,

j + iℓ + (ℓ1ℓ2)ℓ <L r + (ℓ1ℓ2)ℓ = r + (ℓ1ℓ)ℓ2 <L j + (i + 1)ℓ.

This is a contradiction because (j+ iℓ)i∈N is increasing whereas ℓ1ℓ2 > 1. Thus, any element

<L-between j + iℓ and j + (i + 1)ℓ must be smaller than r; there are only finitely many such

elements.

To prove Theorem 4.3.5, we will extract the canonical word αL ∈ {ω,ω∗,n}⋆ of L. For

t ≤ j < t + ℓ, we can use Lemma 4.3.6 to decide in linear time whether the sequence

(j + iℓ)i∈N is in a copy of ω or ω∗.

By (4.1), we only need to determine the relative ordering of the sets {0, . . . , t − 1} and

Wt,Wt+1, . . . ,Wt+ℓ−1. In the following we use Ws to denote the singleton {s} for s ∈ {0, . . . , t−

1}. For j, k ∈ {0, , t + 1, . . . , t + ℓ − 1}, we fix the following terminologies:

– We say that W j and Wk interleave if one of the following holds:

– j, k ∈ {t, . . . , t + ℓ − 1} and W j and Wk belong to the same copy of ω or ω∗ in L.

– one of j, k belongs to {0, . . . , t−1} (say j) and the other (say k) belongs to {t, . . . , t+

ℓ − 1}, and j is <L between two elements in Wk.

– j, k ∈ {0, . . . , t − 1} and there is j′ ∈ {t, . . . , t + ℓ − 1} such that W j and W j′ , Wk and

W j′ interleave.

– For j, k ∈ {0, . . . , t + ℓ − 1}, we say that W j is to the left of Wk if all elements in W j are

<L-below all elements in Wk.

Lemma 4.3.7 For j, k ∈ {t, . . . , t + ℓ − 1}, j < k, where W j and Wk do not interleave. Then

– W j is to the left of Wk if and only if ∆(q j, (⋄, 1)k− j) ∈ F.

– Wk is to the left of W j if and only if ∆(q j, (⋄, 1)k− j) < F.

Proof. Take j, k ∈ {t, . . . , t + ℓ − 1} where j < k and say that W j and Wk do not interleave.

If W j (Wk) is to the left of Wk (W j), then it is immediate that ∆(q j, (⋄, 1)k− j) is (is not) an

accepting state.

Conversely, suppose∆(q j, (⋄, 1)k− j) ∈ F. Then ∀i : j+ iℓ <L k+ iℓ. We have the following

cases:

(a) Assume both sequences (j+ iℓ)i∈N and (k+ iℓ)i∈N form a copy ofω∗. If k+ i1ℓ <L j+ i2ℓ

for some i1, i2 ∈N, then we have k + i1ℓ <L j + i2ℓ <L k + i2ℓ and i1 > i2. But then we

have

· · · <L j + (2i1 − i2)ℓ <L k + (2i1 − i2)ℓ <L j + i1ℓ <L k + i1ℓ

4.3. UNARY AUTOMATIC LINEAR ORDERS 77

and W j and Wk interleave. Therefore for all i1, i2, k+ i1ℓ >L j+ i2ℓ and W j is to the left

of Wk.

(b) Assume the sequence (j + iℓ)i∈N forms a copy of ω∗ and (k + iℓ)i∈N forms a copy of ω.

Then we have

∀i, i′ ∈N : j + iℓ ≤L j <L k ≤L k + i′ℓ.

(c) Assume both sequences (j+ iℓ)i∈N and (k+ iℓ)i∈N form a copy of ω. If k+ i1ℓ <L j+ i2ℓ

for some i1, i2 ∈N, then we have k + i1ℓ <L j + i2ℓ <L k + i2ℓ and i1 < i2. But then we

will have

j + i2ℓ <L k + i2ℓ <L j + (2i2 − i1)ℓ <L k + (2i2 − i1)ℓ <L · · ·

and W j and Wk interleave. Therefore for all i1, i2, k+ i1ℓ >L j+ i2ℓ and W j is to the left

of Wk.

(d) Assume the sequence (j + iℓ)i∈N forms a copy of ω and (k + iℓ)i∈N forms a copy of ω∗.

If k + i1ℓ <L j + i2ℓ for some i1, i2 ∈N, then there is i′ ≥ i1 such that

j + i′ℓ <L k + i′ℓ <L j.

This is in contradiction with the assumption on (j + iℓ)i∈N.

Now suppose ∆(q j, (⋄, 1)k− j) < F. Using a similar proof as above one can prove that Wk

is to the left of W j.

Proof of Theorem 4.3.5. To extract the canonical wordαL, we first compute an equivalence

relation ∼ on {0, . . . , t + ℓ − 1} such that j ∼ k if W j interleaves with Wk.

By Lemma 4.3.7, for j, k ∈ {t, t + 1, . . . , t + ℓ − 1}, W j and Wk interleave if and only if

there are i1, i2 ∈ N with j + i1ℓ <L k + i2ℓ and j1, j2 ∈ N with j + j1ℓ >L k + j2ℓ. Hence, for

j ∈ {0, . . . , t + ℓ − 1} and k ∈ {t, . . . , t + ℓ − 1}, j < k, we have that j ∼ k if and only if

∃c1, c2 ∈N : ∆(q j, (⋄, 1)k− j+c1ℓ) ∈ F ∧ ∆(qk, (⋄, 1) j−k+c2ℓ) ∈ F (4.2)

Algorithm 7 computes the equivalence relation ∼. The correctness follows from (4.2).

Let [j]∼ be the ∼-equivalence class of j. For all j ∈ {0, . . . , t + ℓ − 1}, we compute a set

Left([j]∼) defined as follows:

Left([j]∼) = {[k]∼ | k is to the left of j}.

Lemma 4.3.7 implies an algorithm to compute Left([j]∼) for all ∼-equivalence classes; see

Alg. 8

78 Chapter4. The Complexity of Unary Automatic Structures

Algorithm 7 ClassifyLO(L)

1: for j ∈ {0, . . . , t + ℓ − 1}, k ∈ {t, t + ℓ − 1}, t < k do

2: q← ∆(q j, (⋄, 1)k− j).
3: while q is not labeled “done for k” do

4: if q ∈ F then stop the while loop
5: else label q “done for k” end if

6: q← ∆(q, (⋄, 1)k− j)
7: end while

8: if q < F then stop this for-loop iteration.
9: q← ∆(qk, (⋄, 1) j−k+cℓ) where c = min{c | j − k + cℓ > 0}.

10: while q is not labeled “done for j” do

11: if q ∈ F then stop the while loop
12: else label q “done for j” end if

13: q← ∆(q, (⋄, 1) j−k)
14: end while

15: if q ∈ F then declare j ∼ k
16: end for

Algorithm 8 ComputeLeft(L)

1: for [j]∼, [k]∼ where j < k, [j]∼ , [k]∼ do

2: if ∆(q j, (⋄, 1)k− j) ∈ F then

3: Put [j]∼ into Left([k]∼)
4: else

5: Put [k]∼ into Left([j]∼)
6: end if

7: end for

4.3. UNARY AUTOMATIC LINEAR ORDERS 79

We are now ready to give an algorithm for extracting αL from A. We order all the ∼-

equivalence classes [j1]∼, [j2]∼, . . . [jr]∼ in increasing order of the cardinalities of Left([js]∼).

For each [js]∼ , 1 ≤ s ≤ r, decide the order type formed by the sets W j where j ∈ [js]∼,

using the condition given by Lemma 4.3.6. These order types can be considered as symbols

taken from the alphabet {ω,ω∗, 1}. The concatenation of these symbols produces us a word

α ∈ {ω,ω∗, 1} which corresponds to the order type of L. However, α may not be the

canonical word αL. Therefore we “smooth” α: set αL to be the result of replacing all 1ω in

α to ω, all ω∗1 in α to ω∗, all sequences of 1s of length n to n and all ω∗ω to ζ.

We now analyze the time complexity of the procedure that extracts αL. Recall that the

size of the input is measured as the number n of states in the automatonA that recognizes

≤L. In the ClassifyLO(L) algorithm, each state in A is visited at most n times (for each

(⋄, 1)-state out of q j, it can be labeled “done for k” at most once for each k ∈ {t, . . . , t+ ℓ− 1}).

Hence, ClassifyLO(L) takes time O(n2). The ComputeLeft(L) algorithm visits each state in

A at most once (for each j, k, it visits ∆(q j, (⋄, 1)k− j) at most once) and therefore takes O(n)

times. Sorting the equivalence classes [j1]∼, [j2]∼, . . . [jr]∼ and computing their order types

also takes O(n2) time. Finally, computing the canonical word αL from α clearly takes O(n2)

time. Hence, it takes O(n2) times to extract the canonical word αL fromA.

The algorithm for deciding the isomorphism problem takes two unary automatic linear

orders L1 and L2 and compute their canonical words. By Lemma 4.3.3, L1 � L2 if and

only if their canonical words coincides with each other.

4.3.3 State complexity

LetL = (N;≤L) be a unary automatic linear order. By Theorem 4.3.2, the order type ofL is

specified by the canonical word αL ∈ {ζ, ω, ω∗, {n}n∈N}⋆. Let mL be the number of instances

ofω orω∗ in αL (where ζ is treated asω∗ω) and let kL be the sum of all n such that n appears

in wL. We will express the state complexity of L in terms of the pair (mL, kL), whose size

is defined to be max{mL, kL}.

Theorem 4.3.8 The (unary) state complexity of a unary automatic linear order L = (N;≤L) is

less than 2m2
L
+ k2
L
+ 2kLmL + kL and more than 2m2

L
− k2
L
+ kL.

Proof. By Lemma 4.3.6, the optimal automatonA forL has mL + kL (1, 1)-states: kL many

states on the (1, 1)-tail and mL many states on the (1, 1)-loop. Each state on the (1, 1)-loop

represents a copy of ω or ω∗ in L and since this is the minimal automaton there is no

interleaving. To specify whether each copy of ω or ω∗ is increasing or decreasing and

the relative ordering of copies of ω and ω⋆, we need 2ℓ = 2mL (1, ⋄) or (⋄, 1) states off

each (1, 1)-loop state. To specify the ordering of the singleton elements represented by the

states on the (1, 1)-tail with respect to each other and to copies of ω,ω∗, we need up to

80 Chapter4. The Complexity of Unary Automatic Structures

2(kL − j +mL − 1) states off q j, j ∈ {0, ..., kL − 1}. Therefore, an upper bound to the number

of states in an optimal unary automaton is

mL + kL +mL(2mL) +

kL−1∑

j=0

2
(
kL − j +mL − 1

)
= 2m2

L
+ k2
L
+ 2kLmL +mL.

For a pair (mL, kL), we can easily find a linear order with parameters (mL, kL) whose

state complexity is 2m2
L
+ k2
L
+ 2kLmL + mL. For example, when mL > 0, the linear order

ω∗kLωmL−1 matches this upper bound.

Example 4.3.9 A optimum automaton representing the order relation of the linear order ω + 1 +

ω∗ + ω∗ (with canonical word ω1ω∗ω∗ is presented in Figure 4.4. Note that the automaton has 20

states, which is between the lowerbound (17) and upperbound (26) as stated in Theorem 4.3.8

q0 q1

q2

q3

(⋄, 1)

(1, ⋄)

(⋄, 1)

(1, ⋄)

(1, 1)

(1, 1)

(1, 1)

(1, 1)

(⋄, 1)

(⋄, 1)

(⋄, 1)

(⋄, 1)

(1, ⋄)

(1, ⋄)

(1, ⋄)

(1, ⋄)

(⋄, 1)

(1, ⋄)

(⋄, 1)

(⋄, 1)

(⋄, 1)

(⋄, 1)

(1, ⋄)

(1, ⋄)

(1, ⋄)

(1, ⋄)

(⋄, 1)

(1, ⋄)

Figure 4.4: An optimal automaton for ω + 1 + ω∗ + ω∗.

Corollary 4.3.10 The (unary) state complexity for the class of unary automatic linear orders is

quadratic in the size of the associated parameter.

4.4. UNARY AUTOMATIC EQUIVALENCE STRUCTURES 81

4.4 Unary automatic equivalence structures

4.4.1 A characterization theorem

We use E = (N; E) to denote an equivalence structure where E ⊆ N2 is an equivalence

relation. The following can be proved in a similar way as Proposition 4.3.1.

Proposition 4.4.1 The membership problem for automatic equivalence structures is decidable in

time O(n3).

Blumensath[6] and Khoussainov/Rubin[74] described the structure of unary automatic

equivalence structures.

Theorem 4.4.2 ([6, 74]) An equivalence structure has a unary automatic presentation if and only

if it has finitely many infinite equivalence classes and there is a finite bound on the sizes of the finite

equivalence classes.

The height of an equivalence structure E is a function hE : N ∪ {∞} → N ∪ {∞} such

that hE(x) is the number of E-equivalence classes of size x. Two equivalence structures E1

and E2 are isomorphic if and only if hE1
= hE2

. By Theorem 4.4.2, the function hE for unary

automatic equivalence structure E is finitely nonzero.

Corollary 4.4.3 The isomorphism problem for unary automatic equivalence structures is decidable.

Proof. For each n ∈N, define the formula sizen(x) as

∃y1 · · · ∃yn−1 :

n−1∧

i=1

(yi , x ∧ E(yi, x)) ∧ ∀z : (

n−1∧

i=1

z , yi ∧ z , x)→ ¬E(x, z).

Let H = hE(∞) and Hn = hE(n). By Theorem 4.4.2, any unary automatic equivalence

structure E with height hE can be defined by the sentence ϕE that is the conjunction of the

following:

∃x1 · · ·∃xH :




H∧

i=1

∃∞y : E(xi, y) ∧

H∧

i, j=1;i, j

¬E(xi, x j)

∧ ∀x∃∞y : E(x, y)→

H∨

i=1

E(x, xi)


 ∧

∧

n:Hn=∞

[
∃∞x : sizen(x)

]

and ∧

m,n:Hn=m

∃y1 · · · ∃ym :

m∧

i=1

sizen(yi) ∧

m∧

i, j=1;i, j

¬E(yi, y j)

82 Chapter4. The Complexity of Unary Automatic Structures

For any equivalence structure E1, E1 � E if and only if E1 |= ϕE. By Theorem 2.5.11, the

isomorphism problem is decidable.

The sentence ϕE contains two alternations of quantifiers1, each causes an exponential

blow-up in the size of the automaton corresponding to ϕE [70]. This implies that the

decision procedure given by Corollary 4.4.3 has doubly exponential runtime in the sizes

of the input automata. As in the case of linear orders, the decision procedure requires

ϕE to be known beforehand and is thus non-uniform in the input automata. We now

present a uniform solution to the isomorphism problem that significantly improves the

time complexity.

4.4.2 An efficient solution to the isomorphism problem

Theorem 4.4.4 The isomorphism problem for unary automatic equivalence structures is decidable

in linear time in the sizes of the input automata.

Let E be recognized by a unary automaton A = (S,∆, I, F) with n states. Recall the

definitions of t, ℓ, and q j from Section 4.1.2. Observe that each j < t+ℓ belongs to an infinite

equivalence class if and only if there is an accepting state on the (⋄, 1) loop from q j. Choose

j ∈ {t, . . . , t + ℓ − 1}. If j belongs to an infinite equivalence class then for all i ∈ N, j + iℓ

is in an infinite equivalence class. By Theorem 4.4.2, there are only finitely many infinite

equivalence classes in E. Hence, for some i and k, i , k, (j+ iℓ, j+kℓ) ∈ E, i.e.,∆(q j, (⋄, 1)(k−i)ℓ)

is an accepting state.

Let γ j > 0 be the least number such that ∆(q j, (⋄, 1)γ jℓ) ∈ F. Recall the definition of W j

from Section 4.3.2.

Lemma 4.4.5 The set W j is partitioned into γ j infinite equivalence classes.

Proof. By minimality of γ j, elements in { j, j + ℓ, . . . , j + (γ j − 1)ℓ} are pairwise non E-

equivalent. Moreover for each i, (j + iℓ, j + (i + γ j)ℓ) ∈ E.

Lemma 4.4.6 If j belongs to an infinite equivalence class C, then for all k ∈ {t, . . . , t+ ℓ− 1} where

Wk ∩ C , ∅, γk = γ j.

Proof. Observe that for k ∈ {t, . . . , t+ ℓ− 1}, Wk ∩C , ∅ if and only if ∆(q j, (⋄, 1)c) ∈ F where

c = k− j+ dℓ for some d ∈N. This means that for all i ∈N, (j+ iℓ, k+ (d+ i)ℓ) ∈ E. Since for

i, i′ ∈ {0, . . . , γ j − 1}, i , i′, (j+ iℓ, j+ i′ℓ) < E, we have (k+ (d+ i)ℓ, k+ (d+ i′)ℓ) < E and hence

∀i ∈ {0, . . . , γ j − 1} : ∆(qk, (⋄, 1)iℓ) < F.

Also, since (k + dℓ, k + (d + γ j)ℓ) ∈ E, we have ∆(qk, (⋄, 1)γ j) ∈ F. By definition, this means

γk = γ j.

1The counting quantifier ∃∞x : ψ(x) is treated as ∀x∃y >llex x : ψ(x)

4.4. UNARY AUTOMATIC EQUIVALENCE STRUCTURES 83

By Lemma 4.4.6, we define an equivalence relation ∼ on {t, . . . , t + ℓ − 1} such that

– j ∼ k implies that the sets W j and Wk are both partitioned into the same γ j infinite

equivalence classes;

– j / k implies that the equivalence classes containing elements in W j are disjoint from

the ones containing elements in Wk.

Using this fact, we define an algorithm that computes the value of hE(∞): the number of

infinite equivalence classes in E. We first compute the equivalence relation ∼ by reading

the final states on the (⋄, 1)-tail and -loop out of each q j, t ≤ j < t + ℓ. Then for each

∼-equivalence class [j]∼, compute the value of γ j and add it to hE(∞). To compute γ j, we

examine ∆(q j, (⋄, 1)dℓ) for increasing values of d until we find an accepting state or repeat a

state. See Algorithm 9.

The algorithm examines each state in A at most twice (once for computing ∼ and the

second time for computing γ j). Hence Algorithm 9 takes time O(n).

Algorithm 9 InfClass(E)

1: for j ∈ {t, . . . , t + ℓ − 1} where the (⋄, 1)-loop off q j contains a final state do

2: for all final states q on the (⋄, 1)-tail and -loop off q j do

3: Let k ∈ {t, . . . , t + ℓ − 1} be such that q = ∆(q j, (⋄, 1)c) where c ≡ k − j mod ℓ.
4: Declare j ∼ k.
5: end for

6: end for

7: h← 0
8: for all equivalence classes [j]∼ do

9: c← 1; q← ∆(q j, (⋄, 1)cℓ)
10: while q < F and q is not marked “processed” do
11: Mark q as “processed”
12: c← c + 1; q← ∆(q j, (⋄, 1)cℓ)
13: end while

14: if q ∈ F then h← h + c end if

15: end for

16: return h.

We now consider the finite equivalence classes. Take j ∈ {t, . . . , t + ℓ − 1} such that the

state q j has no accepting state on its (⋄, 1)-loop. Note that by Lemma 4.4.5, ∆(q j, (⋄, 1)cℓ) < F

for any c ∈N. Hence,

∀i, i′ ∈N : i , i′ ⇒ (j + iℓ, j + i′ℓ) < E. (4.3)

By (4.3), for any k ∈ {t, . . . , t+ℓ−1}, j , k, there is at most one final state q on the (⋄, 1)-tail

out of q j such that q = ∆(q j, (⋄, 1)c) for some c ≡ k − j mod ℓ.

84 Chapter4. The Complexity of Unary Automatic Structures

Definition 4.4.7 A corresponding set is a tuple (j1, . . . , jm) where each q ji , 1 ≤ i ≤ m, is a

(1, 1)-loop and for each q ji and s ∈ {1, . . . ,m − i} there is c ≡ (js+i − ji) mod ℓ such that the state

ri
s = ∆(q ji , (⋄, 1)c) ∈ F;

moreover, these are on the only accepting states on the (⋄, 1)-tail off q ji . A corresponding set is

maximal if it is not a subset of a larger corresponding set.

In the following, for t ≤ j < t + ℓ, we let ℓ j and t j be the lengths of the (⋄, 1)-loop and

-tail off q j, respectively. Let p = max{t j + ℓ j | t ≤ j < t + ℓ}.

Lemma 4.4.8 For any k, hE(k) = ∞ if and only if there is a maximal corresponding set of size k.

Proof. Suppose j1, . . . , jk form a maximal corresponding set. Let mi
s+i

be such that

ri
s = ∆(q ji , (⋄, 1)(js+i− ji)+mi

s+i
ℓ) ∈ F.

Then for each c ≥ p, { j1 + cℓ, j2 + (c+m1
2
)ℓ, . . . , jk + (c+m1

k
)ℓ} is an equivalence class of size k.

Note that here we require c ≥ p since for small values of c, the equivalence class of j1 + cℓ

may also contain elements from {0, . . . , t − 1}.

On the other hand, suppose there are infinitely many E-equivalence classes of size k.

Consider an equivalence class {x1, . . . , xk}where p ≤ x1 < x2 < · · · < xk. For 1 ≤ i < k, define

ji ∈ {t, . . . , t+ℓ−1} be such that xi ≡ ji mod ℓ. By (4.3), j1, . . . , jk is a maximal corresponding

set.

Lemma 4.4.8 implies an algorithm for computing the set {k ∈ N+ | hE(k) = ∞}. See

Algorithm 10. It is clear that a state is visited at most once in Algorithm 10 and hence the

algorithm takes time O(n).

Algorithm 10 FinClass(E)

1: for j ∈ {t, . . . , t + ℓ − 1} do

2: for all accepting states q on the (⋄, 1)-tail off q j do

3: Let k ∈ {t, . . . , t + ℓ − 1} be such that q = ∆(q j, (⋄, 1)c) where c ≡ k − j mod ℓ.
4: Declare that j and k are in the same corresponding set.
5: end for

6: end for

7: for all corresponding sets C do

8: Declare hE(|C|) = ∞
9: end for

Proof of Theorem 4.4.4. To decide whether two unary automatic equivalence structures

E1,E2 are isomorphic we first use the unary automata recognizing E1 and E2 to compute

4.4. UNARY AUTOMATIC EQUIVALENCE STRUCTURES 85

their height functions and then check if hE1
= hE2

. Hence, we begin by giving an algorithm

for extracting the height function of a unary automatic equivalence structure E from a

unary automatonA.

The procedure first runs Algorithm 9 to compute the value hE(∞), and runs Algorithm 10

to compute all k with hE(k) = ∞. Both algorithms take O(n) time.

It only remains to compute the sizes of equivalence classes for elements in {0, . . . , t− 1},

which requires reading through the (⋄, 1)-tails off the (1, 1)-tail. Again this step has runtime

O(n).

In summary, the algorithm that computes hE from A has runtime O(n). Note that the

domain of hE is a subset of {1, . . . , n,∞} so comparing it with hE′ takes linear time. Therefore,

the isomorphism problem for unary automatic equivalence relations is solved in linear time

in the maximum of the sizes of the input automata.

4.4.3 State complexity

Given a unary automatic equivalence structure E = (N; E), we want to define the optimal

unary automaton forE. We will express the state complexity in terms of the height function

hE; define the size of hE to be

|hE| =
∑

n:hE(n)<∞

nhE + ninf + hinf

where hinf = hE(∞) and ninf =
∑

n:hE(n)=∞ n.

Lemma 4.4.9 LetA be a unary automaton recognizing E, then ninf ≤ ℓ.

Proof. For any n, hE(n) = ∞ if and only if there are t ≤ j1 < j2 < · · · < jn < t + ℓ such that

∆(q j1 , (⋄, 1) ji− j1) ∈ F for all i = 1, . . . , n and no other (⋄, 1) states off qi are accepting. These q ji

may not be shared among disjoint equivalence classes, hence ninf ≤ ℓ.

Theorem 4.4.10 The state complexity of any unary automatic equivalence structures E = (N; E)

is at least ∑

n:hE(n)<∞

n2hE(n) + 2hinf(ninf + 1) + ninf + 1

and at most ∑

n:hE(n)<∞

n2hE(n) +
∑

n:hE(n)=∞

n2 + 2hinf(ninf + 1) + 1.

Proof. We say a collection of (1, 1)-states {r1, . . . , rm} inA represents an E-equivalence class

K if for each x ∈ K, ∆(qinit, (1, 1)x) = ri for some 1 ≤ i ≤ m, where qinit is the initial state. Let K

be a finite equivalence class. It must be represented by some {r1, . . . , rm}where there are m−i

86 Chapter4. The Complexity of Unary Automatic Structures

accepting states on the (⋄, 1)-tail off ri. In an optimal unary automaton recognizing E, the

length of the (⋄, 1)-tails off ri states is minimized by arranging the r1, . . . , r j consecutively.

In this case, the tail off ri contains m − i states; by symmetry, the number of (⋄, 1) and

(1, ⋄) states associated to the class K is 2
∑|K|

i=1
(|K| − i) = |K|2 − |K|. Counting the (1, 1) states

representing K, there are |K|2 states associated to K. Note that in the optimal automaton, if

there are infinitely many equivalence classes of the same size, they are all represented by

the same (1, 1) states.

If each infinite equivalence class of E is represented by a single state on the (1, 1)-loop

of an automatonA, then ℓ > hinf. Moreover, the (⋄, 1)-loop out of with each such state must

have size at least ℓ. In this case, ℓ + 1 states are associated with each infinite equivalence

class. One may hope to reduce the number of states by using multiple states r1, . . . , rk to

represent an infinite equivalence class K. In this case, k must be a divisor of ℓ and the

(⋄, 1)-loop out of each ri has length ℓ/k. Thus, at least k+ k(ℓ/k) = k+ ℓ states are associated

with K, which is no improvement. However, we can reduce the number of states by using

a single (1, 1)-loop state r to represent all the (finitely many) infinite components. To do so,

define a (⋄, 1)-loop (respectively, (1, ⋄)-loop) out of r with length hinfℓ and a single accepting

state, ∆(r, (⋄, 1)hinfℓ). With this representation, 1 + 2hinfℓ states are used for all the infinite

equivalence classes (as opposed to more than h2
inf
+ hinf). By Lemma 4.4.9 and the above

discussion, the smallest possible length for the (1, 1)-loop is (ninf + 1). For each n such that

hE(n) = ∞, there are n2 − n (1, ⋄)- and (⋄, 1)-states off the (1, 1)-loop. Thus, there must be at

least

1 + 2hinfℓ +
∑

n:hE(n)=∞

n2

states on the (1, 1)-loop and its peripheries.

We can define an automaton A that recognizes E. The (1, 1)-tail of A has length∑
n:hE(n)<∞ nhE(n) and its (1, 1)-loop has length ninf + 1. The total size ofA is

∑

n:hE(n)<∞

n2hE(n) + 1 + 2hinf(ninf + 1) +
∑

n:hE(n)=∞

n2.

An optimal automaton must have at most this many states.

To obtain a lower bound, we note that there may be overlap between states in the (1, 1)-

loop representing equivalence classes of different sizes, some of which occur infinitely often

and others which do not. In particular, this can only occur for E-equivalence classes K,K′

where |K| > |K′| and hE(|K|) = ∞, hE(|K′|) < ∞. With optimal overlapping, the minimum

number of states in a unary automaton recognizing E is

∑

n:hE(n)<∞

n2hE(n) +
∑

n:hE(n)=∞

n2 + 2hinf(ninf + 1) + 1 − c

4.5. UNARY AUTOMATIC TREES 87

for some c. Moreover, c is not more than the number of all (⋄, 1)- and (1, ⋄)- states associated

with finite equivalence classes occurring infinitely often, so c <
∑

n:hE(n)=∞(n2 − n), as

required.

Corollary 4.4.11 The (unary) state complexity for the class of unary automatic equivalence struc-

ture is quadratic in terms of the height function.

4.5 Unary automatic trees

4.5.1 Characterizing unary automatic trees

This section studies unary automatic treesT = (N;≤T). An anti-chain in T is a set of nodes

that are pairwise incomparable. It is clear that an O(n3) algorithm checks whether a given

automaton recognizes a partial order. Checking if ≤T is total on every set of predecessors

(∀x, y, z : y, z ≤T x → y ≤T z ∨ z ≤T y) takes time O(n4) . Checking the existence of

a root (least element) may take exponential-time because of the impact of alternation of

quantifiers on the size of the automaton for the query. We improve this exponential bound

when ≤T is recognized by a unary (rather than arbitrary) automaton.

Lemma 4.5.1 There is an O(n) time algorithm that checks if a unary automatic partial order

(N;≤T) has a least element.

Proof. Suppose ≤T is recognized by unary automatonA = (S,∆, {qinit}, F) with parameters

t, ℓ (as in Section 4.1.2). If there is a least element x then x < t + ℓ. Indeed, if x ≥ t + ℓ,

there is t ≤ y < t + ℓ such that q = ∆(qinit, (1, 1)x) = ∆(qinit, (1, 1)y). By definition of x, x <T y

and x <T 2x − y. Therefore, ∆(q, (⋄, 1)y−x) ∈ F and ∆(q, (⋄, 1)x−y) ∈ F. But, this implies

that y <T x, a contradiction. Thus, to check for a root it is sufficient to check if each of

{0, . . . , t + ℓ − 1} is the root and this procedure examines each state of A at most once. In

particular, Algorithm 11 does this and runs in O(n).

The following proposition follows immediately from Lemma 4.5.1.

Proposition 4.5.2 The membership problem for unary automatic trees is decidable in time O(n4).

As we saw in previous sections, a good characterization of a class of unary automatic

structures may lead to a better understanding of complexity bounds. We present such a

characterization of unary automatic trees (in the spirit of Theorem 4.1.3). A parameter set Γ

is a tuple (T0,T1, . . . ,Tm, σ,X) where T0, . . . ,Tm are finite trees (with disjoint domains Ti),

σ : {1, . . . ,m} → T0 and X : {1, . . . ,m} → {∅} ∪
⋃

i Ti such that X(i) ∈ Ti ∪ {∅}.

Definition 4.5.3 A tree-unfolding of a parameter set Γ is the tree UF(Γ) defined as follows:

88 Chapter4. The Complexity of Unary Automatic Structures

Algorithm 11 MinElement(A)

1: Initialize the list L = 0, . . . , t + ℓ − 1.
2: while L , ∅ do

3: Let j be the first element in L.
4: if all (⋄, 1)-states out of q j are accepting then

5: q j is the R-least element; return true
6: else delete j from L. end if

7: for k ∈ L do

8: if ∆(q j, (1, ⋄)k− j) is accepting then delete k from L. end if

9: end for

10: end while

11: return false

– UF(Γ) contains one copy of T0 and infinitely many copies of each Ti (1 ≤ i ≤ m), (T
j

i
) j∈ω.

If x ∈ Ti, its copy in T
j

i
is denoted by (x, j)

– For i ∈ {1, . . . ,m}, if X(i) , ∅, the root of T 0
i

is a child of σ(i), and the root of T
j+1

i
is a child

of (X(i), j) for all j.

– For i ∈ {1, . . . ,m}, if X(i) = ∅, the root of T
j

i
is a child of σ(i) for all j.

Theorem 4.5.4 A tree T is unary automatic if and only if T � UF(Γ) for some parameter set

Γ = (T0,T1, . . . ,Tm, σ,X).

Suppose T = (N;≤T) is recognized by a unary automatonAwith n states and param-

eters t, ℓ. Recall the definition of W j, 0 ≤ j < t + ℓ, from Section 4.3.2. We say that two

disjoint sets X and Y of nodes in T are incomparable if ∀x ∈ X∀y ∈ Y : x|T y.

Lemma 4.5.5 For j ∈ {t, t + ℓ − 1}, the set W j forms either an anti-chain or finitely many pairwise

incomparable infinite chains in T .

Proof. If there is no c such that ∆(q j, (⋄, 1)cℓ) is accepting, then the sequence (j + iℓ)i∈N is

an anti-chain. Otherwise, let n j be the least such c. In this case, W j is partitioned into

exactly n j pairwise incomparable chains in T . Indeed, j +mℓ <T j + (m + in j)ℓ for all i and

for 0 ≤ m < n j, thus making (j + (m + in j)ℓ)i∈N an infinite chain; furthermore elements in

{ j, j + ℓ, . . . , j + (n j − 1)ℓ} are pairwise incomparable.

By Lemma 4.5.5, let

A = { j |W j forms an anti-chain, t ≤ j < t + ℓ}

C = {t, . . . , t + ℓ − 1} − A

4.5. UNARY AUTOMATIC TREES 89

T0

T1

. . .

T2

. . .

T3

. . .

T4

. . .

σ

σ

σ

σ σ σ σ

x1 x1 x1

x2 x2 x2

x3 x3 x3

Figure 4.5: An example of a tree-unfolding.

For each j ∈ C, let n j be the number of infinite chains in W j. For 0 ≤ m < n j, we denote the

infinite chain formed by (j + (m + in j)ℓ)i∈N by W j,m.

We consider the circumstances in which two chains W j,s and Wk,s′ belong to the same

infinite path in T (they interleave in the sense of Section 4.3). Fix j, k ∈ C where j , k.

If there is no m such that ∆(q j, (⋄, 1)k− j+mℓ) is accepting, then no W j,s and Wk,s′ interleave.

Otherwise, let m be the least number such that ∆(q j, (⋄, 1)k− j+mℓ) ∈ F.

Lemma 4.5.6 With m defined as above, we have n j = nk and W j and Wk form exactly n j pairwise

incomparable infinite chains.

Proof. By assumption,∆(q j, (⋄, 1)k− j+mℓ) is accepting. Hence, j <T k+mℓ and k+mℓ ∈Wk,m1

for some m1 ∈ {0, . . . , nk − 1}. Therefore, m1 ≡ m mod nk and W j,0,Wk,m1
interleave in T .

Similarly, since j + n jℓ <T k + n jℓ +mℓ, there is 0 ≤ m2 < nk such that m2 ≡ n j +m mod nk

and W j,0,Wk,m2
interleave in T . Therefore, Wk,m1

,Wk,m2
interleave and by definition this

implies m1 = m2. Hence, n j = cnk for some c > 0. Since there is some interleaving between

j and k sets, there is r such that ∆(qk, (⋄, 1) j−k+rℓ) ∈ F. Repeating the above argument with

the roles of j and k reversed, we see that nk = c′n j for some c > 0. Thus, n j = nk and the

union of (j + iℓ)i∈N and (k + iℓ)i∈N contains exactly n j pairwise disjoint infinite chains: for

all i ∈ {0, . . . , n j − 1}, W j,i and Wk,m′ interleave if and only if m′ = m + i mod n j.

90 Chapter4. The Complexity of Unary Automatic Structures

Any infinite path through T must be given by element(s) in C. Therefore, Lemma 4.5.6

implies that T contains only finitely many infinite paths. We define a component of T

as a connected subgraph of T which contains exactly one infinite path and such that

all the elements in the subgraph are greater than or equal to t. Fix j ∈ C and k ∈ A. By

Lemma 4.5.6, (j+ iℓ)i∈N belongs to exactly n j components, B0, . . . ,Bn j−1. If there is no m such

that ∆(q j, (⋄, 1)k− j+mℓ) is accepting, then no element in the anti-chain (k + iℓ)i∈N belongs to

any Br. Otherwise, let m be the least such that∆(q j, (⋄, 1)k− j+mℓ) ∈ F. Each j+iℓ has k+(i+m)ℓ

as a descendent. Therefore (k + iℓ)i∈N is partitioned into a finite set {k + iℓ | 0 < i < m}

and exactly n j infinite classes {(k + (m + s + in j)ℓ)i∈N | s = 0, . . . , n j − 1}, each belonging to a

unique Br.

We have considered the case when at least one of j and k is in C. Now, suppose j, k ∈ A

and neither (j+ iℓ)i∈N nor (k+ iℓ)i∈N intersects with any component of T . If there is m such

that∆(q j, (⋄, 1)k− j+mℓ) ∈ F, then the union (j+ iℓ)i∈N∪ (k+ iℓ)i∈N is a subset of infinitely many

disjoint finite subtrees inT , each of which contains the nodes j+ iℓ and k+ (i+m)ℓ for some

i. We call these disjoint finite trees independent.

The above argument facilitates the definition of an equivalence relation ∼ on {t, . . . , t +

ℓ − 1} as j ∼ k if and only if

1. j ∈ C (or k ∈ C) and { j+ iℓ}i∈N and {k+ iℓ}i∈N belong to the same n j (or nk) components

in T ; or,

2. j, k ∈ A and there is h ∈ C such that j ∼ h and k ∼ h;

3. j, k ∈ A and { j + iℓ}i∈N and {k + iℓ}i∈N belong to the same collection of independent

trees in T .

We use [j]∼ to denote the ∼-equivalence class of j.

Theorem 4.5.4 We now show that any unary automatic tree is isomorphic to the tree-

unfolding UF(Γ) of some parameter set Γ = (T0,T1, . . . ,Tm, σ,X). For each ∼-equivalence

class [j]∼, either [j]∼ represents infinitely many independent trees or [j]∼ represents finitely

many components of T .

In the first case, the independent trees represented by [j]∼ are pairwise isomorphic.

Moreover, the set of ancestors of these independent trees in T is finite because they are

not in a component of T . In the second case, the components of T represented by [j]∼ are

pairwise isomorphic. Each of these components can be described by “unfolding” a finite

graph, Tc, of size |[j]∼|: each k ∼ j contributes one vertex to Tc and the edges are specified

by the relations between (j + iℓ)i∈N, (k + iℓ)i∈N discussed above; the root of a later copy of

Tc is a child of a fixed node in the immediately preceding copy. Observe that, as in the first

case, the set of ancestors in T of the component is finite. It is immediate to translate this

description to an appropriate parameter set for Γ.

4.5. UNARY AUTOMATIC TREES 91

Conversely, we will show that if Γ = (T0,T1, . . . ,Tm, σ,X) is a parameter set, UF(Γ) is

a unary automatic tree T . Let t = |T0|, ℓ = Σm
r=1
|Tr| and αr = Σ

r−1
i=1
|Ti| for r = 1, . . . ,m. We

consider the isomorphic copy (N;≤T) � UF(Γ) where T0 7→ {0, . . . , |T0|} and the jth copy of

Tr maps to {t + (j − 1)ℓ + αr, . . . , t + (j − 1)ℓ + αr+1 − 1}. The appropriate unary automaton

will have parameters t, ℓ. Each q j on the (1, 1)-tail has (⋄, 1)- and (1, ⋄)-tails of length t, and a

(⋄, 1)-loop of length ℓ. Each q j on the (1, 1)-loop has a (⋄, 1)-tail and (⋄, 1)-loop, each of length

ℓ. All (1, 1)-states are in F. Let ϕ0 : T0 → {0, . . . , t − 1} and ϕr : Tr → {t + αr, . . . , t + αr+1 − 1}

be isomorphisms that preserve the tree order. We use ϕ0 to specify which (1, ⋄)-and (⋄, 1)-

tail states from the (1, 1)-tail are accepting. Similarly, we use ϕ1, . . . , ϕm and σ,X from the

parameter set to specify those state in (⋄, 1)-loops off the (1, 1)-tail and in (⋄, 1)-tails and

loops off the (1, 1)-loop that are accepting. Then (N; L(A)) � UF(Γ).

4.5.2 An efficient solution to the isomorphism problem

We wish to use the characterization of unary automatic trees to solve the isomorphism

problem. However, two tree-unfoldings may be isomorphic even if the associated param-

eter sets are not isomorphic term-by-term. For example, if Γ = (T0,T1, . . . ,Tm, σ,X) is any

parameter set and Γ′ = (T ′
0
,T1, . . . ,Tm, σ′,X) where T ′

0
is the subtree of UF(Γ) containing

one copy of each T0, . . . ,Tm and σ′ is obtained from σ by setting σ(i) = X(i) if X(i) , ∅, then

UF(Γ) � UF(Γ′). In previous section, we obtained canonical isomorphism invariants: αL
for linear orders and hE for equivalence structures. We now define an analogue for trees.

Fix a computable linear order � on the set of finite trees.

Definition 4.5.7 The canonical parameter set of a unary automatic tree T = (N;≤T) is the

parameter set Γ = (T0,T1, . . . ,Tm, σ,X) such that UF(Γ) � T and which is minimal in the

following sense:

1. As finite trees, T1 � . . . � Tm.

2. If Ti � T j, σ(i) = σ(j), and X(i) = X(j) = ∅ then i = j.

3. Each Ti (1 ≤ i ≤ m) is minimal: If X(i) , ∅ then if y1 ≤T y2 ≤T X(i) the subtree with domain

{z | y1 ≤T z∧y2 �T z} is not isomorphic to the subtree with domain {z | y2 ≤T z∧X(i) �T z}.

4. T0 is minimal: T0 has the fewest possible nodes and for all i ∈ {1, . . . ,m} where X(i) , ∅,

there is no y ∈ T0 such that y ≤T σ(i) and the subtree with domain {z | y ≤T z ∧ σ(i) ≮T z}

is isomorphic to Ti.

Lemma 4.5.8 Suppose T ,T ′ are unary automatic trees with canonical parameter sets Γ, Γ′. Then,

T � T ′ if and only if Γ, Γ′ have the same number (m) of finite trees, (T0, σ) � (T ′
0
, σ′), and for

1 ≤ i ≤ m, (Ti,X(i)) � (T ′
i
,X′(i)).

92 Chapter4. The Complexity of Unary Automatic Structures

Proof. It is easy to see that ifT andT ′ have term-by-term isomorphic canonical parameter

sets they are isomorphic. Conversely, suppose T � T ′ and their canonical parameter sets

are (T0, . . . ,Tm1
, σ,X) and (T ′

0
, . . . ,T ′m2

, σ′,X′), respectively. Each infinite subtree of the form

({y | σ(i) ≤ y};≤T), 1 ≤ i ≤ m, which contains infinitely many copies of Ti, embeds into a

subtree ofT ′. By (2) in Definition 4.5.7, m1 = m2. By the minimality condition onTi,T ′i and

by the ordering of the finite trees in each parameter set, the subtree ofT containing infinitely

many copies of Ti can embed into the subtree of T ′ containing infinitely many copies of

T ′
i

for all i ∈ {1, . . . ,m1} and vice versa. Similarly for Ti,T ′i′ such that X(i) = X′(i′) = ∅. By

minimality of T0,T ′0 , ∀1 ≤ i ≤ m1 (Ti,X(i)) � (T ′
i
,X′(i)). Let ti be the root of the first copy

of Ti in T and t′
i

be the root of the first copy of T ′
i

in T ′.

(T0, σ) � ({y | y ∈ T0 ∧ ∀i ∈ {1, . . . ,m} : ¬ti ≤T y};≤T)

� ({y | y ∈ T′0 ∧ ∀i ∈ {1, . . . ,m} : ¬t′i ≤T′ y};≤T′) � (T ′0 , σ
′)

We can now use the canonical parameter set to define an (FO + ∃∞)-formula ϕT that

describes the isomorphism type of T (as in Corollaries 4.3.4 and 4.4.3). This is sufficient

for proving decidability of the isomorphism problem for unary automatic trees. We now

show that the isomorphism problem is decidable in polynomial time.

Theorem 4.5.9 The isomorphism problem for unary automatic trees is decidable in time O(n4) in

the sizes of the input automata.

Suppose we can compute the canonical parameter set of a tree from a unary automaton.

Given two unary automatic trees, we could use Lemma 4.5.8 and a decision procedure for

isomorphism on finite trees to solve the isomorphism problem on unary automatic trees.

Lemma 4.5.10 If ≤T is recognized by unary automaton with n states, there is an O(n4) time

algorithm that computes the canonical parameter set of T

Proof. We divide the construction into two pieces: first compute a parameter set Γ where

T � UF(Γ), then “minimize it”, i.e., compute the canonical parameter set from Γ. Recall

the proof that any unary automaton has an associated parameter set (from the proof

of Theorem 4.5.4). Computing the sets A and C requires searching for the appropriate

accepting states on the (⋄, 1)-tail and loop out of each state on the (1, 1)-loop. For each

j ∈ {t, . . . , t+ℓ−1}, let ℓ j be the length of (⋄, 1)-loop out of q j, and t̃ j be the sum of the lengths

of the (⋄, 1)-tail and the (1, ⋄)-tail out of q j. We may determine both n j and the class [j]∼ by

checking at most ℓ j many states on the (⋄, 1)-loop and t̃ j other states. In all, this takes time

O
(∑t+ℓ−1

j=t (ℓ j + t̃ j)
)

4.5. UNARY AUTOMATIC TREES 93

Suppose [j]∼ represents finitely many components in T . Each component is obtained

by unfolding a finite treeT ′ of size |[j]∼| on some x ∈ T′. The tree order≤T′ can be computed

by reading all the (⋄, 1)- and (1, ⋄)-states out of each qk where k ∼ j. The node x ∈ T′ is

the ≤T′-maximal node that is in some (k + iℓ)i∈N with k ∈ C. Again, the number of states

out of q j that need to be read is ℓ j and computing T ′ takes time O(
∑t+ℓ−1

j=t ℓ j + t̃ j). We need

n j isomorphic copies of T ′ in Γ, a total of O(n j|[j]∼|) nodes. Thus, to define all T ′ in the

parameter set corresponding to these ∼-equivalence classes takes time O(n2).

On the other hand, [j]∼may represent infinitely many pairwise isomorphic independent

trees, each of which contains |[j]∼| nodes. To compute T ′ isomorphic to these independent

trees, we read the (⋄, 1)- and the (1, ⋄)-tail out of each qk with k ∼ j. This takes time O(n).

We call a node x ∈ {0, . . . , t − 1} a parent of [j]∼ if it is the immediate ancestor of infinitely

many trees represented by [j]∼. If [j]∼ has c parents then there will be c copies of T ′ in the

parameter set we are building, each of which has X(i) = ∅ and with different values of σ(i).

Claim. There is an algorithm that runs in time O(n4) and computes all parents of ∼-

equivalence classes representing independent trees in T .

Proof of claim. Suppose [j]∼ represents infinitely many independent trees whose roots are

from (j + iℓ)i∈N. For each k ∈ {0, . . . , t − 1}, let tk be the length of the (⋄, 1)-tail out of qk

and ℓk be the length of the (⋄, 1)-loop out of qk. We describe an algorithm that computes

the parents of [j]∼. The algorithm processes the subtree of T restricted to {0, . . . , t − 1},

beginning at the leaves and moving downwards (we process a node only after all of its

children have been processed). For each node k we determine whether it is a parent of [j]∼.

– Case 1. If k is a leaf, we search for i ∈ {tk, . . . , tk + ℓk− 1} such that ∆(qk, (⋄, 1)iℓ+ j−k) ∈ F.

We can find such an i if and only if there are infinitely many independent trees

associated to [j]∼ descending from k in T .

– Case 2. If k is an internal node but has no children which are parents of [j]∼, process

it as though it were a leaf. Otherwise, let k1, . . . , kr be children of k which are parents

of [j]∼. Let Ui,Vi,Di be subsets of {tki
, . . . , tki

+ ℓki
} defined as

Ui = {x | ∆(qk, (⋄, 1)xℓ+ j−k) ∈ F}, Vi = {x | ∆(qki
, (⋄, 1)xℓ+ j−ki) ∈ F},

and Di = Ui−Vi. Let ℓ′ = max{ℓk1
, . . . , ℓkr

} and let D′
i
= {x+ iℓk | x ∈ Di∧x+ iℓk < ℓ

′ℓk}.

Then k is a parent of [j]∼ if and only if D′
1
∩ · · · ∩D′r , ∅.

Correctness. In Case 1, if there is no i′ ≥ tk such that ∆(qk, (⋄, 1)i′ℓ+ j−k) ∈ F, there are only

finitely many independent trees represented by [j]∼ descending from k. Moreover, if such

an i′ exists, it must be on the (⋄, 1)-loop off qk and so we can stop looking for it after we

have checked all ℓk states. For Case 2, note that x ∈ D′
1
∩ · · · ∩ D′r if and only if k is the

immediate ancestor for all nodes in { j + (x + iℓ′ℓk)ℓ}i∈N, if and only if k is the immediate

94 Chapter4. The Complexity of Unary Automatic Structures

ancestor for some node in { j + (x + iℓ′ℓk)ℓ}i∈N. Therefore if D′
1
∩ · · · ∩ D′r , ∅, then k is a

parent of [j]∼. Suppose D′
1
∩ · · · ∩ D′r = ∅ and k is a parent of [j]∼. Then k is the immediate

ancestor for { j+ (s+ im)ℓ}i∈N for some m > ℓ′ℓk and s < m. If s < ℓ′ℓk, then s ∈ D′
1
∩ · · · ∩D′r.

Therefore s ≥ ℓ′ℓk. Say s = s′ + iℓ′ℓk where s′ < ℓ′ℓk. Then k is the immediate ancestor of

j + (s + ℓ′ℓkm)ℓ = j + (s′ + (m + i)ℓℓk)ℓ. Therefore s′ ∈ D′
1
∩ · · · ∩ D′r. Contradiction. Hence

the algorithm is correct.

Complexity. Checking if a leaf k is a parent for [j]∼ takes time O(ℓkℓ). When k is an internal

node, computing Ui and Vi takes time O(ℓkℓki
ℓ). The size of each Ui and Vi is bounded by

ℓki
, therefore computing Di takes O(ℓki

). Computing each D′
i

takes time O(ℓ′ℓk). We need to

carry out the above operations at most t times (at most once for each node in {0, . . . , t − 1}).

Therefore, the algorithm takes time O(tℓ̂2ℓ), where ℓ̂ is the maximal (⋄, 1)-loop length out

of all qk, k ∈ {0, . . . , t − 1}. We iterate the intersection operation r times to compute the

intersection of all the D′
i
’s; therefore, we perform a total of at most t intersection operations,

each taking time O(ℓ̂2). Since ℓ̂ < n, the algorithm takes time O(n4). We can run the above

algorithm simultaneously for all equivalence classes [j]∼ representing independent trees

without increasing the time complexity.

With the above claim in hand, we can resume our construction of the parameter set Γ.

The finite treeT0 in Γ contains all nodes in {0, . . . , t−1} and finitely many independent trees.

Deciding which independent trees to put into T0 uses the claim and therefore takes O(n4).

Computing the tree order ≤T0 on {0, . . . , t − 1} requires reading the (⋄, 1)- and (1, ⋄)-tail out

of each qk (0 ≤ k < t) at most once. This steps again takes time O(n). Thus, in time O(n4)

time, we have computed Γ = (T0,T1, . . . ,Tm, σ,X) such that T � UF(Γ). Since nodes in T0

can be parents to more than one anti-chain, m ≤ tℓ +
∑

j∈C n j ≤ tℓ + n.

We now use Γ to obtain a canonical parameter set for T . For each i ∈ {1, . . . ,m} with

X(i) , ∅, look for y1, y2 ∈ Ti such that y1 <T y2 <T X(i), and the subtree of Ti with domain

{z | y1 ≤T z ∧ y2 �T z} is isomorphic to the subtree with domain {z | y2 ≤T z ∧ X(i) �T z}.

If such y1, y2 exist, remove all z ≥Ti
y1 from Ti. For each i, j,1 ≤ i < j ≤ m, such that

X(i) = X(j) = ∅, if Ti � T j and σ(i) = σ(j) then remove T j. Thus, each Ti satisfies the

minimality condition for the canonical parameter set. Since the isomorphism problem for

finite trees is decidable in linear time [58], this step can be done in time O(
∑m

i=1 |Ti|
2).

For each i ∈ {1, . . . ,m} with X(i) , ∅, let ti be the root of Ti × {0}. Look for x ∈ T0 such

that x ≤T σ(i), and the subtree of T0 with domain {y | x ≤T y ∧ ti �T y} is isomorphic to Ti.

If such an x exists, remove all y ≥T0 x from T0. Now T0 satisfies the minimality condition.

Again this step can be done in time O(
∑m

i=1 |Ti|
2).

For each i ∈ {1, . . . ,m}, search for the <T0-least x such that the subtree of T0 with domain

{z ∈ T0 | x ≤T0 z} is isomorphic to a subtree of Ti with domain {z ∈ Ti | y ≤Ti
z} for some

y <Ti
X(i). If such an x exists, remove all y ≥T0 x from T0. This step ensures that T0 has the

fewest possible nodes with respect to Ti; it can be done in time O(
∑m

i=1 |Ti|
2).

4.5. UNARY AUTOMATIC TREES 95

Finally, we permute T1, . . . ,Tm so that T1 � . . . � Tm. We assume that finite trees can

be efficiently encoded as natural numbers and hence applying a sorting algorithm on m of

them takes O(m log m). Whenever we find Ti � T j(i , j) with σ(i) = σ(j) and X(i) = X(j) = ∅,

keep Ti and delete T j. Converting Γ to a canonical parameter set takes O(n3) and thus we

have built such a canonical parameter set in O(n4) time.

Proof of Theorem 4.5.9. Suppose T1,T2 are presented by unary automata A1,A2 with

n1, n2 states (respectively). Let n = max{n1, n2} By Theorem 4.5.4 and Lemma 4.5.10,

deciding if T1 � T2 reduces to checking finitely many isomorphisms of finite trees. The

appropriate canonical parameter sets are built in O(n3) time and each have O(n2) finite

trees, each of size O(n). Hence, this isomorphism algorithm runs in O(n3) time.

4.5.3 State complexity

Suppose T = UF(Γ) and Γ = (T0,T1, . . . ,Tm, σ,X) is the canonical parameter set of T. Let

t = |T0| and ℓ =
∑m

i=1 |Ti|. The proof of Theorem 4.5.4 gives an upper bound on the state

complexity of unary automatic trees in terms of t and ℓ.

Theorem 4.5.11 The state complexity of unary automatic tree T is less than (t + ℓ)2 − tℓ + t + ℓ

and greater than ℓ2.

Proof. The automatonA built in the proof of Theorem 4.5.4 has size t(t+ ℓ)+ 2ℓ2 + t+ ℓ. To

further reduce the number of states, we can permute the domain of the tree so that if j ∈ A

then q j has a (⋄, 1)-tail of length ℓ and a (⋄, 1)-loop of length 1, and if j ∈ C then q j has a (⋄, 1)-

loop of length ℓ and no (⋄, 1)-tail. Therefore the size ofA is t(t+ℓ)+ℓ2+t+ℓ = (t+ℓ)2−tℓ+t+ℓ.

When T1, . . . ,Tm are pairwise non-isomorphic, the loop length of A is at least ℓ and

there are at least ℓ (⋄, 1)-states out of each q j on the (1, 1)-loop. Therefore the state complexity

is bounded below by ℓ2.

Corollary 4.5.12 The (unary) state complexity of a unary automatic tree T is quadratic in the

parameters t, ℓ of its canonical parameter set.

96 Chapter4. The Complexity of Unary Automatic Structures

Chapter 5

The Isomorphism Problem for

Automatic Structures

This chapter continues to study automatic structures over arbitrary finite alphabets. It is

well-known that the isomorphism problem for automatic structures in general is complete

forΣ1
1
, the first existential level of the analytical hierarchy [72]. Using direct interpretations,

the isomorphism problem is shown to be also Σ1
1
-complete for the class of automatic suc-

cessor trees, automatic undirected graphs, automatic partial orders etc. On the other hand,

the problem is decidable for automatic ordinals and Boolean algebras. An intermediate

class it the class of automatic graphs of finite degrees, for which the isomorphism problem

is complete for Π0
3
.

In [71], B. Khoussainov and A. Nerode asked, among other open questions on auto-

matic structures, whether the isomorphism problem is decidable for automatic equivalence

structures (Question 4.2 of [71]) and automatic linear orders (Question 4.3 of [71]). These

questions have been open for more than 15 years. For the class of equivalence structures,

it has been conjectured that the isomorphism problem is decidable [71]. Also presented in

[71] are the following questions:

• (Question 4.6 of [71]) Provide natural examples of classes of automatic structures for

which the isomorphism is Σ0
k
- or Π0

k
-complete, where k ∈N.

• (Question 4.7 of [71]) Prove that between any word automatic isomorphic linear

orders (trees) there is always a computable isomorphism.

In this chapter, we answer all the above questions negatively (with the exception of

Ques.4.6) by proving the following:

– The isomorphism problem for automatic equivalence structures is Π0
1
-complete.

97

98 Chapter 5. The Isomorphism Problem for Automatic Structures

– The isomorphism problem for automatic successor trees of finite height k ≥ 2 is

Π0
2k−3

-complete.

– The isomorphism problem for automatic linear orders is hard for every level of the

arithmetic hierarchy.

– For any k ∈ N, there exist two isomorphic automatic trees of finite height (and two

automatic linear orders) without any Σ0
k
-isomorphism.

Most hardness proofs for automatic structures, in particular the Σ1
1
-hardness proof for

the isomorphism problem of automatic structures from [72], use configuration graphs of

Turing-machines (which are automatic structures as stated in Example 2.5.8). This tech-

nique does not generalize to transitive relations (the transitive closure of the configuration

graph of a Turing-machine cannot be automatic in general), and hence it cannot be applied

to automatic equivalence structures and linear orders. Our proofs are based on the unde-

cidability of Hilbert’s 10th problem (see Example 2.3.5). The technique is used in Honkala

[56] in proving the undecidability of whether a rational power series has range N. Using

a similar encoding, we show that the isomorphism problem for automatic equivalence

relation is Π0
1
-complete. Next, we extend our technique to show that the isomorphism

problem for automatic successor trees of height k ≥ 2 is Π0
2k−3

-complete. In some sense,

our result for equivalence relations makes up the induction base k = 2. Finally, we solve

the problem for linear orders using a more elaborate construction involving shuffle sums.

5.1 Automatic equivalence structures

In this section, we prove that the isomorphism problem for automatic equivalence struc-

tures is Π0
1
-complete. This result can be also deduced from our result for automatic trees

(Section 5.2). But the case of equivalence structures is a good starting point for introducing

our techniques.

This chapter uses the following operations on automata:

– Given two automata A1 = (S1,∆1, I1, F1) and A2 = (S2,∆2, I2, F2) over the same

alphabet Σ, we useA1 ⊎A2 to denote the automaton obtained by taking the disjoint

union ofA1 andA2. Note that for any word u ∈ Σ+, the number of accepting runs of

A1 ⊎A2 on u is equal to the sum of the numbers of accepting runs ofA1 andA2 on

u.

– We useA1 ×A2 to denote the Cartesian product ofA1 and A2. It is the automaton

(S1 × S2,∆, I1 × I2, F1 × F2), where

∆ =
{
((p1, p2), σ, (q1, q2)) | (p1, σ, q1) ∈ ∆1, (p2, σ, q2) ∈ ∆2

}

5.1. AUTOMATIC EQUIVALENCE STRUCTURES 99

Then, clearly, the number of accepting runs ofA1 ×A2 on a word u ∈ L(A1) ∩ L(A2)

is the product of the numbers of accepting runs of A1 and A2 on u. In particular, if

A1 is deterministic, then the number of accepting runs ofA1 ×A2 is the same as the

number of accepting runs ofA2 on u.

– IfA is a non-deterministic automaton and D is a regular language, we write D ⊎A

(resp. D ∩ A) for the automaton AD ⊎ A (resp. AD × A), where AD is some

deterministic automaton for the language D.

Lemma 5.1.1 The isomorphism problem for automatic equivalence structures is in Π0
1
.

Proof. Let E be an automatic equivalence structure. Recall that hE is the height function of

E (defined in Section 4.4). Note that for given n ∈N∪{ℵ0}, the value hE(n) can be computed

effectively: one can define in FO + ∃∞ the set of all ≤llex-least elements that belong to an

equivalence class of size n.

Given two automatic equivalence structures E1 = (D1; E1) and E2 = (D2; E2), deciding

if E1 � E2 amounts to checking if hE1
= hE2

:

∀n ∈N : hE1
(n) = hE2

(n).

Therefore, the isomorphism problem for automatic equivalence structures is in Π0
1
.

For the Π0
1

lower bound, we use a reduction from Hilbert’s 10th problem: Given a

polynomial p(x1, . . . , xk) ∈ Z[x1, . . . , xk], decide whether the equation p(x1, . . . , xk) = 0 has a

solution in N+. Example 2.3.5 shows that the following set is Π0
1
-complete:

{(p1(x), p2(x)) ∈N[x1, . . . , xk]2 | ∀c ∈Nk
+ : p1(c) , p2(c)}.

For a symbol a, let Σa
k

denote the alphabet

Σa
k = {a, ⋄}

k \ {(⋄, . . . , ⋄)}

and let σi denote the ith component of σ ∈ Σa
k
. For e = (e1, . . . , ek) ∈Nk

+, write ae for the word

ae1 ⊗ ae2 ⊗ · · · ⊗ aek .

For a language L, we write ⊗k(L) for the language

{u1 ⊗ u2 ⊗ · · · ⊗ uk | u1, . . . , uk ∈ L}.

Lemma 5.1.2 There exists an algorithm that, given a non-zero polynomial p(x) ∈ N[x] in k

variables, constructs a non-deterministic automatonA[p(x)] on the alphabet Σa
k

with L(A[p(x)]) =

⊗k(a+) such that for all c ∈Nk
+: A[p(x)] has exactly p(c) accepting runs on input ac.

100 Chapter 5. The Isomorphism Problem for Automatic Structures

Proof. The automatonA[p(x)] is build by induction on the construction of the polynomial

p, the base case is provided by the polynomials 1 and xi.

LetA[1] be a deterministic automata accepting ⊗k(a+). Next, suppose p(x1, . . . , xk) = xi

for some i ∈ {1, . . . , k}. Let S = {q1, q2}, I = {q1} and F = {q2}. Define ∆ as

∆ = {(q1, σ, q j) | j ∈ {1, 2}, σ ∈ Σa
k, σi = a} ∪ {(q2, σ, q2) | σ ∈ Σa

k}.

When the automaton A[p(x)] = (S, I,∆, F) runs on an input word ac, it has exactly ci many

times the chance to move from state q1 to the final state q2. Therefore there are exactly

ci = p(c) many accepting runs on ac.

Let p1(x) and p2(x) be polynomials in N[x]. Assume as inductive hypothesis that there

are two automataA[p1(x)] andA[p2(x)] such that for i ∈ {1, 2} the number of accepting runs

ofA[pi(x)] on ac equals pi(c).

For p(x) = p1(x)+p2(x), setA[p(x)] = A[p1(x)]⊎A[p2(x)]. Then, the number of accepting

runs ofA[p(x)] on ac is p1(c) + p2(c).

For p(x) = p1(x) · p2(x), letA[p(x)] = A[p1(x)]×A[p2(x)]. Then, the number of accepting

runs ofA[p(x)] on ac is p1(c) · p2(c).

LetA = (S, I,∆, F) be a non-deterministic finite automaton with alphabet Σ. We define an

automaton RunA = (S, I,∆′, F) with alphabet ∆ and

∆′ = {(p, (p, a, q), q) | (p, a, q) ∈ ∆}.

Let π : ∆∗ → Σ∗ be the projection morphism with π(p, a, q) = a. The following lemma is

immediate from the definition.

Lemma 5.1.3 For u ∈ ∆+ we have: u ∈ L(RunA) if and only if u forms an accepting run ofA on

π(u) (which in particular implies π(u) ∈ L(A)).

This lemma implies that for all words w ∈ Σ+, |π−1(w) ∩ L(RunA)| equals the number of

accepting runs ofA on w. Note that this does not hold for w = ε.

Consider a non-zero polynomial p(x) ∈ N[x1, . . . , xk]. Let the automaton A = A[p(x)]

satisfy the properties guaranteed by Lemma 5.1.2 and let RunA be as defined above. Define

an automatic equivalence structure E(p) whose domain is L(RunA) \ {ε}. Moreover, two

words u, v ∈ L(RunA) \ {ε} are equivalent if and only if π(u) = π(v). By definition and

Lemma 5.1.2, a natural number y ∈N+ belongs to Img+(p) if and only if there exists a word

u ∈ L(A) with precisely y accepting runs, if and only if E(p) contains an equivalence class

of size y.

It is well known that the function C : N ×N→N with

C(x, y) = (x + y)2 + 3x + y (5.1)

5.1. AUTOMATIC EQUIVALENCE STRUCTURES 101

is injective (C(x, y)/2 defines a pairing function, see e.g. [56]). In the following, let EGood

denote the countably infinite equivalence structure with

hEGood
(n) =


∞ if n ∈ {C(y, z) | y, z ∈N+, y , z}

0 otherwise.

Proposition 5.1.4 The set of automatic presentations P with S(P) � EGood is hard for Π0
1
.

Proof. For non-zero polynomials p1(x), p2(x) ∈ N[x1, . . . , xk], define the following three

(non-zero) polynomials from N[x1, . . . , xk] (with k ≥ 2):

S1(x) = C(p1(x), p2(x)), S2(x) = C(x1 + x2, x1), S3(x) = C(x1, x1 + x2).

Let E(S1), E(S2), and E(S3) be the automatic equivalence structures corresponding to these

polynomials according to the above definition. Finally, let E be the disjoint union of ℵ0

many copies of these three equivalence structures.

If p1(c) = p2(c) for some c ∈ Nk
+, then there is y ∈ N+ such that C(y, y) ∈ Img+(S1).

Therefore in E there is an equivalence class of size C(y, y) and no such equivalence class

exists in EGood. Hence E � EGood.

Conversely, suppose that p1(c) , p2(c) for all c ∈ Nk
+. For all y, z ∈ N+, E contains

an equivalence class of size C(y, z) if and only if C(y, z) belongs to Img+(S1) ∪ Img+(S2) ∪

Img+(S3), if and only if y , z, if and only if EGood contains an equivalence class of size

C(y, z). Therefore, for any s ∈ N+, E contains an equivalence class of size s if and only if

EGood contains an equivalence class of size s. Hence E � EGood.

In summary, we have reduced the Π0
1
-hard problem

{(p1(x), p2(x)) ∈N[x1, . . . , xk]2 | k ≥ 2,∀c ∈Nk
+ : p1(c) , p2(c)}

to the set of automatic presentations of EGood. Hence the proposition is proved.

Theorem 5.1.5 The isomorphism problem for automatic equivalence structures is Π0
1
-complete.

Proof. At the beginning of this section, we already argued that the isomorphism problem

is in Π0
1
; hardness follows immediately from Proposition 5.1.4, since EGood is necessarily

automatic.

Definition 5.1.6 A graphG is strongly locally finite if every component ofG forms a finite graph.

Corollary 5.1.7 The isomorphism problem for automatic strongly locally finite graphs is Π0
1
-

complete.

102 Chapter 5. The Isomorphism Problem for Automatic Structures

Proof. The Π0
1
-hardness immediately follows from Theorem 5.1.5 since the equivalence

structure EGood we constructed when viewed as a graph is strongly locally finite. The Π0
1
-

membership can be proved in a similar way as Lemma 5.1.1. LetG be an automatic strongly

locally finite graph. For every finite graphH , define hG(H) as the (possibly infinite) number

of nodes in G whose component is isomorphic to H . Since the isomorphism type of any

finite graph can be defined in first-order logic, the function hG is computable. Note that for

two automatic strongly locally finite graphs G1 and G2, G1 � G2 if and only if

∀ finite graphH : hG1
(H) = hG2

(H).

Hence the isomorphism problem is in Π0
1
.

Remark. There exists a computable isomorphism between any two automatic presentations

of a strongly locally finite graph. Indeed, let G1 � G2 to two such automatic presentations.

For each node u in G1, we can effectively compute the component C(u) of u and locate in

G2 all copies of C(u). An isomorphism can then be effectively constructed by mapping the

isomorphic components in G1 and G2.

5.2 Automatic trees

In this section we assume the definition for trees as in Example 2.1.5, but will quite often

refer to them as graphs for convenience (see Example 2.2.2). We useTn to denote the class of

automatic trees with height at most n. Let n be fixed. Then the tree order ≤ is FO-definable

in T and this holds even uniformly for all trees fromTn. Moreover, it is decidable whether a

given automatic graph belongs toTn (since the class of trees of height n can be axiomatized

in first-order logic).

As a corollary to Proposition 5.1.4, we get immediately that the isomorphism problem

for automatic trees of height at most 2 is undecidable:

Corollary 5.2.1 There exists an automatic tree TGood of height 2 such that the set of automatic

presentations P with S(P) � TGood isΠ0
1
-hard. Hence, the isomorphism problem for the class T2 of

automatic trees of height at most 2 is Π0
1
-hard.

Proof. Let E = (V;≡) be an automatic equivalence structure. Now build the tree T(E) as

follows:

– the set of nodes is V ∪ {r} ∪ {au | u ∈ V, u is ≤llex-minimal in [u]≡} where r and a are

two new letters

– r is the root, its children are the words starting with a, and the children of au are the

words from [u]≡.

5.2. AUTOMATIC TREES 103

Then it is clear that T(E) is a tree of height at most 2 and that an automatic presentation

for T(E) can be computed from one for E. Furthermore, E � EGood if and only if T(E) �

T(EGood). Hence, indeed, the statement follows from Proposition 5.1.4.

The hardness statement of Theorem 5.2.13 below is a generalization of this corollary to all

the classes Tn for n ≥ 2. But first, we prove an upper bound for the isomorphism problem

for Tn:

Proposition 5.2.2 The isomorphism problem for the class Tn of automatic trees of height at most

n is

– decidable for n = 1 and

– in Π0
2n−3

for all n ≥ 2.

Proof. We first show that T1 � T2 is decidable for automatic trees T1,T2 ∈ T1 of height at

most 1: It suffices to compute the cardinality of Ti (i ∈ {1, 2}) which is possible since the

universes of T1 and T2 are regular languages.

Now let n ≥ 2 and consider T1,T2 ∈ Tn. Let Ti = (Vi,Ei), w.l.o.g. V1 ∩ V2 = ∅, and

V = V1 ∪ V2, E = E1 ∪ E2. For any node u in V, let T(u) denote the subtree (of either T1 or

T2) rooted at u and let E(u) be the set of children of u. For k = n − 2, n − 3, . . . , 0, we will

define inductively a Π0
2n−2k−3

-predicate isok(u1, u2) for u1, u2 ∈ V. This predicate expresses

that T(u1) � T(u2) provided u1 and u2 belong to level at least k. The result will follow since

T1 � T2 if and only if iso0(r1, r2) holds, where rσ is the root of Tσ.

For k = n − 2, the trees T(u1) and T(u2) have height at most 2 and we can define

ison−2(u1, u2) as follows:

∀κ ∈N ∪ {ℵ0} ∀ℓ ≥ 1




∃x1, . . . , xℓ ∈ E(u1) :
∧

1≤i< j≤ℓ

xi , x j ∧

ℓ∧

i=1

|E(xi)| = κ

⇐⇒ ∃y1, . . . , yℓ ∈ E(u2) :
∧

1≤i< j≤ℓ

yi , y j ∧

ℓ∧

i=1

|E(yi)| = κ




In other words: for every κ ∈ N ∪ {ℵ0}, u1 and u2 have the same number of children with

exactly κ children. Since FO + ∃∞ is uniformly decidable for automatic structures, this is

indeed a Π0
1
-sentence (note that 2n − 2k − 3 = 1 for k = n − 2). For 0 ≤ k < n − 2, we define

isok(u1, u2) inductively as follows:

∀v ∈ E(u1) ∪ E(u2) ∀ℓ ≥ 1




∃x1, . . . , xℓ ∈ E(u1) :
∧

1≤i< j≤ℓ

xi , x j ∧

ℓ∧

i=1

isok+1(v, xi)

⇐⇒ ∃y1, . . . , yℓ ∈ E(u2) :
∧

1≤i< j≤ℓ

yi , y j ∧

ℓ∧

i=1

isok+1(v, yi)




104 Chapter 5. The Isomorphism Problem for Automatic Structures

By quantifying over all v ∈ E(u1) ∪ E(u2), we quantify over all isomorphism types of trees

that occur as a subtree rooted at a child of u1 or u2. For each of these isomorphism types

τ, we express that u1 and u2 have the same number of children x with T(x) of type τ.

Since by induction, isok+1(v, xi) and isok+1(v, yi) are Π0
2n−2k−1

-statements, isok(u1, u2) is a

Π0
2n−2k−3

-statement.

The rest of this section is devoted to proving that the isomorphism problem on the class Tn

of automatic trees of height at most n ≥ 2 is also Π0
2n−3

-hard (and therefore complete). So

let Pn(x0) be a Π0
2n−3

-predicate. In the following lemma and its proof, all quantifiers with

unspecified range, run over N+.

Lemma 5.2.3 For 2 ≤ i ≤ n, there are Π0
2i−3

-predicates Pi(x0, x1, y1, x2, y2, . . . , xn−i, yn−i) such

that

(i) Pi+1(x) is logically equivalent to ∀xn−i∃yn−i : Pi(x, xn−i, yn−i) for 2 ≤ i < n and

(ii) ∀yn−i : ¬Pi(x, xn−i, yn−i) implies ∀x′
n−i
≥ xn−i ∀yn−i : ¬Pi(x, x′n−i

, yn−i),

where x = (x0, x1, y1, . . . , xn−i−1, yn−i−1).

Proof. The predicates Pi are constructed by induction, starting with i = n− 1 down to i = 2

where the construction of Pi does not assume that (i) or (ii) hold true for Pi+1.

So let 2 ≤ i < n such that Pi+1(x) is a Π0
2(i+1)−3

-predicate. Then there exists a Π0
2i−3

-

predicate P(x, xn−i, yn−i) such that Pi+1(x) is logically equivalent to

∀xn−i∃yn−i : P(x, xn−i, yn−i) .

But this is logically equivalent to

∀xn−i ∀x′n−i ≤ xn−i ∃yn−i : P(x, x′n−i, yn−i) . (5.2)

Let ϕ(x, xn−i) be

∀x′n−i ≤ xn−i ∃yn−i : P(x, x′n−i, yn−i) .

Then for any xn−i ∈N,

¬ϕ(x, xn−i) =⇒ ∀x ≥ xn−i : ¬ϕ(x, x) . (5.3)

Since ∀x′
n−i
≤ xn−i is a bounded quantifier, the formula ϕ(x, xn−i) belongs to Σ0

2i−2
(see for

example [109, p. 61]). Thus there is a Π0
2i−3

-predicate Pi(x, xn−i, yn−i) such that

ϕ(x, xn−i) ⇐⇒ ∃yn−i : Pi(x, xn−i, yn−i) . (5.4)

5.2. AUTOMATIC TREES 105

Therefore (5.2) (and therefore Pi+1(x)) is logically equivalent to ∀xn−i ∃yn−i : Pi(x, xn−i, yn−i).

Moreover,

∀yn−i : ¬Pi(x, xn−i, yn−i)
(5.4)
⇐⇒ ¬ϕ(x, xn−i)
(5.3)
=⇒ ∀x ≥ xn−i : ¬ϕ(x, x)
(5.4)
⇐⇒ ∀x ≥ xn−i ∀yn−i : ¬Pi(x, x, yn−i)

This shows (ii).

Let us fix the predicates Pi for the rest of Section 5.2. By induction on 2 ≤ i ≤ n, we will

construct the following trees:

– test trees Ti
c
∈ Ti for c ∈N

1+2(n−i)
+ (which depend on Pi) and

– trees Ui
κ ∈ Ti for κ ∈N+ ∪ {ω} (we assume the standard order on N+ ∪ {ω}).

The idea is that Ti
c
� Ui

κ if and only if κ = 1+ inf({xn−i | ∀yn−i ∈N+ : ¬Pi(c, xn−i, yn−i)}∪ {ω}).

We will not prove this equivalence, but the following simpler consequences for any c ∈

N
1+2(n−i)
+ :

(P1) Pi(c) holds if and only if Ti
c
� Ui

ω.

(P2) Pi(c) does not hold if and only if Ti
c
� Ui

m for some m ∈N+.

One might think that the first property suffices for provingΠ0
2n−3

-hardness (with i = n) and

that the trees Ui
m for m < ω are redundant. But we need these trees in order to carry out

the inductive step. We also need the following property for the construction.

(P3) No leaf of any of the trees Ti
c

or Ui
κ is a child of the root.

In the following section, we will describe the trees Ti
c

and Ui
κ of height at most i and

prove (P1) and (P2). Condition (P3) will be obvious from the construction. The subsequent

section is then devoted to prove the effective automaticity of these trees.

5.2.1 Construction of trees

We start with a few definitions: A forest is a disjoint union of trees. Let H1 and H2 be two

forests. The forest Hω
1

is the disjoint union of countably many copies of H1. Formally, if

H1 = (V,E), then Hω
1
= (V ×N,E′) with ((v, i), (w, j)) ∈ E′ if and only if (v,w) ∈ E and i = j.

We write H1 ∼ H2 for Hω
1
� Hω

2
. Then H1 ∼ H2 if they are formed, up to isomorphism, by

the same set of trees (i.e., any tree is isomorphic to some connected component of H1 if and

only if it is isomorphic to some connected component of H2). If H is a forest and r does not

belong to the domain of H, then we denote with r ◦H the tree that results from adding r to

H as new least element.

106 Chapter 5. The Isomorphism Problem for Automatic Structures

The tree T2
c

r

∀x ∈Nℓ−k
+

∀xℓ+1 ∈N+ ∀m,n
m , n

T[p1(c, x) + xℓ+1 ,
p2(c, x) + xℓ+1]

T[m,n]

The tree U2
κ

r

∀x > κ ∀m,n
m , n

T[x, x] T[m,n]

Figure 5.1: The tree T2
c

and U2
κ

5.2.1.1 Induction base: construction of T2
c

and U2
κ

For notational simplicity, we write k for 1 + 2(n − 2). Hence, P2 is a k-ary predicate. By

Matiyasevich’s theorem, we find two non-zero polynomials p1(x1, . . . , xℓ), p2(x1, . . . , xℓ) ∈

N[x], ℓ > k, such that for any c ∈Nk
+:

P2(c) holds ⇐⇒ ∀x ∈Nℓ−k
+ : p1(c, x) , p2(c, x) .

For two numbers m, n ∈ N+, let T[m, n] denote the tree of height 1 with exactly C(m, n)

leaves, where C is the injective polynomial function from (5.1). Then define the following

forests:

H2 =
⊎
{T[m, n] | m, n ∈N+,m , n}

H2
c
= H2 ⊎

⊎
{T[p1(c, x) + xℓ+1, p2(c, x) + xℓ+1] | x ∈Nℓ−k

+ , xℓ+1 ∈N+}

J2
κ = H2 ⊎

⊎
{T[x, x] | x ∈N+, x > κ} for κ ∈N+ ∪ {ω}

Note that J2
ω = H2. Moreover, the forests J2

κ (κ ∈ N+ ∪ {ω}) are pairwise non-isomorphic,

since C is injective.

The trees T2
c

and U2
κ, resp., are obtained from H2

c
and J2

κ, resp., by multiplying all trees

in these forests countably many times and adding a root afterwards:

T2
c
= r ◦ (H2

c
)ω U2

κ = r ◦ (J2
κ)ω, (5.5)

see Figure 5.1.

The following lemma (stating (P1) for theΠ0
1
-predicate P2 , i.e., for i = 2) can be proved

in a similar way as Theorem 5.1.5.

Lemma 5.2.4 For any c ∈Nk
+, we have:

P2(c) holds ⇐⇒ H2
c
∼ J2

ω ⇐⇒ T2
c
� U2

ω .

5.2. AUTOMATIC TREES 107

Proof. By (5.5), it suffices to show the first equivalence. So first assume P2(c) holds. We

have to prove that the forests H2
c

and J2
ω = H2 contain the same trees (up to isomorphism).

Clearly, every tree from H2 is contained in H2
c
. For the other direction, let x ∈ Nℓ−k

+ and

xℓ+1 ∈ N+. Then the tree T[p1(c, x) + xℓ+1, p2(c, x) + xℓ+1] occurs in H2
c
. Since P2(c) holds,

we have p1(c, x) , p2(c, x) and therefore p1(c, x) + xℓ+1 , p2(c, x) + xℓ+1. Hence this tree also

occurs in H2.

Conversely suppose H2
c
∼ H2 and let x ∈ Nℓ−k

+ . Then the tree T[p1(c, x) + 1, p2(c, x) + 1]

occurs in H2
c

and therefore in H2. Hence p1(c, x) , p2(c, x). Since x was chosen arbitrarily,

this implies P2(c).

Now consider the forest H2
c

once more. If it contains a tree of the form T[m,m] for some

m (necessarily m ≥ 2), then it contains all trees T[x, x] for x ≥ m. Hence, the forest H2
c

is

isomorphic to one of the forests J2
κ for some κ ∈N+∪ {ω}. Hence with Lemma 5.2.4 we get:

P2(c) does not hold ⇐⇒ H2
c
/ J2

ω ⇐⇒ ∃m ∈N+ : H2
c
∼ J2

m

Hence we proved the following lemma, which states (P2) for the Π0
1
-predicate P2, i.e., for

i = 2.

Lemma 5.2.5 For any c ∈Nk
+, we have:

P2(c) does not hold ⇐⇒ ∃m ∈N+ : T2
c
� U2

m .

This finishes the construction of the trees T2
c

and U2
κ for κ ∈ N+ ∪ {ω}, and the verification

of properties (P1) and (P2). Clearly, also (P3) holds for T2
c

and U2
κ (all maximal paths have

length 2).

5.2.1.2 Induction step: construction of Ti+1
c

and Ui+1
κ

For notational simplicity, we write again k for 1+2(n−i−1) such that Pi+1 is a k-ary predicate

and Pi a (k + 2)-ary one.

We now apply the induction hypothesis. For any c ∈ Nk
+, x, y ∈ N+, κ ∈ N+ ∪ {ω} let

Ti
cxy

and Ui
κ be trees of height at most i such that:

– Pi(c, x, y) holds if and only if Ti
cxy
� Ui

ω.

– Pi(c, x, y) does not hold if and only if Ti
cxy
� Ui

m for some m ∈N+.

In a first step, we build the trees T′
cxy

and U′κ,x (x ∈N+) from Ti
cxy

and Ui
κ, resp., by adding

108 Chapter 5. The Isomorphism Problem for Automatic Structures

The tree Ti+1
c

r

∀x,m ∈N+ ∀x, y ∈N+

. . .︸︷︷︸
x

Ui
m

. . .︸︷︷︸
x

Ti
cxy

The tree Ui+1
κ

r

∀x,m ∈N+ ∀1 ≤ x < κ

. . .︸︷︷︸
x

Ui
m

. . .︸︷︷︸
x

Ui
ω

Figure 5.2: The tree Ti+1
c

and Ui+1
κ

x leaves as children of the root. This ensures

T′
cxy
� T′

cx′y′
⇐⇒ x = x′ ∧ Ti

cxy
� Ti

cx′y′
and (5.6)

T′
cxy
� U′κ,x′ ⇐⇒ x = x′ ∧ Ti

cxy
� Ui

κ , (5.7)

since, by property (P3), no leaf of any of the trees Ti
cxy

or Ui
κ is a child of the root. Next, we

collect these trees into forests as follows:

Hi+1 =
⊎
{U′m,x | x,m ∈N+} ,

Hi+1
c
= Hi+1 ⊎

⊎
{T′

cxy
| x, y ∈N+} , and

Ji+1
κ = Hi+1 ⊎

⊎
{U′ω,x | 1 ≤ x < κ} for κ ∈N+ ∪ {ω}.

The trees Ti+1
c

and Ui+1
κ , resp., are then obtained from the forests Hi+1

c
and Ji+1

κ , resp., by

multiplying all trees in these forest countably many times and adding a root afterwards:

Ti+1
c
= r ◦ (Hi+1

c
)ω and Ui+1

κ = r ◦ (Ji+1
κ)ω, (5.8)

see Figure 5.2.

Note that the height of any of these trees is one more than the height of the forests

defining them and therefore at most i + 1. Since none of the connected components of the

forests Hi+1
c

and Ji+1
κ is a singleton, none of the trees in (5.8) has a leaf that is a child of the

root and therefore (P3) holds.

Lemma 5.2.6 For all c ∈Nk
+ we have

Pi+1(c) holds ⇐⇒ Hi+1
c
∼ Ji+1

ω ⇐⇒ Ti+1
c
� Ui+1

ω .

Proof. Again, we only have to prove the first equivalence.

First assume Hi+1
c
∼ Ji+1

ω and let x ≥ 1 be arbitrary. We have to exhibit some y ≥ 1 such

5.2. AUTOMATIC TREES 109

that Pi(c, x, y) holds. Note that U′ω,x belongs to Ji+1
ω and therefore to Hi+1

c
. Since U′ω,x � U′m,x′

for any m, x, x′ ∈ N+, this implies the existence of x′, y′ ≥ 1 with T′
cx′y′
� U′ω,x. By (5.7),

this is equivalent with x = x′ and Ti
cxy′
� Ui

ω. Now the induction hypothesis implies that

Pi(c, x, y′) holds. Since x ≥ 1 was chosen arbitrarily, we can deduce Pi+1(c).

Conversely suppose Pi+1(c). Let T belong to Hi+1
c

. By the induction hypothesis, it is one

of the trees U′κ,x for some x ∈ N+, κ ∈ N+ ∪ {ω}. In any case, it also belongs to Ji+1
ω . Hence

it remains to show that any tree of the form U′ω,x belongs to Hi+1
c

. So let x ∈ N+. Then, by

Pi+1(c), there exists y ∈N+ with Pi(c, x, y). By the induction hypothesis, we have Ti
cxy
� Ui

ω

and therefore T′
cxy
� U′ω,x (which belongs to Hi+1

c
by the very definition).

Lemma 5.2.7 For all c ∈Nk
+ there exists κ ∈N+ ∪ {ω} such that Ti+1

c
� Ui+1

κ .

Proof. It suffices to prove that Hi+1
c
∼ Ji+1

κ for some κ ∈N+ ∪ {ω}. Choose κ as the smallest

value in N+ ∪ {ω} such that

∀x ≥ κ∀y : ¬Pi(c, x, y)

holds. By property (ii) from Lemma 5.2.3 for Pi, we get

∀1 ≤ x < κ∃y : Pi(c, x, y).

By the induction hypothesis, we get

∀x ≥ κ∀y : T′
cxy

� U′ω,x and ∀1 ≤ x < κ∃y : T′
cxy
� U′ω,x .

It follows that Hi+1
c

contains, apart from the trees in Hi+1 =
⊎
{U′m,x | x,m ∈N+}, exactly the

trees from
⊎
{U′ω,x | 1 ≤ x < κ}. Hence, Hi+1

c
∼ Ji+1

κ .

Lemma 5.2.6 and 5.2.7 immediately imply:

Lemma 5.2.8 For all c ∈Nk
+ we have

Pi+1(c) does not hold ⇐⇒ ∃m ∈N+ : Ti+1
c
� Ui+1

m .

In summary, we obtained the following:

Proposition 5.2.9 Let n ≥ 2 and let P(x) be a Π0
2n−3

-predicate. Then, for any c ∈N+, we have

P(c) holds ⇐⇒ Tn
c � Un

ω .

To infer the Π0
2n−3

-hardness of the isomorphism problem for Tn from this proposition, it

remains to be shown that the trees Tn
c and Un

ω are effectively automatic – this is the topic of

the next section.

110 Chapter 5. The Isomorphism Problem for Automatic Structures

5.2.2 Automaticity

For constructing automatic presentations for the trees from the previous section, it is

actually easier to work with dags (directed acyclic graphs). The height of a dag D is the length

(number of edges) of a longest directed path in D. We only consider dags of finite height.

A root of a dag is a node without incoming edges. A dag D = (V,E) can be unfolded into a

forest unfold(D) in the usual way: Nodes of unfold(D) are directed paths in D that cannot

be extended to the left (i.e., the initial node of the path is a root) and there is an edge

between a path p and a path p′ if and only if p′ extends p by one more node. For a node

v ∈ V of D, we define the tree unfold(D, v) as follows: First we restrict D to those nodes that

are reachable from v and then we unfold the resulting dag. We need the following lemma.

Lemma 5.2.10 From given k ∈ N and an automatic dag D = (V,E) of height at most k, one can

construct effectively an automatic presentation P with S(P) � unfold(D).

Proof. The universe for our automatic copy of unfold(D) is the set P of all convolutions

v1 ⊗ v2 ⊗ · · · ⊗ vm, where v1 is a root and (vi, vi+1) ∈ E for all 1 ≤ i < m. Since D has height

at most k, we have m ≤ k. Since the edge relation of D is automatic and since the set of all

roots in D is first-order definable and hence regular, P is indeed a regular set. Moreover,

the edge relation of unfold(D) becomes clearly FA recognizable on P.

For 2 ≤ i ≤ n, let us consider the following forest:

Fi =
⊎
{Ti

c
| c ∈N

1+2(n−i)
+ } ⊎

⊎
{Ui

m | m ∈N+ ∪ {ω}} .

Technically, this section proves by induction over i the following statement:

Proposition 5.2.11 From ℓ ∈ N+, p1, p2 ∈ N[x1, . . . , xℓ] and 2 ≤ i ≤ n, we can compute an

automatic copy F i of Fi such that there exists an isomorphism f i : Fi → F i that maps

1. the root of the tree Ti
c

to ac (for all c ∈N
1+2(n−i)
+),

2. the root of the tree Ui
ω to ε, and

3. the root of the tree Ui
m to bm (for all m ∈N+).

This will give the desired result since Tn
c is then isomorphic to the connected component of

F n that contains the word ac (and similarly for Un
κ). Note that this connected component

is again automatic by Theorem 2.5.11, since the forest F n has bounded height.

By Lemma 5.2.10, it suffices to construct an automatic dag Di such that there is an

isomorphism h : unfold(Di)→ F i that is the identity on the set of roots ofDi.

5.2. AUTOMATIC TREES 111

5.2.2.1 Induction base: the automatic dagD2

Recall the definitions of Σa
ℓ, ae, and ⊗k(L) from Section 5.1.

Lemma 5.2.12 From ℓ ∈N+, q1, q2 ∈N[x1, . . . , xℓ], and a symbol a, one can compute an automatic

forest of height 1 over an alphabet Σa
ℓ ⊎ Γ such that

– the roots are the words from ⊗ℓ(a
+),

– the leaves are words from Γ+, and

– the tree rooted at ae is isomorphic to T[q1(e), q2(e)].

Proof. Set p(x1, . . . , xℓ) = C(q1(x1, . . . , xℓ), q2(x1, . . . , xℓ)) and recall the definition of the au-

tomataA[p] and RunA[p] from Section 5.1. Recall also that we let π be the projection with

π(p, a, q) = a for a transition (p, a, q) ofA[p]. Then let

L[q1, q2] = ⊗ℓ(a
+) ∪ (π−1(⊗ℓ(a

+)) ∩ L(RunA[p])) and

E[q1, q2] = {(u, v) | u ∈ ⊗ℓ(a
+), v ∈ π−1(u) ∩ L(RunA[p])} .

Then L[q1, q2] is regular and E[q1, q2] is automatic, i.e., the pair (L[q1, q2]; E[q1, q2]) is an

automatic graph. It is actually a forest of height 1, the words from ⊗ℓ(a
+) form the roots,

and the tree rooted at ae has precisely p(e) leaves, i.e., it is isomorphic to T[q1(e), q2(e)].

From now on, we use the notations from Section 5.2.1.1. Using Lemma 5.2.12, we can

compute automatic forests F1 and F2 over alphabets Σa
ℓ+1
⊎ Γ1 and Σb

2
⊎ Γ2, respectively,

such that

(a) the roots of F1 are the words from ⊗ℓ+1(a+),

(b) the roots of F2 are the words from ⊗2(b+),

(c) the leaves of Fi are words from Γ+
i

(i ∈ {1, 2}),

(d) the tree rooted at aeeℓ+1 is isomorphic to T[p1(e)+eℓ+1, p2(e)+eℓ+1] for e ∈Nℓ
+, eℓ+1 ∈N+,

(e) the tree rooted at be1e2 is isomorphic to T[e1, e2] for e1, e2 ∈N+.

We can assume that the alphabets Γ1, Γ2, Σa
ℓ+1

, and Σb
2

are mutually disjoint. Let F =

(VF ,EF) be the disjoint union of F1 and F2; it is effectively automatic.

The universe of the automatic dagD2 is the regular language

⊗k(a+) ∪ b∗ ∪ ($∗ ⊗ VF),

where $ is a new symbol. We have the following edges:

112 Chapter 5. The Isomorphism Problem for Automatic Structures

unfold(D2, ac) � T2
c

ac

ac ⊗ $m ⊗ acx ac ⊗ $m ⊗ be1e2

∀m ∈N
∀x ∈Nℓ−k+1

+ ∀m, e1, e2
e1 , e2

T[p1(c, x) + xℓ+1 ,
p2(c, x) + xℓ+1]

T[e1, e2]

unfold(D2, ε) � U2
ω

ε

ε ⊗ $m ⊗ be1e2

∀m, e1, e2
e1 , e2

T[e1, e2]

unfold(D2, bm) � U2
m

bm

bm ⊗ $n ⊗ be1e2

∀n, e1, e2
e1 , e2 or

e1 = e2 > m

T[e1, e2]

Figure 5.3: Automatic presentation of T2
c

and U2
κ

– For u, v ∈ VF , $m ⊗ u is connected to $n ⊗ v if and only if m = n and (u, v) ∈ EF . This

produces α0 many copies of F .

– ac is connected to any word from $∗ ⊗ ({ac x | x ∈ Nℓ−k+1
+ } ∪ {be1e2 | e1 , e2}). By

point (d) and (e) above, this means that the tree unfold(D2, ac) has ℵ0 many subtrees

isomorphic to T[p1(c x) + xℓ+1, p2(c x) + xℓ+1] for x ∈ Nℓ−k
+ , xℓ+1 ∈ N+ and T[e1, e2] for

e1, e2 ∈N+, e1 , e2. Hence, unfold(D2, ac) � T2
c
.

– ε is connected to all words from $∗ ⊗ {be1e2 | e1 , e2}. By (e) above, this means that the

tree unfold(D2, ε) has ℵ0 many subtrees isomorphic to T[e1, e2] for e1, e2 ∈N+, e1 , e2.

Hence, unfold(D2, ε) � U2
ω.

– bm (m ∈ N+) is connected to all words from $∗ ⊗ {be1e2 | e1 , e2 or e1 = e2 > m}. By (e)

above, this means that the tree unfold(D2, bm) has ℵ0 many subtrees isomorphic to

T[e1, e2] for all e1, e2 ∈N+ with e1 , e2 or e1 = e2 > m. Hence, unfold(D2, bm) � U2
m.

Thus, unfold(D2) � F2 and the roots are as required in Proposition 5.2.11, see Figure 5.3.

Moreover, it is clear thatD2 is automatic.

5.2.2.2 Induction step: the automatic dagDi+1

SupposeDi = (V,E) is such that F i = unfold(Di) is as described in Proposition 5.2.11.

We use the notations from Section 5.2.1.2. We first build another automatic dag D′,

whose unfolding will comprise (copies of) all the trees U′κ,x (κ ∈N+∪ {ω}, x ∈N+) and T′
cxy

(c ∈ Nk
+, x, y ∈ N+). Recall that the set of roots of Di is ⊗k+2(a+) ∪ b∗ ⊆ V. The universe of

D′ consists of the regular language

(V \ b∗) ∪ (♯+ ⊗ b∗) ∪ ♯+1 ♯
∗
2,

where ♯, ♯1, and ♯2 are new symbols. We have the following edges inD′:

5.2. AUTOMATIC TREES 113

– All edges from E except those with an initial node in b∗ are present inD′.

– acxy ∈ V is connected to all words of the form ♯i
1
♯x−i

2
for c ∈ Nk

+, x, y ∈ N+, and

1 ≤ i ≤ x. This ensures that the subtree rooted at acxy gets x new leaves, which are

children of the root. Hence unfold(D′, acxy) � T′
cxy

.

– ♯x ⊗ bm for x ∈N+ and m ∈N is connected to (i) all nodes to which bm is connected in

Di and to (ii) all nodes from ♯i
1
♯x−i

2
for 1 ≤ i ≤ x. This ensures that unfold(D′, ♯x⊗bm) �

U′m,x in case m ∈N+ and unfold(D′, ♯x ⊗ ε) � U′ω,x.

In summary, D′ is an dag, whose unfolding consists of (a copy of) U′ω,x rooted at ♯x ⊗ ε,

U′m,x (m ∈N+) rooted at ♯x ⊗ bm, and T′
cxy

rooted at acxy.

From the automatic dagD′, we now build in a final step the automatic dagDi+1. This

is very similar to the constructions ofD2 andD′ above. Let V′ be the universe ofD′. The

universe ofDi+1 is the regular language

⊗k(a+) ∪ b∗ ∪ ($∗ ⊗ V′) .

The edges are as follows:

– For u, v ∈ V′, $m ⊗ u is connected to $n ⊗ v if and only if m = n and (u, v) is an edge of

D′. This generates ℵ0 many copies ofD′.

– ac is connected to every word from $∗ ⊗ ({acxy | x, y ∈N+} ∪ (♯+ ⊗ b+)). Hence, the tree

unfold(Di+1, ac) has ℵ0 many subtrees isomorphic to T′
cxy

for x, y ∈ N+ and U′m,x for

x,m ∈N+. Thus, unfold(Di+1, ac) � Ti+1
c

.

– ε is connected to all words from $∗ ⊗ (♯+ ⊗ b∗). Hence, the tree unfold(Di+1, ε) has

ℵ0 many subtrees isomorphic to U′κ,x for all x ∈ N+ and κ ∈ N+ ∪ {ω}. Thus,

unfold(Di+1, ε) � Ui+1
ω .

– bm (m ∈N+) is connected to all words from $∗ ⊗ ((♯+ ⊗ b+)∪ {♯x ⊗ ε | 1 ≤ x < m}). This

means that the tree unfold(Di+1, bm) has ℵ0 many subtrees isomorphic to U′m,x for all

m, x ∈N+ and U′ω,x for all 1 ≤ x < m. Hence, unfold(Di+1, bm) � Ui+1
m .

See Figure 5.4, 5.5, and 5.6 for the overall construction. This finishes the proof of Proposi-

tion 5.2.11. Hence we obtain:

Theorem 5.2.13 1. For any n ≥ 2, the isomorphism problem for automatic trees of height at

most n is Π0
2n−3

-complete.

2. The isomorphism problem for the class of automatic trees of finite height is computably

equivalent to FOTh(N;+,×).

114 Chapter 5. The Isomorphism Problem for Automatic Structures

unfold(Di+1, ac) � Ti+1
c

ac

ac ⊗ $m ⊗ acxy ac ⊗ $m ⊗ ♯x ⊗ bn

∀m, x, y ∀m,n, x

1 ≤ i ≤ x. . .︸︷︷︸
ac ⊗ $m ⊗ acxy ⊗ ♯i

1
♯x−i

2

ac ⊗ $m ⊗ Ti
cxy

1 ≤ i ≤ x. . .︸︷︷︸
ac ⊗ $m ⊗ ♯x ⊗ bn ⊗ ♯i

1
♯x−i

2

ac ⊗ $m ⊗ ♯x ⊗Ui
n

Figure 5.4: Automatic presentation of Ti+1
c

unfold(Di+1, ε) � Ui+1
ω

ε

ε ⊗ $m ⊗ ♯x ⊗ ε ε ⊗ $m ⊗ ♯x ⊗ bn

∀m, x ∀m,n, x

1 ≤ i ≤ x. . .︸︷︷︸
ε ⊗ $m ⊗ ♯x ⊗ ε ⊗ ♯i

1
♯x−i

2

ε ⊗ $m ⊗ ♯x ⊗Ui
ω

1 ≤ i ≤ x. . .︸︷︷︸
ε ⊗ $m ⊗ ♯x ⊗ bn ⊗ ♯i

1
♯x−i

2

ε ⊗ $m ⊗ ♯x ⊗Ui
n

Figure 5.5: Automatic presentation of Ui+1
ω

Proof. We first prove the first statement. Containment in Π0
2n−3

was shown in Proposi-

tion 5.2.2. For the hardness, let P ⊆N+ be anyΠ0
2n−3

-predicate and let c ∈N+. Then, above,

we constructed the automatic forest F n of height n. The trees Tn
c and Un

ω are first-order

definable inF n since they are (isomorphic to) the trees rooted at ac and ε, resp. Hence these

two trees are automatic. By Proposition 5.2.9, they are isomorphic if and only if P(c) holds.

We now come to the second statement. Since the proof of the first statement is uniform in

the level n, we can compute from two automatic trees T1,T2 of finite height an arithmetical

formula, which is true if and only if T1 � T2. For the other direction, one observes that the

height of an automatic tree of finite height can be computed. Then the result follows from

the first statement because of the uniformity of its proof.

5.3 Computable trees of finite height

In this section, we briefly discuss the isomorphism problem for computable trees of finite

height.

5.4. AUTOMATIC LINEAR ORDERS 115

unfold(Di+1, bm) � Ui+1
m

bm

bm ⊗ $n ⊗ ♯x ⊗ ε bm ⊗ $n ⊗ ♯x ⊗ bh

∀n∀1 ≤ x < m
∀n, x, h

1 ≤ i ≤ x. . .︸︷︷︸
bm ⊗ $n ⊗ ♯x ⊗ ε ⊗ ♯i

1
♯x−i

2

bm ⊗ $n ⊗ ♯x ⊗Ui
ω

1 ≤ i ≤ x. . .︸︷︷︸
bm ⊗ $n ⊗ ♯x ⊗ bh ⊗ ♯i

1
♯x−i

2

bm ⊗ $n ⊗ ♯x ⊗Ui
h

Figure 5.6: Automatic presentation of Ui+1
m

Theorem 5.3.1 For every n ≥ 1, the isomorphism problem for computable trees of height at most n

is Π0
2n

-complete.

Proof. For the upper bound, let us first assume that n = 1. Two computable trees T1 and

T2 of height 1 are isomorphic if and only if: for every k ≥ 0, there exist at least k nodes in

T1 if and only if there exist at least k nodes in T2. This is a Π0
2
-statement. For the inductive

step, we can reuse the arguments from the proof of Proposition 5.2.2.

For the lower bound, we first note that the isomorphism problem for computable trees

of height 1 is Π0
2
-complete. It is known that the problem whether a given computably

enumerable set is infinite is Π0
2
-complete (See Example 2.3.4). For a given deterministic

Turing-machine M, we construct a computable tree T(M) of height 1 as follows: the set of

leaves of T(M) is the set of all accepting computations of M. We add a root to the tree and

connect the root to all leaves. If L(M) is infinite, then T(M) is isomorphic to the height-1

tree with infinitely many leaves. If L(M) is finite, then there exists m ∈ N such that T(M)

is isomorphic to the height-1 tree with m leaves. We can use this construction as the base

case for our construction in Section 5.2.1.2. This yields the lower bound for all n ≥ 1.

5.4 Automatic linear orders

Let I = (DI;≤I) be a linear order and let L = {Li | i ∈ DI} be a class of linear orders, where

Li = (Di;≤i) for i ∈ DI. The sum
∑
L is the linear order ({(x, i) | i ∈ DI, x ∈ Di};≤) where for

all i, j ∈ DI, x ∈ Di, and y ∈ D j,

(x, i) ≤ (y, j) ⇐⇒ i <I j ∨ (i = j ∧ x ≤i y) .

We use L1 + L2 to denote
∑
{Li | i ∈ 2}. We denote with L1 · L2 the sum

∑
{Li

1
| i ∈ L2} where

Li
1
� L1 for every i ∈ L2. An interval of a linear order L = (D;≤) is a subset I ⊆ D such that

x, y ∈ I and x < z < y imply z ∈ I.

116 Chapter 5. The Isomorphism Problem for Automatic Structures

Recall from Example 2.4.2 that ≤lex denotes the lexicographic order on words. For

convenience, we use ≤lex regardless of the corresponding alphabets and orders on the

alphabets. The precise definitions of ≤lex in different occurrences will be clear from the

context.

This section is devoted to proving that the isomorphism problem on the class of au-

tomatic linear orders is at least as hard as FOTh(N;+,×). To this end, it suffices to prove

(uniformly in n) Σ0
n-hardness for every even n. The general plan for this is similar to

the proof for trees of finite height: we use Hilbert’s 10th problem to handle Π0
1
-predicates

in several variables and an inductive construction of more complicated linear orders to

handle quantifiers, i.e., to proceed from a Π0
2i−1

- to a Σ0
2i

-predicate (and from a Σ0
2i

- to a

Π0
2i+1

-predicate).

So let n ≥ 1 be even and let Pn(x0) be a Σ0
n-predicate. For every odd (even) number

1 ≤ i < n, let Pi(x0, . . . , xn−i) be the Π0
i
-predicate (Σ0

i
-predicate) such that Pi+1(x0, . . . , xn−i−1)

is logically equivalent to Qxn−i : Pi(x0, . . . , xn−i) where Q = ∃ if i is odd and Q = ∀ if i is

even. We fix these predicates for the rest of Section 5.4.

By induction on 1 ≤ i ≤ n, we will construct from c ∈Nn−i+1
+ the following linear orders:

– a test linear order Li
c
,

– a linear order Ki, and

– a set of linear ordersMi such thatM1 = {M1
m | m ∈N+} andMi is the singleton {Mi}

if i > 1.

These linear orders will have the following properties:

(P1) Pi(c) holds if and only if Li
c
� Ki.

(P2) Pi(c) does not hold if and only if Li
c
�M for some M ∈ Mi.

(P3) The linear order ω · i is not isomorphic to any interval of Li
c
,Ki,M where M ∈ Mi.

In the rest of the section, we will inductively construct Li
c
, Ki, andMi and prove (P1), (P2),

and (P3). The subsequent section is devoted to proving the effective automaticity of these

linear orders.

5.4.1 Construction of linear orders

Our construction of linear orders is quite similar to the construction for trees from Sec-

tion 5.2.1. One of the main differences is that in the inductive step for trees, we went from a

Π0
i
-predicate directly to aΠ0

i+2
-predicate. Thereby the height of the trees only increased by

one. This was crucial in order to getΠ0
2n−3

-completeness for the isomorphism problem for

automatic trees of height n ≥ 2. For automatic linear orders, we split the construction into

5.4. AUTOMATIC LINEAR ORDERS 117

two inductive steps: in the first step, we go from aΠ0
i
-predicate (i odd) to a Σ0

i+1
-predicate,

whereas in the second step, we go from a Σ0
i+1

-predicate to a Π0
i+2

-predicate.

A key technique used in the construction is the shuffle sum of a class of linear orders.

Let I be a countable set. A dense I-coloring of Q is a mapping c : Q → I such that for all

x, y ∈ Q with x < y and all i ∈ I there exists x < z < y with c(z) = i.

Definition 5.4.1 Let L = {Li | i ∈ I} be a set of linear orders with I countable and let c : Q→ I be

a dense I-coloring of Q. The shuffle sum of L, denoted Shuf(L), is the linear order
∑

x∈Q Lc(x).

In the above definition, the isomorphism type of
∑

x∈Q Lc(x) does not depend on the choice

of the dense I-coloring c, see e.g. [101]. Hence Shuf(L) is indeed uniquely defined.

In this section, we will consider classes L1 and L2 of linear orders that we consider as

classes of isomorphism types. Therefore, we use the following abbreviations:

– “L ∈ L1” denotes that L1 contains a linear order isomorphic to L,

– “L1 ⊆ L2” denotes ∀L1 ∈ L1 ∃L2 ∈ L2 : L1 � L2, and

– “L1 = L2” abbreviates L1 ⊆ L2 ⊆ L1.

5.4.1.1 Induction base: construction of L1
c
, K1, and M1

m

Recall from Section 5.1 that the polynomial function C(x, y) = (x + y)2 + 3x + y is injective.

For n1, n2 ∈N+, let L[n1, n2] be the finite linear order of length C(n1, n2).

By applying Matiyasevich’s theorem, we obtain two polynomials p1(x), p2(x) ∈ N[x] in

ℓ variables, ℓ > n, such that for all c ∈Nn
+, the Π0

1
-predicate P1(c) holds if and only if

∀x ∈Nℓ−n : p1(c, x) , p2(c, x) .

Fix c ∈Nn
+ and m ∈N+. We define the following four classes of finite linear orders:

L1
1(c) = {L[p1(c, x) + xℓ+1, p2(c, x) + xℓ+1] | x ∈Nℓ−n

+ , xℓ+1 ∈N+} (5.9)

L1
2(m) = {L[x +m, x +m] | x ∈N+} (5.10)

L1
3 = {L[x + y, x] | x, y ∈N+} (5.11)

L1
4 = {L[x, x + y] | x, y ∈N+} (5.12)

The linear orders L1
c
, K1, and M1

m are obtained by taking the shuffle sums of unions of the

above classes of linear orders:

L1
c
= Shuf(L1

1(c) ∪ L1
3 ∪ L

1
4), K1 = Shuf(L1

3 ∪L
1
4), M1

m = Shuf(L1
2(m) ∪L1

3 ∪L
1
4).

The next lemma is needed to prove (P1) and (P2) for the Π0
1
-predicate P1.

118 Chapter 5. The Isomorphism Problem for Automatic Structures

Lemma 5.4.2 Suppose L1 and L2 are two countable sets of finite linear orders. Then

L1 = L2 ⇐⇒ Shuf(L1) � Shuf(L2)

and no interval of Shuf(L1) is isomorphic to ω.

Proof. If L1 = L2, then it is clear that Shuf(L1) � Shuf(L2). Conversely, suppose there

exists an isomorphism f from Shuf(L1) to Shuf(L2). We prove below that L1 = L2. By

symmetry we only need to prove L1 ⊆ L2.

Note that for i ∈ {1, 2}, Shuf(Li) is obtained by replacing each q ∈ Q with some linear

order Li
q (whose type is) contained in Li. For every q ∈ Q, if f (L1

q) contains elements from

L2
p and L2

p′ for some p < p′, then f (L1
q) is infinite which is impossible. Therefore f maps L1

q

into L2
p for some p ∈ Q. Using the same argument with f replaced by f−1, we can also prove

that f−1 maps L2
p into L1

q. Hence L1
q � L2

p. This means that for all L ∈ L1, there is L′ ∈ L2

such that L � L′. Therefore L1 ⊆ L2.

If x1 < x2 < · · · in Shuf(L1), then there are p < p′ in Q and k < ℓ in N+ such that xk ∈ L1
p

and xℓ ∈ L1
p′ . But then the interval [xk, xℓ] is infinite. Hence no interval in Shuf(L1) is

isomorphic to ω.

The next lemma states (P1) and (P2) for i = 1:

Lemma 5.4.3 For any c ∈Nn
+, we have:

(1) P1(c) holds ⇐⇒ L1
c
� K1.

(2) P1(c) does not hold ⇐⇒ ∃m ∈N+ : L1
c
�M1

m.

Proof. For (1), we have

P1(c) ⇐⇒ ∀x ∈Nℓ−n
+ : p1(c, x) , p2(c, x)

⇐⇒ ∀x ∈Nℓ−n
+ , xℓ+1 ∈N+ : p1(c, x) + xℓ+1 , p2(c, x) + xℓ+1

⇐⇒ ∀x ∈Nℓ−n
+ , xℓ+1 ∈N+ : L[p1(c, x) + xℓ+1, p2(c, x) + xℓ+1] ∈ L1

3 ∪ L
1
4

⇐⇒ L1
1(c) ∪ L1

3 ∪ L
1
4 = L

1
3 ∪ L

1
4

Lemma 5.4.2
⇐⇒ L1

c
� K1.

5.4. AUTOMATIC LINEAR ORDERS 119

For (2), we get

¬P1(c) ⇐⇒ ∃x ∈Nℓ−n
+ : p1(c, x) = p2(c, x)

⇐⇒ ∃m ∈N+ : L[m + 1,m + 1] ∈ L1
1(c)

⇐⇒ ∃m ∈N+ : (∀k > m : L[k, k] ∈ L1
1(c) ∧ ∀1 ≤ k ≤ m : L[k, k] < L1

1(c))

⇐⇒ ∃m ∈N+ : L1
1(c) ∪ L1

3 ∪ L
1
4 = L

1
2(m) ∪ L1

3 ∪ L
1
4

Lemma 5.4.2
⇐⇒ ∃m ∈N+ : L1

c
�M1

m .

Since L1
c
, K1, and M1

m are shuffle sums, they satisfy (P3) by Lemma 5.4.2. This finishes the

construction for the base case.

5.4.1.2 First induction step: from Pi to Pi+1 for i odd

Suppose i ≥ 1 is an odd number. For notational simplicity, we write k for n − i. Thus, Pi+1

is a k-ary predicate and Pi is a (k + 1)-ary one. For all c ∈Nk
+, Pi+1(c) is logically equivalent

to ∃x : Pi(c, x). Applying the inductive hypothesis, for any c ∈ Nk
+ and x ∈ N+, we obtain

linear orders Li
cx

, Ki, and the setMi such that

– Pi(c, x) holds if and only if Li
cx
� Ki,

– Pi(c, x) does not hold if and only if Li
cx
�M for some M ∈ Mi, and

– ω · i is not isomorphic to any interval of Li
cx

, Ki, or M where M ∈ Mi.

Fix c ∈Nk
+. We define the following classes of linear orders:

Li+1
1 (c) = {ω · i+Li

cx
| x ∈N+}, Li+1

2 = {ω · i+M |M ∈ Mi}, Li+1
3 = {ω · i+Ki}. (5.13)

The linear orders Li+1
c

, Ki+1, and Mi+1 are defined as shuffle sums of unions of the above

classes of linear orders:

Li+1
c
= Shuf(Li+1

1 (c) ∪ Li+1
2), Ki+1 = Shuf(Li+1

2 ∪Li+1
3), Mi+1 = Shuf(Li+1

2). (5.14)

Recall that the set Mi is a singleton for i > 1, consisting of Mi. The next lemma can be

proved similarly as Lemma 5.4.2.

Lemma 5.4.4 Suppose L1 and L2 are two countable classes of linear orders such that each L ∈

L1 ∪ L2 is isomorphic to a linear order of the form ω · i + K, where ω · i is not isomorphic to any

interval of K. Then

L1 = L2 ⇐⇒ Shuf(L1) � Shuf(L2) .

120 Chapter 5. The Isomorphism Problem for Automatic Structures

If Shuf(L1) contains an interval isomorphic to ω · (i + 1), then there is a linear order K with

ω · (i + 1) + K ∈ L1.

Proof. If L1 = L2, then it is clear that Shuf(L1) � Shuf(L2). Conversely, suppose f is an

isomorphism from Shuf(L1) to Shuf(L2). We prove that L1 = L2. By symmetry we only

need to prove that L1 ⊆ L2.

Say L j = {L j,s | s ∈ N} for j ∈ {1, 2}. Intuitively, for j ∈ {1, 2}, Shuf(L j) can be viewed

as obtained by replacing each q ∈ Q with a linear order L(j, q) � L j,c(q), where c is a dense

N-coloring. Fix q ∈ Q. Suppose f (L(1, q)) contains elements in L(2, p) and L(2, p′) for

p, p′ ∈ Q with p < p′. Then in f (L(1, q)) there are infinitely many disjoint intervals that

are isomorphic to ω · i, while in L(1, q) there is exactly one such interval, a contradiction.

Therefore f maps L(1, q) into L(2, p) for some p ∈ Q.

If f (L(1, q)) L(2, p), then f−1(L(2, p)) contains an element x < L(1, q). The argument from

the previous paragraph with f replaced by f−1 again leads to a contradiction. Therefore

f (L(1, q)) = L(2, p). This means that for all L ∈ L1, there is L′ ∈ L2 such that L � L′ and the

lemma is proved.

Let I � ω · (i + 1) be some interval in Shuf(L1). First suppose there are p < r in Q such

that I intersects L(1, p) and L(1, r). But then L(1, q) ⊆ I for all q ∈ {p + 1, . . . , r − 1}, implying

that (Q;≤) embeds into I � ω · (i + 1) which is impossible. Hence there is some q ∈ Q with

I ⊆ L(1, q) ∈ L1. Then there is a linear order K such that L(1, q) = ω · i + K. Since ω · i (let

alone ω · (i + 1)) is no interval in K, the interval I has to intersect the initial segment ω · i of

L(1, q). But then ω has to be an initial segment of K, i.e., L(1, q) = ω · (i + 1) + K′ for some

linear order K′.

Now notice that ω · (i + 1) is not isomorphic to any interval of Li+1
c

, Ki+1, or Mi+1 (each of

the orders Li
cx

, Ki, and M ∈ Mi is a shuffle sum and therefore does not start with ω). Hence

(P3) holds for i + 1. Furthermore, the following holds:

Pi+1(c) ⇐⇒ ∃x ∈N+ : Pi+1(c, x)

⇐⇒ ∃x ∈N+ : Li
cx
� Ki

⇐⇒ Li+1
3 ⊆ Li+1

1 (c)

⇐⇒ Li+1
1 (c) ∪ Li+1

2 = Li+1
2 ∪ Li+1

3

Lemma 5.4.4
⇐⇒ Li+1

c
� Ki+1

¬Pi+1(c) ⇐⇒ ∀x ∈N+ : ¬Pi+1(c, x)

⇐⇒ ∀x ∈N+ ∃M ∈ Mi : Li
cx
�M

⇐⇒ Li+1
1 (c) ∪ Li+1

2 = Li+1
2

Lemma 5.4.4
⇐⇒ Li+1

c
�Mi+1

5.4. AUTOMATIC LINEAR ORDERS 121

We have shown (P1) and (P2) for i + 1 in case i is odd.

5.4.1.3 Second induction step: from Pi to Pi+1 for i even

Let i ≥ 1 be even and consider the Π0
i+1

-predicate Pi+1. Again, we write k for n − i. For all

c ∈ Nk
+, Pi+1(c) is logically equivalent to ∀x : Pi(c, x). Since i is even, we must have i ≥ 2.

Therefore the setMi is a singleton, consisting of the linear order Mi.

Fix c ∈ Nk
+. Define the classes of linear orders Li+1

1
(c), Li+1

2
, and Li+1

3
using the same

definition as in (5.13). The linear orders Li+1
c

, Ki+1, and Mi+1 are defined as follows:

Li+1
c
= Shuf(Li+1

1 (c) ∪ Li+1
3), Ki+1 = Shuf(Li+1

3), Mi+1 = Shuf(Li+1
2 ∪Li+1

3).

Again, ω · (i + 1) is not isomorphic to any interval of Li+1
c

, Ki+1, or Mi+1. Hence (P3) holds

for i + 1. Furthermore, the following holds:

Pi+1(c) ⇐⇒ ∀x ∈N+ : Pi(c, x)

⇐⇒ ∀x ∈N+ : Li
cx
� Ki

⇐⇒ Li+1
1 (c) ∪ Li+1

3 = Li+1
3

Lemma 5.4.4
⇐⇒ Li+1

c
� Ki+1

¬Pi+1(c) ⇐⇒ ∃x ∈N+ : ¬Pi(c, x)

⇐⇒ ∃x ∈N+ : Li
cx
�Mi

⇐⇒ Li+1
1 (c) ∪ Li+1

3 = Li+1
2 ∪ Li+1

3

Lemma 5.4.4
⇐⇒ Li+1

c
�Mi+1

We have shown (P1) and (P2) for i + 1 in case i is even. This finishes the construction and

proof for (P1), (P2), and (P3) in the inductive step.

5.4.2 Automaticity

To construct automatic presentations of the linear orders from the previous section, we first

fix some notations. For c = (c1, . . . , ck) ∈Nk
+ and a symbol a, we re-define ac as the word

ac1♯ · · · ack♯ ∈ {a, ♯}∗.

Recall that Lemma 5.1.2 described a way to represent a polynomial p(x) ∈N[x] in k variables

using the number of accepting runs of an automaton A[p(x)]. The next lemma re-states

Lemma 5.1.2 with respect to the new definition of ac.

122 Chapter 5. The Isomorphism Problem for Automatic Structures

Lemma 5.4.5 From a polynomial p(x) ∈ N[x] in k variables, one can effectively construct a

non-deterministic automaton A[p(x)] on alphabet {a, ♯} such that L(A[p(x)]) = (a+♯)k and for all

c ∈Nk
+ :A[p(x)] has exactly p(c) accepting runs on input ac.

Proof. We use the same proof as for Lemma 5.1.2. The only difference is when the polyno-

mial p(x1, . . . , xk) is of the form xi for some i ∈ {1, . . . , k}. In this case, the automatonA[xi] is

(S, I,∆, F) where S = {q0, q1, . . . qk, q
′
i
}, I = {q0}, F = {qk} and the transition relation ∆ is

∆ = {(q j−1, ♯, q j) | 1 ≤ j ≤ k, j , i} ∪ {(q, a, q) | q ∈ S} ∪ {(qi−1, a, q
′
i), (q

′
i , ♯, qi)}.

It is easy to see that L(A[xi]) = (a+♯)k and A[xi] has exactly ci accepting runs on input ac

where c ∈Nk
+.

From now on, when referring to A[p(x)], we always assume it is defined in the sense of

Lemma 5.4.5 (as opposed to Lemma 5.1.2). LetA be a non-deterministic finite automaton

over the alphabet Σ and let ∆ be the transition relation of A. Recall the definition of the

automaton RunA and the projection morphism π : ∆∗ → Σ∗ from Section 5.1. Then, RunA
is an automaton over the alphabet ∆. Assume that a lexicographic order ≤lex has been

defined on each of Σ∗ and ∆∗. Define the automatic linear order ⊑ on L(RunA) such that for

all w,w′ ∈ L(RunA):

w ⊑ w′ ⇐⇒ π(w) <lex π(w′) ∨ (π(w) = π(w′) ∧ w ≤lex w′). (5.15)

Let Σi be the alphabet {♯, $1, . . . , $i−1, $, 0, 1, a, b1, b2, b3}. Fix the order < on Σi such that

$ < $1 < · · · < $i−1 < 0 < ♯ < a < b1 < b2 < b3 < 1. (5.16)

For any automaton A over Σi, fix an arbitrary order on the transition relation ∆ of A.

Let ≤lex be the lexicographic orders on Σ∗
i

and ∆∗ defined with respect to these orders,

respectively. From now on, we will always let ⊑ be the linear order as defined in (5.15)

with respect to ≤lex. For a regular language L ⊆ Σ∗ let first(L) = {a ∈ Σ | ∃w ∈ Σ∗ : aw ∈ L}.

For u ∈ Σ∗, we use L[u] to denote the language uΣ∗∩L. Technically, in this section we prove

by induction on i the following statement:

Proposition 5.4.6 We can compute automataAi over Σi such that:

(1) L(A1) = ((a+♯)n ∪ b+
1
♯ ∪ b2♯)$R for some regular language R ⊆ Σ+

1

(2) If i > 1, then L(Ai) = ((a+♯)n−i+1 ∪ b1♯ ∪ b2♯)$R for some regular language R ⊆ Σ+
i

(3) Li
c
� (π−1(L(Ai)[ac]) ∩ L(RunAi);⊑) for c ∈Nn−i+1

+

(4) M1
m � (π−1(L(A1)[bm

1
♯]) ∩ L(RunA1);⊑) for m ∈N+

5.4. AUTOMATIC LINEAR ORDERS 123

(5) Mi � (π−1(L(Ai)[b1♯]) ∩ L(RunAi);⊑) for i > 1

(6) Ki � (π−1(L(Ai)[b2♯]) ∩ L(RunAi);⊑)

Moreover, in (1) and (2) we have first(R) ⊆ {0, 1}.

5.4.2.1 Effective automaticity of shuffle sums

This section shows that we can construct an automatic presentation of the shuffle sum of

a class of automatic linear orders that are presented in some specific way. For a regular

language D over an alphabet, which does neither contain 0 nor 1, let σ(D) = ({0, 1}∗1D)+.

Lemma 5.4.7 Let A be an automaton such that L(A) = ED$F for regular languages E,D ⊆

{a, b1, b2, b3, ♯}∗ and F ⊆ Σ∗
i

(for some i ∈ {1, . . . , n}). We can effectively compute an automaton

σ(A,E) such that L(σ(A,E)) = E$σ(D)$F and for all u ∈ E:

(π−1(u$σ(D)$F) ∩ L(Runσ(A,E));⊑) � Shuf({(π−1(uv$F) ∩ L(RunA);⊑) | v ∈ D}).

Proof. SupposeA = (S, I,∆, S f). Let Γ = {a, b1, b2, b3, ♯}. We first define the automaton

A′ = (S × {1, 2, loop}, I × {1},∆′, S f × {2}).

The transition function ∆′ ofA′ is defined as follows:

∆′ = {((q, 1), α, (p, 1)) | (q, α, p) ∈ ∆, α ∈ Γ} ∪

{((q, 1), $, (q, loop)) | q ∈ S} ∪

{((q, loop), α, (q, loop)) | α ∈ Γ ∪ {0, 1}} ∪

{((q, loop), 1, (q, 2)) | q ∈ S} ∪

{((q, 2), α, (p, 2)) | (q, α, p) ∈ ∆}

Intuitively, A′ consists of two copies of A whose state spaces are S × {1} and S × {2}. The

automaton A′ runs by starting simulating A on the first copy. When the first $ is read, it

stops the simulation. For this, the automaton stores the state q by moving to the “looping

state” (q, loop). The automaton will stay in (q, loop) unless 1 is read, in which case, it may

“guess” that it reads the last 1 before the second $ in the input. If so, it goes out of (q, loop)

and continues the simulation in the second copy ofA and accepts the input word if the run

stops at a final state. If the guess was not correct and there is another 1 before the second $

in the input, then the run will necessarily reject.

It is easy to see that for all u1, u2 ∈ Γ
∗, v ∈ (Γ ∪ {0, 1})∗1 and u3 ∈ F, the number of

accepting runs of A′ on u1$vu2$u3 is the same as the number of accepting runs of A on

124 Chapter 5. The Isomorphism Problem for Automatic Structures

u1u2$u3, i.e.,

|L(RunA′) ∩ π
−1(u1$vu2$u3)| = |L(RunA) ∩ π−1(u1u2$u3)|. (5.17)

Let

σ(A,E) = E$σ(D)$F ∩ A′.

Note that L(σ(A,E)) = E$σ(D)$F. Also, for any u1 ∈ E, v ∈ ({0, 1}∗1D)∗{0, 1}∗1, u2 ∈ D,

and u3 ∈ F, the number of accepting runs of σ(A,E) on u1$vu2$u3 equals the number of

accepting runs of A′ on u1$vu2$u3, which is, by (5.17), equal to the number of accepting

runs ofA on u1u2$u3. Hence, we have

|L(Runσ(A,E)) ∩ π
−1(u1$vu2$u3)| = |L(RunA) ∩ π−1(u1u2$u3)|. (5.18)

We prove the following claim.

Claim 1. For all u1 ∈ E, v ∈ ({0, 1}∗1D)∗{0, 1}∗1 and u2 ∈ D,

(π−1(u1$vu2$F) ∩ L(Runσ(A,E));⊑) � (π−1(u1u2$F) ∩ L(RunA);⊑). (5.19)

For u ∈ F, let L(u) = (π−1(u1u2$u) ∩ L(RunA);⊑). Note that this is a finite linear order.

Consider the linear order (F;≤lex). By definition of ⊑,

(π−1(u1u2$F) ∩ L(RunA);⊑) �
∑

u∈F

L(u).

By (5.18), L(u) � (π−1(u1$vu2$u) ∩ L(Runσ(A,E));⊑). By definition of ⊑ again,

(π−1(u1$vu2$F) ∩ L(Runσ(A,E));⊑) �
∑

u∈F

(π−1(u1$vu2$u) ∩ L(Runσ(A,E));⊑)

�

∑

u∈F

L(u)

� (π−1(u1u2$F) ∩ L(RunA);⊑).

This proves Claim 1.

Let c : σ(D)→ D be the function such that

∀x ∈ ({0, 1}∗1D)∗{0, 1}∗1 ∀u ∈ D : c(xu) = u.

Claim 2. (σ(D);≤lex) � (Q;≤) and the function c is a dense D-coloring of (σ(D);≤lex).

First, for every w = x1u ∈ σ(D) with x ∈ ({0, 1}∗1D){0, 1}∗ and u ∈ D, we have

x01u <lex w <lex x11u.

5.4. AUTOMATIC LINEAR ORDERS 125

Hence, (σ(D);≤lex) does not have a smallest or largest element. It remains to show that the

linear order (σ(D);≤lex) is densely D-colored by c (this implies that (σ(D);≤lex) is dense and

hence, by Cantor’s theorem, isomorphic to (Q;≤)). Consider two words w1,w2 ∈ σ(D) such

that w1 <lex w2. There are two cases.

Case 1. w1 = xαy, w2 = xβz for x, y, z ∈ (Γ ∪ {0, 1})∗ and α, β ∈ Γ ∪ {0, 1} such that α < β. In

this case, for all u ∈ D, we have

w1 <lex w11u <lex w2 and w11u ∈ σ(D).

Case 2. w2 = w1x for some x ∈ (Γ ∪ {0, 1})+. Since w2 ∈ σ(D), we have x < 0∗. Say x = 0 jαy

for some j ≥ 0, α , 0 and y ∈ (Γ ∪ {0, 1})∗. We must have α ∈ {1, a, b1, b2, b3, ♯}. Since every

symbol from this set is larger than 0 (see (5.16)) we must have α > 0. Then for all u ∈ D, we

have

w1 <lex w10 j+11u <lex w2 and w10 j+11u ∈ σ(D).

Hence (σ(D);≤lex) is indeed densely colored by c. This proves Claim 2.

Since $ is the minimum in the order < on Σi, for any u ∈ E, v, v′ ∈ σ(D) and w,w′ ∈ F, we

have

v <lex v′ =⇒ uvw <lex u$v′$w′.

Therefore,

(π−1(u$σ(D)$F) ∩ L(Runσ(A,E));⊑) �

∑

v∈σ(D)

(π−1(uvF) ∩ L(Runσ(A,E));⊑)

Claim 1
�

∑

v∈σ(D)

(π−1(uc(v)$F) ∩ L(RunA);⊑)

Claim 2
� Shuf({(π−1(uv$F) ∩ L(RunA);⊑) | v ∈ D}).

5.4.2.2 Base case: automatic presentations for L1
c
,K1, and M1

m

Recall the notations from Section 5.4.1.1. In the following, if D is a regular language andA is

a finite non-deterministic automaton then we denote by DA a finite automaton that results

from the disjoint union of a deterministic automaton AD for D and the automaton A by

adding all transitions (q, a, p) where: (i) q is a state ofAD, (ii) there is a transition (q, a, q′) in

AD, where q′ is a final state ofAD, and (iii) p is an initial state ofA. Clearly, L(DA) = DL(A).

We will only apply this definition in case the product DL(A) is unambiguous. This means

that if u ∈ DL(A) then there exists a unique factorization u = u1u2 with u1 ∈ D and u2 ∈ L(A).

The following lemma is easy to prove:

126 Chapter 5. The Isomorphism Problem for Automatic Structures

Lemma 5.4.8 LetA be a finite non-deterministic automaton and let D be a regular language such

that the product DL(A) is unambiguous. Let u1 ∈ D and u2 ∈ L(A). Then, the number of accepting

runs of DA on u1u2 equals the number of accepting runs ofA on u2.

Lemma 5.4.9 From two given polynomials q1(x), q2(x) ∈ N[x] in k variables, one can effectively

construct an automatonA[q1, q2] over the alphabet {a, #, $} such that

– L(A[q1, q2]) = (a+♯)k$ and

– For all c ∈Nk
+, (π−1(ac$) ∩ L(RunA[q1,q2]);⊑) � L[q1(c), q2(c)].

Proof. We construct A[q1, q2] by taking a copy of A[C(q1(x), q2(x))] (see Lemma 5.4.5),

adding a new state q$ and transitions (q f , $, q$) for each accepting state q f inA[C(q1(x), q2(x))]

and making q$ the only accepting state of A[q1, q2]. Note that for any c ∈ Nk
+, the num-

ber of accepting runs of A[q1, q2] on ac$ is the same as the number of accepting runs of

A[C(q1(x), q2(x))] on ac, which is equal to C(q1(c), q2(c)). Hence, (π−1(ac$)∩ L(RunA[q1,q2]);⊑)

forms a copy of L[q1(c), q2(c)] and the lemma is proved.

By Lemma 5.4.9, we can construct automata A1 = A[p1(x) + xℓ+1, p2(x) + xℓ+1], where

x ∈ Nℓ
+, over the alphabet {a, ♯, $}, A2 = A[x1 + x2, x1 + x2] over the alphabet {b1, ♯, $},

A3 = A[x1 + x2, x1] over the alphabet {b2, ♯, $} and A4 = A[x1, x1 + x2] over the alphabet

{b3, ♯, $} such that:

∀c ∈Nℓ
+ ∀cℓ+1 ∈N+ : (π−1(accℓ+1 $) ∩ L(RunA1

);⊑) � L[p1(c) + cℓ+1, p2(c) + cℓ+1](5.20)

∀e1, e2 ∈N+ : (π−1(be1

1
♯be2

1
♯$) ∩ L(RunA2);⊑) � L[e1 + e2, e1 + e2] (5.21)

∀e1, e2 ∈N+ : (π−1(be1

2
♯be2

2
♯$) ∩ L(RunA3);⊑) � L[e1 + e2, e1] (5.22)

∀e1, e2 ∈N+ : (π−1(be1

3
♯be2

3
♯$) ∩ L(RunA4

);⊑) � L[e1, e1 + e2] (5.23)

Define the following automata:

A0
1 = A1 ⊎ ((a+♯)n(A3 ⊎A4)), A0

2 = A2 ⊎ (b+1 ♯(A3 ⊎A4)), A0
3 = b2♯(A3 ⊎A4).

Note that

L(A0
1) = (a+♯)n

(
(a+♯)ℓ−n+1 ∪ (b+2 ♯)

2 ∪ (b+3 ♯)
2
)
$,

L(A0
2) = b+1 ♯

(
b+1 ♯ ∪ (b+2 ♯)

2 ∪ (b+3 ♯)
2
)
$,

L(A0
3) = b2♯

(
(b+2 ♯)

2 ∪ (b+3 ♯)
2
)
$.

5.4. AUTOMATIC LINEAR ORDERS 127

Hence, applying Lemma 5.4.7 (with F = {ε}), we can effectively construct automata A1
j

(j ∈ {1, 2, 3}) as follows:

A1
1 = σ(A0

1, (a
+♯)n), A1

2 = σ(A0
2, b
+
1 ♯), A1

3 = σ(A0
3, b2♯).

For all c ∈Nn
+ we get:

(π−1(L(A1
1)[ac]) ∩ L(RunA1

1
);⊑)

Lemma 5.4.7
�

Shuf({(π−1(acv$) ∩ L(RunA0
1
);⊑) | v ∈ (a+♯)ℓ−n+1 ∪ (b+2 ♯)

2 ∪ (b+3 ♯)
2}) =

Shuf({(π−1(ac e$) ∩ L(RunA0
1
);⊑) | e ∈Nℓ−n+1

+ } ∪

{(π−1(acbe1

2
♯be2

2
♯$) ∩ L(RunA0

1
);⊑) | e1, e2 ∈N+} ∪

{(π−1(acbe1

3
♯be2

3
♯$) ∩ L(RunA0

1
);⊑) | e1, e2 ∈N+})

Lemma 5.4.8
�

Shuf({(π−1(ac e$) ∩ L(RunA1
);⊑) | e ∈Nℓ−n+1

+ } ∪

{(π−1(be1

2
♯be2

2
♯$) ∩ L(RunA3);⊑) | e1, e2 ∈N+} ∪

{(π−1(be1

3
♯be2

3
♯$) ∩ L(RunA4

);⊑) | e1, e2 ∈N+})
(5.20)–(5.23)
=

Shuf({L[p1(c, e) + eℓ+1, p2(c, e) + eℓ+1] | e ∈Nℓ−n
+ , eℓ+1 ∈N+} ∪

{L[e1 + e2, e1] | e1, e2 ∈N+} ∪ {L[e1, e1 + e2] | e1, e2 ∈N+})
(5.9)–(5.12)
=

Shuf(L1
1(c) ∪L1

3 ∪L
1
4) � L1

c

Similar calculations yield:

∀m ∈N+ : (π−1(L(A1
2)[bm

1 ♯]) ∩ L(RunA1
2
);⊑) � Shuf(L1

2(m) ∪L1
3 ∪ L

1
4) �M1

m

(π−1(L(A1
3)[b2♯]) ∩ L(RunA1

3
);⊑) � Shuf(L1

3 ∪ L
1
4) � K1

LetA1 = A1
1
⊎A1

2
⊎A1

3
. It is easy to see that L(A1) = ((a+♯)n∪ b+

1
♯∪ b2♯)$R for some regular

language R ⊆ Σ+
1

with first(R) ⊆ {0, 1}. HenceA1 satisfies the statement in Proposition 5.4.6.

5.4.2.3 First inductive step: automatic presentations for Li+1
c

, Ki+1, Mi+1 for i odd

Let i ≥ 1 be an odd number. Recall the notations from Section 5.4.1.2. We write k for

n− i. By applying the inductive assumption, we obtain an automatonAi such that L(Ai) =

((a+♯)k+1 ∪ β♯ ∪ b2♯)$R for some regular language R ⊆ Σ∗
i

where β = b+
1

if i = 1, and β = b1

128 Chapter 5. The Isomorphism Problem for Automatic Structures

otherwise. Furthermore, first(R) ⊆ {0, 1} and the following hold forAi:

∀c ∈Nk+1
+ : Li

c
� (π−1(ac$R) ∩ L(RunAi);⊑) (5.24)

Mi
� {(π−1(u♯$R) ∩ L(RunAi);⊑) | u ∈ β} (5.25)

Ki
� (π−1(b2♯$R) ∩ L(RunAi);⊑) (5.26)

For any 1 ≤ j ≤ n, let S j = $+
1
∪ · · · ∪ $+

j
. It is easy to see that

(S j;≤lex) � ω · j. (5.27)

Define the automata Bi
1
, Bi

2
, and Bi

3
as

Bi
1 = ((a+♯)k+1$R ∩ Ai) ⊎ (a+♯)k+1$Si, (5.28)

Bi
2 = (β♯$R ∩ Ai) ⊎ β♯$Si, (5.29)

Bi
3 = (b2♯$R ∩ Ai) ⊎ b2♯$Si. (5.30)

By (5.16), (5.24)–(5.27), and the fact that first(R) ⊆ {0, 1}, we have

∀c ∈Nk+1
+ : (π−1(ac$(Si ∪ R)) ∩ L(RunBi

1
);⊑) � ω · i + Li

c
, (5.31)

{(π−1(u♯$(Si ∪ R)) ∩ L(RunBi
2
);⊑) | u ∈ β} � {ω · i +M |M ∈ Mi}, (5.32)

(π−1(b2♯$(Si ∪ R)) ∩ L(RunBi
3
);⊑) � ω · i + Ki. (5.33)

Now construct the automata Ci
1
,Ci

2
, and Ci

3
as follows:

Ci
1 = B

i
1 ⊎ (a+♯)kBi

2, Ci
2 = b1♯B

i
2, Ci

3 = b2♯(B
i
2 ⊎B

i
3).

We have

L(Ci
1) = (a+♯)k(a+♯ ∪ β♯)$(Si ∪ R),

L(Ci
2) = b1♯β♯$(Si ∪ R),

L(Ci
3) = b2♯(β♯ ∪ b2♯)$(Si ∪ R).

Hence, we can apply Lemma 5.4.7 toCi
1
, Ci

2
, andCi

3
(with F = Si∪R) to define the following

automata:

Ai+1
1 = σ(Ci

1, (a
+♯)k), Ai+1

2 = σ(Ci
2, b1♯), Ai+1

3 = σ(Ci
3, b2♯).

5.4. AUTOMATIC LINEAR ORDERS 129

For all c ∈Nk
+ we get:

(π−1(L(Ai+1
1)[ac]) ∩ L(RunAi+1

1
);⊑)

Lemma 5.4.7
�

Shuf({(π−1(acv$(Si ∪ R)) ∩ L(RunCi
1
);⊑) | v ∈ a+♯ ∪ β♯}) =

Shuf({(π−1(ac e$(Si ∪ R)) ∩ L(RunCi
1
);⊑) | e ∈N+} ∪

{(π−1(acu♯$(Si ∪ R)) ∩ L(RunCi
1
);⊑) | u ∈ β})

Lemma 5.4.8
�

Shuf({(π−1(ac e$(Si ∪ R)) ∩ L(RunBi
1
);⊑) | e ∈N+} ∪

{(π−1(u♯$(Si ∪ R)) ∩ L(RunBi
2
);⊑) | u ∈ β})

(5.31), (5.32)
=

Shuf({ω · i +Li
ce
| e ∈N+} ∪ {ω · i +M |M ∈ Mi})

(5.13), (5.14)
� Li+1

c

Similarly, we can show:

(π−1(L(Ai+1
2)[b1♯]) ∩ L(RunAi+1

2
);⊑) � Shuf({ω · i +M | M ∈ Mi}) �Mi+1,

(π−1(L(Ai+1
3)[b2♯]) ∩ L(RunAi+1

3
);⊑) � Shuf({ω · i +M | M ∈ Mi} ∪ {ω · i + Ki}) � Ki+1.

Let Ai+1 = Ai+1
1
⊎ Ai+1

2
⊎ Ai+1

3
. It is easy to see that L(Ai+1) = ((a+♯)k ∪ b1♯ ∪ b2♯)$R′ for

some regular language R′ ⊆ Σ+
i+1

with first(R′) ⊆ {0, 1}. HenceAi+1 satisfies the statement

in Proposition 5.4.6.

5.4.2.4 Second inductive step: automatic presentations for Li+1
c

, Ki+1, Mi+1 for i even

Using the same technique, we can construct automatic presentations for Li+1
c

(c ∈Nk
+), Mi+1,

and Ki+1 in case i is even. We first define the automata Bi
1
, Bi

2
, and Bi

3
as in (5.28)–(5.30),

with β = b1 this time. Then we construct

Ci
1 = B

i
1 ⊎ (a+♯)kBi

3, Ci
2 = b1♯(B

i
2 ⊎ B

i
3), Ci

3 = b2♯B
i
3.

We define the following automata by applying Lemma 5.4.7:

Ai+1
1 = σ(Ci

1, (a
+♯)k), Ai+1

2 = σ(Ci
2, b1♯), Ai+1

3 = σ(Ci
3, b2♯).

130 Chapter 5. The Isomorphism Problem for Automatic Structures

By Lemma 5.4.7, it is easy to check the following:

∀c ∈Nk
+ : (π−1(L(Ai+1

1)[ac]) ∩ L(RunAi+1
1

);⊑) � Shuf({ω · i +Li
cx
| x ∈N+} ∪ {ω · i + Ki})

� Li+1
c
,

(π−1(L(Ai+1
2)[b1♯]) ∩ L(RunAi+1

2
);⊑) � Shuf({ω · i +Mi} ∪ {ω · i + Ki})

� Mi+1,

(π−1(L(Ai+1
3)[b2♯]) ∩ L(RunAi+1

3
);⊑) � Shuf({ω · i + Ki})

� Ki+1.

LetAi+1 = Ai+1
1
⊎Ai+1

2
⊎Ai+1

3
. It is easy to see that L(Ai+1) ⊆ ((a+♯)k∪b1♯∪b2♯)$R′ for some

regular language R′ ⊆ Σ+
i+1

with first(R′) ⊆ {0, 1}. Hence Ai+1 satisfies the statement in

Proposition 5.4.6. This finishes the construction in the inductive step and hence the proof

of Proposition 5.4.6. Hence we obtain:

Theorem 5.4.10 The isomorphism problem for the class of automatic linear orders is at least as

hard as FOTh(N;+,×).

In [77], it is shown that every linear order has finite FC-rank. We do not define the

FC-rank of a linear order in general, see e.g. [77]. A linear order (L,≤) has FC-rank 1,

if after identifying all x, y ∈ L such that the interval [x, y] is finite, one obtains a dense

ordering or the singleton linear order. The result of [77] mentioned above suggests that the

isomorphism problem might be simpler for linear orders of low FC-rank. We now prove

that this is not the case:

Corollary 5.4.11 The isomorphism problem for automatic linear orders of FC-rank 1 is at least as

FOTh(N;+,×).

Proof. We provide a reduction from the isomorphism problem for automatic linear orders

(of arbitrary rank): if (L,≤) is an automatic linear order, then so is (K,≤) = ((−1, 0] + [1, 2)) ·

(L,≤) (this linear order is obtained from L by replacing each point with a copy of the rational

numbers in (−1, 0] ∪ [1, 2)). Then (K,≤) has FC-rank 1: Only the copies of 0 and 1 will be

identified, and the resulting order is isomorphic to (Q,≤). Moreover, (L,≤) is isomorphic to

the set of all x ∈ K satisfying ∃z > x ∀y : (x < y ≤ z→ y = z). Hence (L,≤) � (L′,≤′) if and

only if ((−1, 0]+ [1, 2)) · (L,≤) � ((−1, 0]+ [1, 2)) · (L′,≤′), which completes the reduction.

5.5 Arithmetical isomorphisms

We conclude this paper with an application of Theorem 5.2.13 and Theorem 5.4.10. The

following corollary shows that although automatic structures look simple (especially for

5.5. ARITHMETICAL ISOMORPHISMS 131

automatic trees), there may be no “simple” isomorphism between two automatic copies of

the same structure. An isomorphism f between two automatic structures with domains L1

and L2, resp., is a Σ0
k
-isomorphism, if the set {(x, f (x)) | x ∈ L1} belongs to Σ0

k
.

Corollary 5.5.1 For any k ∈ N, there exist two isomorphic automatic trees of finite height (and

two automatic linear orders) without any Σ0
k
-isomorphism.

Proof. Let T1 = (D1; E1) and T2 = (D2; E2) be two automatic trees. Let P1(x, y),P2(x, y), . . .

be an effective enumeration of all binary Σ0
k
-predicates. This means that from given e ≥ 1

we can effectively compute a description (e.g. a Σk-formula over (N;+,×)) of the predicate

Pe(x, y). We define the statement iso(T1,T2, k) as follows:

∃e ∀x1, x2 ∈ D1 ∃y1, y2 ∈ D2 : Pe(x1, y1) ∧ Pe(x2, y2) ∧

(x1 = x2 ↔ y1 = y2) ∧ ((x1, x2) ∈ E1 ↔ (y1, y2) ∈ E2).

Since Pe is a Σ0
k
-predicate, this is a Σ0

k+2
-statement, which expresses the existence of a

Σ0
k
-isomorphism from T1 to T2.

By Theorem 4.5.9, there is a natural number n such that the isomorphism problem on the

classTn of automatic trees of height at most n isΣk+3-hard. If for all T1,T2 ∈ Tn with T1 � T2

there exists a Σ0
k
-isomorphism from T1 to T2, then the isomorphism problem on Tn reduces

to checking existence of a Σ0
k
-isomorphism, which is in Σ0

k+2
by the above consideration.

Hence, there must be T1,T2 ∈ Tn with T1 � T2 but there is no Σ0
k
-isomorphism between

them.

The corollary for linear orders can be proved in the same way, where in the definition

of iso(T1,T2, k) we replace (x1, x2) ∈ E1 ↔ (y1, y2) ∈ E2 with x1 <1 x2 ↔ y1 <2 y2, where <1

and <2 are the linear orders of T1 and T2, respectively.

132 Chapter 5. The Isomorphism Problem for Automatic Structures

Chapter 6

Computably Categorical Graphs with

Finite Components

In this chapter we study the computable categoricity for graphs, the graphs with exactly

one computable isomorphism type. We focus on the class of strongly locally finite graphs;

recall that all components of these graphs are finite. By Corollary 5.1.7, the isomorphism

problem for automatic strongly locally finite graphs is Π0
1
-complete. Furthermore, there

exists a computable isomorphism between any two automatic copies of a strongly locally

finite graph. We present results towards characterizing strongly locally finite graphs that

are computably categorical. Firstly, we present a necessary and sufficient condition for

certain classes of strongly locally finite graphs to be computably categorical. Then we

prove that if there exists an infinite ∆0
2
-set of components that can be properly embedded

into infinitely many components of the graph then the graph is not computably categorical.

Finally, we construct a strongly locally finite computably categorical graph with a infinite

chain of properly embedded components.

6.1 Computable categoricity of graphs

Recall from Defintion 2.5.10 that a structure is computable if its domain is a computable

subset of natural numbers and its atomic relations are uniformly computable. If S is a

computable structure isomorphic to a structure S′ thenS is called a computable presentation

of S′ and G is called computably presentable.

Definition 6.1.1 Two computable structuresS1 andS2 have the same computable isomorphism

type if there is a computable isomorphism from S1 to S2. The number of computable isomorphism

types of the graph S, denoted by dim(S), is called the computable dimension of S. If the

computable dimension of S equals 1 then the graph G is called computably categorical.

133

134 Chapter 6. Computably Categorical Graphs with Finite Components

Example 6.1.2 The graph (N; E) where E = {(i, i + 1) | i ∈ N} is computably categorical. Indeed,

given two computable presentations G1,G2 of (N; E), a computable isomorphism can be built by

first non-uniformly mapping the unique elements with degree 1 in both presentations and then

mapping the successor elements in both presentations in parallel.

By convention, a structure has computable dimension ω if its computable dimension is

countably infinite.

Example 6.1.3 The graph consisting of ℵ0 many copies of (N; E) is not computably categorical; in

fact, it has computable dimension ω.

In general, providing examples of computably categorical structures or structures of com-

putable dimension ω is easy. S. S. Goncharov in [40] was the first to provide examples of

graphs of computable dimension n, where n > 1.

The study of computably categorical structures constitutes one of the major topics in

the study of computable isomorphisms. Here the goal is to provide a characterization of

computably categorical structures within specific classes of structures. This has been done

for Boolean algebras [18], linearly ordered sets [99], trees [84], Abelian groups [34], ordered

Abelian groups [36], etc.

In this chapter we study computable isomorphisms for a specific class of graphs. We

assume all graphs are undirected. Hence an edge with end nodes u and v is written as {u, v},

which represents the pair of edges (u, v) and (v, u). Since all nodes are natural numbers, we

can compare two nodes by saying that a node u is smaller or greater than another node v.

Let G = (V; E) be a graph. Recall that a component is a maximal subset of V in which

any two nodes are connected by a path. Let S be a sequence G0,G1, . . . of pairwise disjoint

finite graphs. Define the new graphGS as the disjoint union of these graphs. More formally,

the set of nodes of GS is
⋃

i∈N Vi and the set of edges is
⋃

i∈N Ei. We recall the following

definition from Chapter 5.

Definition 5.1.6 A graph G is strongly locally finite if every component of G forms a finite

graph.

It is not hard to see that G is strongly locally finite if and only if G � GS for some

sequence S of pairwise disjoint finite graphs. For notational simplicity, we will sometimes

identify a set X with its characteristic string wX ∈ {0, 1}ω, i.e., for all n ∈ N, wX(n) = 1

iff n ∈ X. We write X(n) for wX(n). The following proposition gives a full description of

computable dimensions for strongly locally finite graphs:

Proposition 6.1.4 The computable dimension of any strongly locally finite graph is either 1 or ω.

In particular, no strongly locally finite graph has a finite computable dimension n, where n > 1.

To prove Prop. 6.1.4, we invoke a well-known result of Goncharov [41].

6.2. EXAMPLES OF STRONGLY LOCALLY FINITE GRAPHS 135

Theorem 6.1.5 (Goncharov) If any two computable presentations of a structureA are isomorphic

via a ∆0
2
-function then the computable dimension ofA is either 1 or ω.

LetG be a strongly locally finite graph. Recall that a set X ⊆N belongs to the class ∆0
2

if

and only if X is computable in 0′ (the halting problem). By the limit lemma (see [109, p. 56]),

a set X ⊆N belongs to the class ∆0
2

if and only if there is a computable sequence1 X0,X1, · · ·

of finite subsets of N such that for all n ∈ N, the sequence X0(n)X1(n) · · · converges to the

value X(n), i.e., Xi(n) , X(n) for only finitely many i ∈ N. Such a sequence X0,X1, · · · is

called a ∆0
2
-approximation of X.

Proof of Prop. 6.1.4 We show that between any two computable presentations of G there

is a ∆0
2
-isomorphism. Indeed, fix two computable presentations G1 = (N; E1),G2 = (N; E2)

ofG. We informally describe a procedure to set up a ∆0
2
-isomorphism f from G1 to G2. The

procedure starts by computably enumerating edges in E1 and E2 to reveal the components

in G1 and G2. Once the enumeration reveal two components C1 in G1 and C2 in G2 that

are isomorphic, we define the function f such that it maps C1 isomorphically to C2. If at

some later stages C1 becomes non-isomorphic to C2, the procedure undefines the function

f on C1. Since G is strongly locally finite, the components C1 and C2 may change only

finitely many times, and thus the function f will be re-defined on C1 only finitely often.

Since G1 � G2, the function f eventually converge to an isomorphism from G1 to G2. Note

that the sequence of f in all stages of the construction forms a ∆0
2
-approximation and hence

f ∈ ∆0
2
.

By Proposition 6.1.4, it makes perfect sense to work towards a characterization of com-

putably categorical strongly locally finite graphs. This is the subject of this chapter. In the

following, we use GSLF to denote the set of computable strongly locally finite graphs.

6.2 Examples of strongly locally finite graphs

In this section, we provide several examples of strongly locally finite graphs with different

properties. In our examples all the graphs have components of the following types.

Definition 6.2.1 1. A cycle of length n > 2 is a graph isomorphic to ({1, ..., n}; E), where

E = {{1, 2}, {2, 3}, ..., {n − 1, n}, {n, 1}}. We denote this graph by Cn.

2. A sun of size n > 2 is obtained by attaching a new edge to every node of a cycle of length n.

Denote this graph by Sn. The nodes not on the cycle are called rays.

3. A line of length n ≥ 1 is a graph isomorphic to ({0, ..., n}; E), where E = {{0, 1}, {1, 2}, ..., {n−

1, n}}. Denote this graph by Ln.

1A sequence of finite sets X0,X1, · · · is computable if the function f (i,n) = Xi(n) is computable

136 Chapter 6. Computably Categorical Graphs with Finite Components

4. The graph C′n is obtained by attaching exactly 1 edge to only one node of Cn.

5. The graph C′′n is obtained by attaching exactly 2 edges to only one node of Cn.

Proposition 6.2.2 There is a graph G1 ∈ GSLF that is not computably categorical.

Proof. Let G1 be the graph that contains a copy of Ln for each n ≥ 1. This graph is not

computably categorical. To illustrate this, we construct two computable presentations of

G1 that are not computably isomorphic. Let H1 = (N; E) denote the standard computable

presentation of G1, in which the lines appear in order, i.e., the line Ln is represented by

{m,m+ 1, . . . ,m+ n− 1} (the edges are between successive elements) where m =
∑n−1

i=1 i. We

then build a computable presentationH2 � G1 by stages as follows:

We construct a sequence of graph H2,0 ⊂ H2,1 ⊂ · · · such that H2 =
⋃
{H2,s | s ∈ N}.

At each stage s, for each n,H2,s will contain at most one copy of Ln as its component. We

write L2
n,s for the copy of Ln inH2,s and write L1

n for the copy of Ln inH1. Initially no Φe,

e ∈N, is processed.

Stage s: IfH2,s does not contain a copy of Ls, include one. For any e < s where Φe is not

processed, if Φe,s(v) ↓ for some v ∈ L2
2e,s, then proceed as follows. If Φe,s(v) < L1

2e
, then no

action is required. If Φe,s(v) ∈ L1
2e

, then extend the copy of L2
2e,s to a copy of Ln, where n

is the least odd number greater than 2e such that Ln does not appear inH2,s. Insert a new

copy of L2e intoH2,s+1 and declare Φe processed.

Since each component of H2 is extended and re-introduced at most once after it was

first introduced, we certainly build a structure isomorphic to G1. For each e ∈ N, if Φe is

total then there exists a stage s > e where Φe,s(v) ↓ for some v ∈ L2
2e,s, and at that stage we

ensure that Φe is not an isomorphism betweenH1 andH2.

Let G ∈ GSLF be a computable graph with node set V. The component containing a

node v is denoted by C(v).

Definition 6.2.3 We define the size function as sizeG : V →N such that sizeG(v) = |C(v)|.

Note that the size function sizeH1
of the standard computable presentation H1 of G1 is

computable.

Proposition 6.2.4 There is a computably categorical graph G2 ∈ GSLF such that in all computable

presentations of the graph the size function is not computable.

Proof. The desired graph G2 is obtained as follows. Recall from Chapter 2.3 that K = {e |

Φe(e) ↓} is computably enumerable but not computable. Let G2 be the graph that has, for

n > 2, a copy of Cn if n < K and a copy of Sn if n ∈ K. A computable presentation of

G2 can be built by simultaneously building the graph consisting of Cn for all n > 2, and

6.2. EXAMPLES OF STRONGLY LOCALLY FINITE GRAPHS 137

enumerating the set K. When a number n is enumerated in K, if a copy of Cn is already

created in G2, then extend it to a copy of Sn; otherwise, create a copy of Sn.

Suppose H1,H2 are two computable presentations of G2. For a component C ∈ {Cn |

n ∈ N} ∪ {Sn | n ∈ N}, we use Ci to denote the copy of C in Hi, i ∈ {1, 2}. We build a

computable isomorphism betweenH1 andH2 as follows:

For any node v in H1, search for all nodes in the component C(v) of v until all nodes

in the cycle of C(v) have been found. At this point, if some rays in C(v) have already been

detected, then C(v) � Sn for some n ∈ N. In this case, search to find S2
n in H2 and map

S1
n isomorphically to S2

n. On the other hand, if no ray in C(v) has been detected, search to

find a cycle of length n inH2, and map these two copies isomorphically. If it turns out that

C(v) � Sn for some n ∈ N, then rays in C(v) will be eventually found, and the map can be

extended to an isomorphism from C(v) to S2
n.

Given any computable presentationH ofG2 for which the size function is computable,

we can use sizeH to compute K. Indeed, for any n ∈ N, we can search to find a cycle of

length n and compute sizeH (v) for a node v on this cycle. Then for n > 2, n ∈ K if and only if

sizeH (v) = 2n. Hence the size function is not computable in any computable presentations

of G2.

Proposition 6.2.5 There is a graph G3 ∈ GSLF that is not computably categorical and the size

function is not computable in any computable presentation of G3.

Proof. Let G3 be the disjoint union of the graphs G1 and G2 described above. Then G3 is

not computably categorical for the same reason that G1 is not, and the size function on G3

is non-computable in any computable presentation for the same reason as on G2.

Given two finite graphsH1 = (V1; E1) andH2 = (V2; E2), we sayH1 properly embeds into

H2 if V1 can be mapped injectively to a proper subset of V2 that preserves the edge relation.

In this case, we writeH1 ≺ H2.

Definition 6.2.6 For a graph G, define the proper extension function of G as extG : V →

N ∪ {∞} such that extG(v) = |{C(x) | C(v) ≺ C(x), x ∈ N}|. That is, extG(v) is the number of

components in which C(v) can be properly embedded.

We now consider a graph G ∈ GSLF where extG is computable and the range of the proper

extension function Rng(extG) is a subset of N. The next example shows that this condition

does not guarantee computable categoricity of G.

Proposition 6.2.7 There exists a graph G4 ∈ GSLF that is not computably categorical and extG4
is

computable and Rng(extG) ⊆N.

138 Chapter 6. Computably Categorical Graphs with Finite Components

Proof. We will simultaneously construct two isomorphic computable graphs H1,H2 that

are not computably isomorphic. This shows that the graph is not computably categorical.

The construction proceeds by stages. At stage s, s ∈ N, we construct graphsH1,s andH2,s

as follows:

Add copies of Cs and C′s in both H1,s and H2,s. Name the copies in Hi,s (i ∈ {1, 2})

Ci
s,C
′i
s respectively. If ∃e ≤ s : Φe,s(v) ↓∈ C2

e for some v ∈ C1
e , then let e be the least such e,

extend C1
e to a copy of C′e and extend C′1e to a copy of C′′e . In the other copy, extend C2

e to

a copy of C′′e . This ensures that Φe is not an isomorphism, but maintains H1,s+1 � H2,s+1.

Let Hi =
⋃
{Hi,s | s ∈ N}, i ∈ {1, 2}. It is easy to see that H1 � H2 but no Φe computes an

isomorphism.

Moreover, for each node v ∈N, extH1
(v) ∈ {0, 1}. To compute extH1

(v), run the construc-

tion until the stage where v is added toH1. If v is put in a copy of (or to extend a copy of)

Ce, then extH1
(v) = 1, if v is put in a copy of (or to extend a copy of) C′e, then extH1

(v) = 0.

Hence extH1
is a computable function. The desired graph G4 isH1.

Our final example is of a structure that is computably categorical and yet whose proper

extension function is not computable. This, together with the previous example, shows

that there is no good relation between computability of the proper extension function and

computable categoricity of the graph.

Proposition 6.2.8 There is a computably categorical graph G5 ∈ GSLF on which the proper exten-

sion function is non-computable.

Proof. Let G5 be the graph that has, for all n > 2, one copy of Cn and one copy of Sn if

n < K, and two copies of Sn if n ∈ K. This structure is clearly computably presentable in the

same reason as G2 above. It is also computably categorical. Indeed, to define a computable

isomorphism between two computable presentations, first for each n match up the first

copies of Sn that are found. Then, match up the copies of Cn. If the copy of Cn ends up

being extended to Sn, then this must happen in both copies, and the isomorphism can be

extended.

Given extH on any computable presentationH of G5, one can compute K. Indeed, find

two distinct copies of Cn in G5, and let v1 be a node from one copy, and v2 a node from the

other copy. Then n ∈ K if and only if extH (v1) + extH (v2) = 0.

6.3 Graphs with computable size functions

In this section we continue to investigate the relationship between computable categoricity

and the size function of a strongly locally finite graph.

Lemma 6.3.1 Let G1 and G2 be computable presentations of G ∈ GSLF such that sizeG1
, sizeG2

are computable. Then G1 and G2 are computably isomorphic.

6.3. GRAPHS WITH COMPUTABLE SIZE FUNCTIONS 139

Proof. For i ∈ {1, 2} and any node v in the graphGi, we can effectively reveal the component

C(v) by finding all sizeGi
(v) nodes that are connected to v by a path. We use a standard

back-and-force argument to set up a computable isomorphism f between G1 and G2 as

follows: Pick a node v in G1, compute its component C(v), and find in G2 a component

C′ � C(v) such that f has not mapped any element in G1 to C′. We then let f map C(v)

isomorphically to C′. For the other direction, pick a node v′ ∈ G2 and repeat the above

procedure by replacing f with f−1 and G1 with G2.

Let G ∈ GSLF. The lemma implies that G is computably categorical if the size function

is intrinsically computable, that is, if it is computable for all computable presentation of G.

Proposition 6.3.2 Suppose sizeG is a computable function. The graphG is computably categorical

if and only if the size function is intrinsically computable.

Proof. One direction is proved by Lemma 6.3.1. The other direction is straightforward.

Suppose G is computably categorical. Then from any of its computable presentation G′ to

G there is a computable isomorphism h. Then sizeG′(v) = sizeG(h(v)) for any v in G′.

We now further exploit the case when the size function sizeG is computable. As illus-

trated in the proof of Lemma 6.3.1, when sizeG is computable, one may effectively reveal

the component C(v) of any node v using the function sizeG(v). In this way, we have an

effective list (without repetition) C0,C1, . . . of all components in G. For s ∈ N, let Gs be

the graph G restricted on the components C0, . . .Cs−1. The next lemma gives a necessary

condition for a graph G ∈ GSLF to be computably categorical.

Lemma 6.3.3 Suppose sizeG is computable. If there are infinitely many nodes v such that extG(v) =

∞, then G is not computably categorical.

Proof. Our goal is to build a graph G′ = (N; E′) such that G′ � G but G′ is not computably

isomorphic to G. We construct an infinite ascending chain of finite graphs G′
0
⊂ G′

1
⊂ . . .

whose limit is our desired G′, i.e., G′ =
⋃

sG
′
s. At stage s we construct G′s and fs such that

G′s is isomorphic toGs, where fs is the isomorphism. Recall from Chapter 2.3 thatΦ0,Φ1, . . .

is a standard enumeration of all partial computable functions from N to N. For each e we

meet the following requirement:

Pe : Φe is not an isomorphism from G to G′

Initially all components in G′ are free for Φe where e ∈N, and no Φe is processed.

Construction. At stage 0, set G′
0

as the empty graph and f0 is undefined on any x ∈ N. At

stage s + 1, consider Gs+1 obtained by adding Cs to Gs. Let C′
0
, ...,C′

s−1
be the components

in G′s such that fs maps C′
i
, i < s, isomorphically to Ci. Find the least e ≤ s + 1 such that for

some i < s we have:

140 Chapter 6. Computably Categorical Graphs with Finite Components

– Ci ≺ Cs.

– Φe has not been processed and Φe is defined on Ci.

– Φe,s+1 is a partial isomorphism on Gs+1.

– The component Φe(Ci) is free for Φe.

If such e does not exist then construct G′
s+1

by adding a copy of Cs to G′s and extend fs
to fs+1 by mapping C′s isomorphically to Cs. Otherwise, let C′

j
be Φe(Ci) and perform the

following steps:

1. Extend C′
j
to a component, denoted by C′s, such that C′s � Cs.

2. Add a new copy of C j to G′
s+1

, denoted by C′
j
.

3. Define fs+1 by setting fs+1(x) = fs(x) on all nodes x that do not belong to the compo-

nents C′
j
and C′s, mapping C′

j
isomorphically to C j and mapping C′s isomorphically to

Cs.

4. Declare C′s not free for all Φe′ with e′ > e.

5. Declare Φe processed.

This completes the construction for G′
s+1

and the function fs+1. It is clear that fs+1 is an

isomorphism from Gs+1 to G′
s+1

.

Verification. Each requirements Pe is satisfied. Otherwise, let e be the smallest number such

that Pe is not satisfied. Let s be the stage when all requirements with smaller indices are

satisfied. Note that in G′s there are at most e components that are not free for Φe. Take

i > s such that { j | Ci ≺ C j} is infinite and Φe(Ci) is free for Φe. Let t > s be the first stage

where Ci ≺ Ct and Φe,t is defined on Ci. At stage t, the construction will process Φe and

ensure Φe is not an isomorphism. It is not hard to see that f (v) = lims fs(v) establishes an

isomorphism between G′ and G.

In Prop. 6.2.7 and Prop. 6.2.8 we showed that the proper extension function is unrelated

to computable categoricity of graphs inGSLF in general. In the following we show that this

is not the case when sizeG is computable.

Lemma 6.3.4 Suppose sizeG is computable and there are only finitely many v such that extG(v) =

∞. If extG is not computable then G is not computably categorical.

Proof. The construction of G′ that is isomorphic but not computably isomorphic to G is

very similar to the construction for Lemma 6.3.3. The only difference is that we start with a

different G0 which contains all (finitely many) components in G that embed into infinitely

6.4. A SUFFICIENT CONDITION FOR NON-COMPUTABLY CATEGORICITY 141

many components. Therefore in this construction let C0,C1, . . . list all other components in

G. The construction of the previous lemma is then repeated.

Suppose e is the smallest number such that Pe is not satisfied. Let s be the stage when

all requirements with smaller indices are satisfied. Since Φe is an isomorphism, we can

compute the function extG as follows. Consider Ci such that Φe(Ci) is free for Φe at stage s.

Note that there are only finitely many Ci’s that are not free forΦe. Let t > s be the least stage

such that Φe,t is defined on Ci. Note that by construction Ci can not be properly embedded

into Ck for all k > t as otherwise the procedure will act to satisfy Pe. Hence the number

of proper extensions of Ci in G is the same as the number of proper extensions of Ci in Gt,

which can be computed effectively.

We can now prove the following characterization theorem.

Theorem 6.3.5 Let G ∈ GSLF be a graph such that sizeG is a computable function. Then the

following are equivalent:

(1) G is computably categorical.

(2) The size function is intrinsically computable.

(3) There are finitely many v such that extG(v) = ∞ and the function extG is computable.

Proof. The equivalence of (1) and (2) follows from Proposition 6.3.2. The direction (1) to

(3) follows from the lemmas above. We prove the implication (3) to (1).

Let G′ be a computable presentation of G. Take all (finitely many) components Ci such

that { j | Ci ≺ C j} is infinite. Non-uniformly map them to isomorphic components in G′.

Take Ci such that { j | Ci ≺ C j} is finite. By using extG(v) for some v ∈ Ci, find components

X,X1, . . .XextG(v) in G′ such that X � Ci and for each ℓ ∈ {1, ..., extG(i)}, Ci ≺ Xℓ. Map Ci

isomorphically to X. There are no more components in G′ that properly extends Ci. Hence

X is a component in G′ isomorphic to Ci.

6.4 A sufficient condition for non-computably categoricity

In this section we do not assume computability of the size function sizeG and hence we

do not have an effective list C0,C1, . . . of all components in G. For this case, we prove the

following theorem which provides a sufficient condition for a graph to be not computably

categorical.

Theorem 6.4.1 Suppose G ∈ GSLF. If there exists an infinite ∆0
2

set of nodes X in G such that

extG(x) = ∞ for all x ∈ X, then G is not computably categorical.

142 Chapter 6. Computably Categorical Graphs with Finite Components

Proof. Let G = (G; E) ∈ GSLF and X be an infinite ∆0
2

set of nodes such that extG(x) = ∞ for

all x ∈ X. We build a computable presentation G′ = (N; E′) of G that meets the following

requirement for each e ∈N:

Pe : Φe is not an isomorphism from G to G′

We will define a chain G0 ⊂ G1 ⊂ G2 ⊂ . . . of subsets of N such that each Gs ⊇ {0, 1, . . . , s}.

Note that lims Gs =N and for s ∈N the graphGs = (Gs; E ↾ Gs) is a subgraph ofG. We will

construct an infinite chain of finite graphs G′
0
⊂ G′

1
⊂ . . . whose limit is our desired G′. At

stage s we constructG′s and fs such thatG′s is isomorphic toGs, where fs is the isomorphism.

For s ∈ N and a node v ∈ Gs ∪ G
′
s, we use Cs(v) to denote the component containing v in

G′s ∪Gs.

Let X0,X1, . . . be a ∆0
2
-approximation of X. Each Xs induces a finite subgraph Xs of G.

For v ∈ Gs, we may assume without loss of generality that v ∈ Xs implies u ∈ Xs for all

u ∈ Cs(v). Let x0,s, x1,s, . . . denote the least nodes (in the natural number ordering) in all

components in Xs in increasing order. Since G is strongly locally finite and X ∈ ∆0
2
, the

number xn = lims xn,s exists for all n ∈N.

For each e where Φe is defined on all N, we will pick a node ve in G that serves as a

witness for Φe not being an isomorphism from G to G′, i.e., Φe(C(ve)) � C(ve). At each stage

s where s > e, we set ve,s = xn,s for some n. We will need to make sure that ve = lims ve,s

exists.

We first describe the construction for meeting a single requirement P0. The general

construction (for multiple requirements) will be described later. Let s be the first stage

where Φ0,s is defined on all nodes in Cs(x0,s) and is a partial isomorphism from Gs to G′s.

Note that at this stage, an isomorphism fs from Gs to G′s is also defined. We let v0,s = x0,s

and start two processes simultaneously:

(a) Enumerate nodes in G to look for a component C in G that is disjoint from the

range of fs and Cs(v0,s) ≺ C.

(b) Compute the nodes x0,s, x0,s+1, x0,s+2,

There are two possibilities:

– Case 1. The process (a) returns with a component C as specified. In this case, we do

the following:

1. Add the component C to Gs.

2. Add a new component D to G′s that is isomorphic to f−1
s (Cs(Φ0(x0,s))) � Cs(x0,s).

3. Extend the component Cs(Φ0(x0,s)) in G′s so that it is isomorphic to C.

6.4. A SUFFICIENT CONDITION FOR NON-COMPUTABLY CATEGORICITY 143

4. Re-define fs by mapping f−1
s (Cs(Φ0(x0,s))) isomorphically to D, and mapping C

isomorphically to the extended component Cs(Φ0(x0,s)). In this way, fs remains

an isomorphism from Gs to G′s.

– Case 2. If x0,s < X, the desired component C would never be found. In this case,

there is s′ > s such that x0,s′ , x0,s. We will notice this and continue to another stage

of the construction.

Note that if Case 1 is reached at stage s, then Cs(v0,s) ≺ Cs(Φ0(v0,s)). The function Φe is

not an isomorphism from G to G′ until the component C(v0,s) is extended and become iso-

morphic to the component C(Φ0(v0,s)). When this occurs, we perform the above operations

again to look for another component C. Since G is strongly locally finite, the component

C(v0,s) can be extended for at most finitely many times.

Suppose P0 is not satisfied. Let s be the least stage such that x0,s′ = x0 for all s′ ≥ s and

the component of x0 has fully reveals itself, i.e., Cs(x0) = C(x0). Since Φ0 is an isomorphism

from G to G′, there is a stage s′ ≥ s where Φ0,s′ is defined on all nodes in C(x0) and is a

partial isomorphism. At stage s′ we run the above procedure on x0 and since x0 ∈ X, we

will eventually find a component C disjoint from the range of fs′ such that Cs′(x0,s′) ≺ C.

We then run Case 1 above. Therefore, x0 is a true witness for satisfying the requirement P0,

i.e., C(x0) ≺ C(Φ0(x0)), which guarantees that Φ0 is not an isomorphism from G to G′. This

is a contradiction with our assumption.

We now describe the construction for the case of multiple requirements. The only extra

complication for multiple requirements is that we want to ensure that f is an isomorphism

from G to G′. So for all v ∈ N, we need to make sure f (v) exists, i.e., we only re-define

f (v) for finitely many times. We say that a requirement Pe has higher priority than Pt if

e < t. If we find that Φe(ve,s) ↓, but is mapped to some component where we have already

re-defined f for the sake of higher priority requirements, then instead of proceeding with

the diagonalization, we will change ve to be the next member of X (i.e., if ve,s = xn,s, we

would let ve,s+1 = xn+1,s+1). Since each requirement only causes f to be re-defined finitely

often and there are only finitely many requirements with higher priorities than Pe, ve will

be re-defined finitely often for this reason. We now give the formal construction.

Construction. At stage 0, let G0 = {0} and G′
0

be the graph consisting of only one node,

which is mapped from 0 by the function f0. At stage s + 1, s ≥ 0, suppose we have defined

Gs,G′s and an isomorphism fs : Gs → G
′
s. Enumerate a new element into Gs and extend G′s

correspondingly to preserve the isomorphism fs. Compute the nodes x0,s+1, x1,s+1, . . . , xk,s+1

where k is the number of components in the finite graph Xs+1. Then perform the following

steps:

Step 1. Choose the least e such that Φe,s+1(ve,s) ↓ and Cs+1(ve,s) � Cs+1(Φe,s+1(ve,s)), and such

that xn,s+1 = xn,s, where n is such that xn,s = ve,s. If no such e exists, move to Step 2. If f−1 or f

144 Chapter 6. Computably Categorical Graphs with Finite Components

have already been re-defined at earlier stages by higher priority requirements onΦe,s+1(ve,s)

or f−1(Φe,s+1(ve,s)), respectively, then set ve,s+1 = xn+1,s+1. For i > e, let vi,s+1 = xn+1+i−e,s+1.

For i < e, let vi,s+1 = xm,s+1, where m is such that xm,s = vi,s. Move to stage s + 2.

Otherwise, speed up the enumeration of G and the approximation of X until we find

some t > s where one of the two cases below occurs:

Case 1. There is v ∈ Gt such that fs is not defined on v and Ct(ve,s+1) ≺ Ct(v).

Case 2. xn,t , xn,s where ve,s = xn,s.

In Case 1, move to Step 2. Otherwise, move to Step 3.

Step 2. Perform the following operations:

1. Add the component Ct(v) to Gs+1.

2. Add a new component D to G′
s+1

that is isomorphic to Cs+1(f−1
s (Φe(ve,s))).

3. Extend the component Cs+1(Φe(ve,s)) in G′s so that it is isomorphic to Ct(v).

4. Re-define fs by mapping Cs+1(f−1
s (Φe(ve,s))) isomorphically to D, and mapping Ct(v)

isomorphically to the extended component Cs+1(Φe(ve,s)). In this way, fs+1 remains an

isomorphism from Gs+1 to G′
s+1

.

This finishes the construction at this stage for Case 1.

Step 3. Let n be least such that xn,s+1 , xn,s. For e such that ve,s = xm,s with m < n,

let ve,s+1 = ve,s. Let e be least such that ve,s = xm,s with m ≥ n. For i ∈ {e, . . . , s}, let

vi,s+1 = xn+i−e,s+1. This finishes the construction at this stage for Case 2.

Verification. The correctness of the construction is based on the following two claims.

Claim 1. Each requirement Pe, e ∈N, is satisfied.

Suppose Pe is the first requirement not satisfied. Note that ve = lims ve,s exists as ve will

no longer be re-defined after all requirements with higher priorities have been satisfied

and vi have been stablized for all i < e. Let s be the least stage such that ve,s′ = ve for all

s′ ≥ s and the component of ve has fully reveals itself, i.e., Cs(ve) = C(ve). Since Φe is an

isomorphism from G to G′, there is a stage t ≥ s where Φe,t is defined on all nodes in C(ve)

and is a partial isomorphism. At stage t, since xe ∈ X, we will find a node v such that Ct(v)

is disjoint from the range of ft and Ct(ve) ≺ Ct(v). The construction will ensures that ve is a

true witness for satisfying the requirement Pe. Hence Φe is not an isomorphism from G to

G′. This is a contradiction with our assumption. This proves Claim 1.

Claim 2. G � G′

6.5. ∆0
3
-CHAIN OF EMBEDDED COMPONENTS 145

By construction, at each stage s, fs is an isomorphism fromGs toG′s. To show thatG � G′,

it suffices to show that for each v ∈ G, f (v) = lims fs(v) exists. If v do not belong to C(ve,s)

for any e, s, then f would never be re-defined on v. Suppose v ∈ C(ve,s) for some e, s ∈ N.

Let e be the maximum number such that v ∈ C(ve,s) for some s. After all requirements Pi for

i ≤ e have been satisfied, f is never re-defined on v. Hence Claim 2 is proved.

Finally, we note that since every infiniteΣ0
2

set has an infinite∆0
2

subset, in Theorem 6.4.1,

we need only assume that X is an infinite Σ0
2

set.

6.5 ∆0
3
-chain of embedded components

From Theorem 6.3.5 and Theorem 6.4.1 above, one may suggest that the existence of an

infinite chain of properly embedded components in a graph may imply that the graph is

not computably categorical. One may also suggest that the ∆0
2
-bound in Theorem 6.4.1

could be replaced with a ∆0
3
-bound. The main result of this section is to refute these two

suggestions and prove the following:

Theorem 6.5.1 There is a computably categorical graph G inGSLF that possesses an infinite chain

of properly embedded components. Furthermore, the set {v | extG(v) = ∞} belongs to ∆0
3
.

In the following we first describe a subclass of graphs that contains the desired graph G

and encode weighted equivalence structures (see Section 6.5.1 for definitions) into these

graphs. To prove Theorem 6.5.1, it suffices to construct a weighted equivalence structure

that satisfies some requirements. The subsequent sections are devoted to constructing such

a structure.

6.5.1 Special cyclic graphs and weighted equivalence structures

Fix a cycle Cn = ({1, 2, . . . , n}; {{1, 2}, {2, 3}, . . . , {n− 1, n}, {n, 1}}). Let v be a node not in Cn. To

attach Cn to v means to connect v with Cn by adding the edge {v, 1}.

Definition 6.5.2 A graph G is special cyclic if each of its components can be obtained from

attaching several (possibly infinitely many) cycles to a node v and the lengths of all cycles are

greater than 2 and pairwise distinct. The node v is a root in G.

Figure 6.1 illustrates a special cyclic graph. Note that a special cyclic graph may have

infinite components and therefore may not be a member of GSLF. To prove Theorem 6.5.1,

we will construct a computably categorical special cyclic graph that belongs to GSLF.

Definition 6.5.3 A weighted equivalence structureE is of the form (V; E, (Pn)n∈N) where (V; E)

is an equivalence structure and P0,P1, . . . are pairwise disjoint subsets of V. We say that an element

146 Chapter 6. Computably Categorical Graphs with Finite Components

. . .

Figure 6.1: A special cyclic graph.

v ∈ V has weight n if v ∈ Pn, in this case we denote v by n. A weighted equivalence structure E is

computable if V,E are computable sets and the mapping from a node to its weight is a computable

function2.

Let E be a weighted equivalence structure. We call an E-equivalence class a component. Let

C be a component in E. We say that C contains n, denoted by n ∈ C, if C contains an element

with weight n. A component C embeds in a component D, denoted by C � D, if n ∈ C

implies n ∈ D for all n ∈N.

Let E be a computable weighted equivalence structure. We define the computable

graph G(E) as follows: For every element x of E, create a cycle Cx of length n + 3 where

x ∈ Pn, and put two cycles Cx,Cy in the same special cyclic component whenever (x, y) ∈ E.

We use C(x) to denote the component of any node x in G(E). For a component C in E, we

use G(C) to denote the component in G(E) that contains all cycles Cx where x ∈ C. A set X

of elements in E is component-closed if x ∈ X implies that all elements in the component of x

belong to X.

Proposition 6.5.4 Let E be a computable weighted equivalence structure. The following hold:

(a) For any computable weighted equivalence structure E′, E � E′ if and only if G(E) � G(E′).

(b) The graph G(E) is computably categorical if and only if E is computably categorical.

(c) For A ⊆N, and a component-closed set X of elements in E, we have

X ≤T A⇔ {x | ∃y ∈ X : C(x) contains Cy} ≤T A.

Proof. (a) For any computable weighted equivalence structure E′, suppose f is an isomor-

phism between E and E′. An isomorphism from G(E) to G(E′) can be defined by mapping

G(C) isomorphically to G(f (C)) for all components C of E. The other direction of (a) can be

proved in a similar way.

2Alternatively, one may require (Pn)n∈N to be a uniformly computable sequence of sets. These two definition
are equivalent.

6.5. ∆0
3
-CHAIN OF EMBEDDED COMPONENTS 147

(b) Suppose E is computably categorical and let H � G(E) be computable. From H we

can construct a computable weighted equivalence structure E′ that consists of all nodes in

H that are adjacent to a root, two nodes are equivalent if and only if they are adjacent to

the same root, and set the weight of a node u to n if and only if the cycle containing u has

length n + 3. It is easy to see that G(E′) � H . Hence by (a), E′ � E. Let f be a computable

isomorphism from E′ to E. We can build a computable isomorphism from H to G(E) as

follows: For any node x that are adjacent to a root in H , map the component containing

x isomorphically to the component in G(E) that contains the cycle C f (x). This proves that

G(E) is computably categorical and one direction of (b). The other direction can be proved

in a similar way.

(c) Let X be a component-closed set of elements in E. Suppose X ≤T A. For every node

x in G(E), to decide whether C(x) contains Cy for some y ∈ X, we computably enumerate

elements in E and G(E) while matching up elements in E with their corresponding cycles

in G(E). When a cycle that belongs to the same component as x is enumerated, say this

cycle is Cz for some z in E, we run the A-oracle computation to check whether z ∈ X. Since

X is component-closed, z ∈ X if and only if C(x) contains Cy for some y ∈ X. For the other

direction, let x be an element in E. Then x ∈ X if and only if some node in Cx belongs to

the set {z | ∃y ∈ X : C(z) contains Cy}, which can be checked effectively against an A-oracle

computation.

The following proposition is the main technical result of this section.

Proposition 6.5.5 There is a computable weighted equivalence structure F such that

– each component of F is finite,

– F is computably categorical, and

– F possesses an infinite chain of properly embedded components.

Furthermore, the set of elements whose components properly embed into infinitely many components

is computable in 0”.

Prop. 6.5.5 suffices for proving Theorem 6.5.1 because by Prop. 6.5.4, the graph G(F)

is computably categorical, all components in G(F) are finite and G(F) contains an infinite

chain of properly embedded components. Furthermore, by (c) of Prop. 6.5.4, the set

{v | extG(F)(v) = ∞} is computable in 0” and hence belongs to ∆0
3
. The remaining sections

of this chapter is devoted to proving Prop. 6.5.5.

Proposition 6.5.6 From each e ∈N, one uniformly computes a sequence of finite weighted equiv-

alence structures Ee,0 ⊂ Ee,1 ⊂ Ee,2 ⊂ . . . such that the sequence E0,E1,E2, . . ., where Ei =
⋃

s Ei,s

for i ∈N, lists all computable weighted equivalence structures.

148 Chapter 6. Computably Categorical Graphs with Finite Components

Proof. We effectively encode pairs of natural numbers (a, b) ∈ N2 by a single number

< a, b >∈N (using a standard pairing function such as < a, b >= (a+ b)(a+ b+ 1)/2+ b). For

e ∈N, define

Φ̂e,t(x, y) =



1 if Φe,t(< x, y >) = 1

0 if Φe,t(< x, y >) ↓, 1

undefined if Φe,t(< x, y >) ↑

and Φ̂e(x, y) = lims Φ̂e,s(x, y). Hence, the sequence Φ̂0, Φ̂1, . . . is a standard enumeration of

all partial computable function from N2 to {0, 1}. Let Equiv(i, t, x) denote the formula that

specifies that the function Φ̂i,t converges on all pairs of numbers y, z ≤ x and the relation

{(y, z) ∈ {0, . . . , x}2 | Φ̂i,t(y, z) = 1} is an equivalence relation. For each i, j, t ∈ N, we define

the structure E<i, j>,t = (V<i, j>,t; E<i, j>,t, (P<i, j>,k,t)k∈N) where

V<i, j>,t = {x | x < t,∀y ≤ x : Φi,t(y) ↓ ∧Equiv(j, t, x)}

E<i, j>,t = {(y, z) ∈ V2
<i, j>,t | Φ̂i,t(y, z) = 1}

P<i, j>,k,t = {x ∈ V<i, j>,t | Φ j,t(y) = k}

Note that V<i, j>,t ⊆ V<i, j>,t+1, E<i, j>,t ⊆ E<i, j>,t+1 and P<i, j>,k,t ⊆ P<i, j>,k,t+1 for each k ∈ N.

For each e ∈ N, let Ee =
⋃

t Ee,t. The sequence E0,E1, · · · lists all computable weighted

equivalence structures.

To ensure that the weighted equivalence structure F is computably categorical, we

satisfy the following requirements for all e ∈N:

Re : Ee � F or Ee is computably isomorphic to F .

The construction will be carried out in stages. At stage t, we will construct a finite weighted

equivalence structure Ft such that F0 ⊂ F1 ⊂ F2 ⊂ . . . and set F =
⋃

t Ft.

6.5.2 Construction of F

The construction uses the tree argument (See [108] for a detailed introduction). Intuitively,

we construct F by putting all strategies on the binary tree T = 2<ω. We satisfy all require-

ments by traversing the tree T along paths of the tree. For each node we visit, we carry out

the construction for satisfying one requirement. We use lower case Greek letters α, β, γ, . . .

to denote nodes on T, i.e., finite strings over {0, 1}. The tree order on T is the prefix order

≤pref. A node α is to the left of another node β, denoted by α <L β if there is γ ∈ T such

that γ0 ≤pref α and γ1 ≤pref β. Let |α| denote the length of α. A path is a (possibly infinite)

sequence of strings α0, α1, α2, . . . ∈ {0, 1}⋆ such that α0 = ε and for all i ∈N, αi+1 ∈ {αi0, αi1}.

6.5. ∆0
3
-CHAIN OF EMBEDDED COMPONENTS 149

Hence a finite path can also be identified by its last node. For a path δ in T and n ∈ N, we

let δ ↾ n denote the length n initial segment of δ, i.e., the level n node on the path δ. We use

δ(n) to denote the symbol i ∈ {0, 1} such that δ ↾ n + 1 = (δ ↾ n)i.

When we visit a node α, we try to satisfy the requirement R|α| by defining a set of waiting

components in F . We search in the structure E|α| for components that are isomorphic to

these waiting components. If such components are found, we match them isomorphically

with the waiting components in F and declare that these waiting components are now

covered by α. We then set some other components as the new waiting components. In this

case, we say that the requirement R|α| recovers. If no such component is found, R|α| keeps

waiting. The path we traverse in the tree T depends on the outcomes we obtain for each

α ∈ T:

– If R|α| recovers, we next visit the node α0 and act to satisfy the next requirement R|α0|.

All waiting components for α0 are taken from the covered components for α.

– If R|α| does not recover, we next visit the node α1 and act to satisfy R|α1| by picking

waiting components for α1 from the other components for α.

Formally, for each node α ∈ T and t ∈N, we define the tuple

(Cα,t,Wα,t,Oα,t,C
M
α,t,W

M
α,t,O

M
α,t,Mα,t,Aα,t)

such that

– Cα,t,Wα,t,Oα,t are pairwise disjoint sets of components in Ft

– Mα,t,Aα,t are two (distinct) components that do not belong to Cα,t ∪Wα,t ∪ Oα,t.

– For all K ∈ {C,W,O}, KM
α,t ⊆ Kα,t and |WM

α,t| = 1.

The components in Cα,t,Wα,t,Oα,t are respectively called the covered, waiting and other

components for α at stage t. We say that the component Mα,t is marked by α at stage t and

Aα,t is reserved. SinceWM
α,t is a singleton, we sometimes abuse the notation by treating it

as a component. The set CM
α,t contains components that have been marked by α at a prior

stage. The set OM
α,t contains the components that may be marked by α in future stages.

We maintain these sets of components in such a way that the following properties hold;

See Figure 6.2 for an illustration:

Cα0,t ∪Wα0,t ∪ Oα0,t ∪ {Mα0,t,Aα0,t} = Cα,t

Cα1,t ∪Wα1,t ∪ Oα1,t ∪ {Mα1,t,Aα1,t} = Oα,t

CM
α0,t ∪W

M
α0,t ∪ O

M
α0,t ∪ {Mα0,t,Aα0,t} ⊆ C

M
α,t

CM
α1,t ∪W

M
α1,t ∪ O

M
α1,t ∪ {Mα1,t,Aα1,t} ⊆ O

M
α,t

150 Chapter 6. Computably Categorical Graphs with Finite Components

Aα,t Cα,t Mα,t Wα,t Oα,t

Aα0,t Cα0,t Mα0,t Wα0,t Oα0,t Aα1,t Cα1,t Mα1,tWα1,t Oα1,t

Figure 6.2: Components in the sets Cα,t,Wα,t,Oα,t,Mα,t,Aα,t

To maintain these properties, at any stage t, we make sure the following for all components

C and all α ∈ T:

– If C ∈ Cα,t then C ∈ Oα0,t. In particular, C ∈ OM
α0,t if C ∈ CM

α,t.

– If C ∈ Oα,t then C ∈ Oα1,t. In particular, C ∈ OM
α1,t if C ∈ OM

α,t.

– C can only be set asWM
α,t or Aα,t after it is put in OM

α,t.

– C can only be marked by α after it is set asWM
α,t.

– C can only be a member of CM
α,t only after it has been marked by α.

We denote by Fα,t the substructure obtained by taking the disjoint union of all compo-

nents in Cα,t ∪Wα,t ∪ Oα,t ∪ {Mα,t,Aα,t}. During the construction, we define for each node

α ∈ T a partial isomorphism fα,t from E|α|,t to Fα,t. We say a component C is mapped by α at

stage t if f−1
α,t (x) is defined for some x ∈ C. An element x is unique if no other element has the

same weight as x. A number n is unused if no element in the currently constructed F has

weight n. During the construction we maintain the following additional invariants for all

α ∈ T and t ∈N:

(S1) ∀β >pref α : Aα,t ≺ Aβ,t.

(S2) Every component in Oε,t \ O
M
ε,t has a unique element in Ft.

(S3) At stage t, all components in Cα,t are mapped by αwhile no component inWα,t∪Oα,t

is mapped by α.

At stage t of the construction, for any α ∈ T and component C ∈ Cα,t ∪ {Mα,t} ∪Wα,t,

we will pick a number mC
α such that mC

α ∈ C and mC
α is distinct for all C and α, i.e., for all

components C,D in Ft and α, β ∈ T, mC
α = mD

β implies C = D and α = β. We also maintain

the following invariants for each t and α ∈ T:

6.5. ∆0
3
-CHAIN OF EMBEDDED COMPONENTS 151

(S4) For C ∈ (Cα,t \ C
M
α,t) ∪ {Mα,t} ∪ Wα,t, mC

α is unique in Ft; For C ∈ CM
α,t, mC

α is only

contained in components in CM
α,t ∪ {Mα,t}. Furthermore, f−1

α,t is defined on the element

with weight mC
α in C for any C ∈ Cα,t.

For α ∈ T and t ∈N, define

Checkα,t = {mC
α | C ∈ C

M
α,t ∪W

M
α,t ∪ {Mα,t}}.

With some nodes α in the tree, we associate a number Forbidα as follows: At stage t, for

each α we visit and each n ∈ Checkα,t, if the number of components in E|α|,t that contains

n is more than the number of components in Ft that contains n, we set Forbidα = n. A

number n is forbidden whenever n = Forbidα for some α ∈ T. Intuitively speaking, if n is

forbidden, no further element with weight n is allowed to be created in F .

At stage t of the construction, we may initialize a node α by applying the following

operations:

(1) Undefine the number mC
α for all component C ∈ Fα,t.

(2) Set Fα,t empty (In particular, set all of Cα,t,Wα,t,Oα,t,Aα,t and Mα,t empty).

(3) If Forbidα has been defined and is equal to some n ∈ N, then undefine it. Hence the

number n is no longer forbidden.

Construction. We now describe the stagewise construction. At stage 0, we initialize all

nodes α ∈ T.

At stage t + 1, we first set Kα,t+1 = Kα,t for all K ∈ {C,W,O,A,M, f }, KM
α,t+1

= KM
α,t for all

K ∈ {C,W,O}, then run a sequence of steps to construct the structure Ft+1. The path δt+1

is defined inductively on the steps. The number of steps at stage t + 1 is at most t + 1 and

hence |δt+1 | ≤ t + 1. Let δt+1 ↾ 0 = ε. Suppose we are at step s < t + 1 and α = δt+1 ↾ s is

defined. The construction acts on the node α and s may either be an α-recovery step or an

α-waiting step, which is classified by the following algorithm:

1. If Forbidα is defined, s is an α-waiting step.

2. Suppose Forbidα is not defined. For each n ∈ Checkα, if the number of components

containing n in E|α|,t+1 is more than the number of components containing n in Ft,

then we set Forbidα = n and s is an α-waiting step.

3. If OM
α,t+1

= ∅, then stop this step and do not carry out any more steps in this stage.

152 Chapter 6. Computably Categorical Graphs with Finite Components

4. If Aα,t+1 is undefined, set Aα,t+1 as the first component3 C in OM
α,t+1

, and delete C from

Oα,t+1. If s > 0, add to Aα,t+1 a new element n if n ∈ Aδt+1↾(s−1),t+1 and n < Aα,t+1. Note

that this operation is allowed only when n is not forbidden for any n ∈ Aδt+1↾(s−1),t+1.

This fact is proved in Lemma 6.5.7(a).

5. If Mα,t+1 is undefined andWM
α,t , ∅, then set Mα,t+1 asWM

α,t+1
and setWM

α,t+1
= ∅.

6. IfWM
α,t+1

= ∅ and OM
α,t+1

, ∅ (note that OM
α,t+1

may have been updated in 4.), then set

WM
α,t+1

as the first component C inOM
α,t+1

(hence delete it fromOM
α,t+1

). To C add a new

element with unused weight m and set mC
α = m.

7. If any one of Mα,t+1 andWM
α,t+1

is not defined, then s is an α-waiting step.

8. Suppose Mα,t+1 and WM
α,t+1

are both defined. If fα,t can be extended to a partial

isomorphism fromE|α|,t+1 toFt such that it maps components inE|α|,t+1 isomorphically

to {Mα,t+1} ∪Wα,t+1, then s is an α-recovery step. Otherwise it is an α-waiting step.

Define the next node on the path δt+1 as

δt+1(s) =


0 if s is an α-recovery step

1 otherwise.

If δt+1(s) = 1, then we proceed to the next step. Otherwise, we act for α as follows. Firstly,

we extend fα,t such that it maps components in E|α|,t isomorphically to components in

{Mα,t} ∪Wα,t. Then we perform the following operations:

1. Move all components in {Mα,t+1}∪Wα,t+1 \W
M
α,t+1

toCα,t+1. In particular, move Mα,t+1

to CM
α,t+1

.

2. Add all components in {Mα,t+1} ∪ Wα,t+1 \ W
M
α,t+1

to Oα01m,t+1 for all m ∈ N. In

particular, add Mα,t+1 to OM
α01m,t+1

.

3. ToWM
α,t+1

add an element with weight n if n ∈ Mα,t+1 and n <WM
α,t. Note that this

operation is allowed only if for all n ∈ Mα,t+1, n is not forbidden. This fact is proved

in Lemma 6.5.7(b).

4. Set the new Mα,t+1 asWM
α,t+1

and setWM
α,t+1

= ∅.

5. To each component C ∈ OM
α,t+1

add an element with unused weight so that they are

pairwise non-embeddable. Set mC
α as the weight of the new element.

3We assume there is a well-order on all components inFt, e.g., a component C is less than another component
D if the least element in C is smaller than the least element in D (recall that elements inF are natural numbers).
By the “first” component, we mean the least with respect to this linear order.

6.5. ∆0
3
-CHAIN OF EMBEDDED COMPONENTS 153

6. For each component C ∈ Oα,t+1 \ O
M
α,t+1

, if C ∈ Oβ,t+1 for all β ≤pref α, then let mC
α be

the unique element contained in C (such element exists by (S2)); otherwise, let s′ be

the largest number such that C < Oδt+1↾s′,t+1. It must be that C ∈ Cδt+1↾s′,t+1, and thus

mC
δt+1↾s′

is defined. Let mC
α = mC

δt+1↾s′
.

7. Move all components inOα,t toWα,t+1. In particular, setWM
α,t+1

as the first component

in OM
α,t.

8. Initialize all nodes β ∈ α1{0, 1}⋆.

This completes the construction for step s. The following lemma shows that no element

created in Ft+1 has a forbidden weight.

Lemma 6.5.7 The following statements hold at step s of stage t + 1:

(a) Suppose s > 0 and Aα,t+1 is not defined at step s − 1. Then for all n ∈ Aδt+1↾(s−1),t+1, n is

not forbidden.

(b) Suppose s is an α-recovery step. For all n ∈Mα,t, n is not forbidden.

Proof. (a) Let β = δt+1 ↾ s − 1. Take n ∈ Aβ,t+1 and suppose n = Forbidγ for some γ ∈ T.

This implies that n = mC
γ for some component

C ∈ CM
γ,t+1 ∪W

M
γ,t+1 ∪ {Mγ,t+1}.

We have the following cases:

(1) Suppose γ ≥pref α. By construction, for all τ ∈ T, the set Cτ,t+1 ∪ {Mτ,t+1} ∪Wτ,t+1 is

nonempty only if Aτ,t+1 is defined. Since Aα,t+1 is not defined,Cγ,t+1∪{Mγ,t+1}∪Wγ,t+1

is empty and Forbidγ is undefined. Contradiction.

(2) Suppose γ >L β. The construction would have initialized γ at stage t + 1 and γ has

not been visited again. Therefore we also have Forbidγ undefined.

(3) Suppose γ ≤L β. By (S4), mC
γ < D for any D < Cγ,t+1 ∪ {Mγ,t+1} ∪ Wγ,t+1. Since

Aβ,t+1 < Cγ,t+1 ∪ {Mγ,t+1} ∪Wγ,t+1, we have n < Aβ,t+1, which is in contradiction with

the assumption.

(4) Suppose γ <pref β. Then γ = δt+1 ↾ s′ for some s′ < s − 1. This means that s′ is a

δt+1 ↾ s′-waiting step and Aβ,t+1 ∈ Oδt+1↾s′,t+1. Thus n < Aβ,t+1. Contradiction.

Since we arrive at a contradiction in all cases above, (a) is proved.

154 Chapter 6. Computably Categorical Graphs with Finite Components

(b) Take n ∈Mα,t and suppose n is forbidden before step s. Since all nodes γ >L α has been

initialized at stage t + 1, n = mC
β for some β ≯L α and some component

C ∈ CM
β,t+1 ∪W

M
β,t+1 ∪ {Mβ,t+1}.

We have the following cases:

(1) Suppose β >pref α. By (S4), mC
β < D for any D < Cβ,t+1 ∪ {Mβ,t+1} ∪Wβ,t+1. But Fβ,t+1 is

formed by either components in Cα,t+1 (when β ≥pref α0) or Oα,t+1 (when β ≥pref α1).

Hence Mα,t+1 < Cβ,t ∪ {Mβ,t} ∪Wβ,t, which implies mC
β <Mα,t.

(2) Suppose β = α. In this case, Forbidα , ∅ and s would have be an α-waiting step,

which is in contradiction with the assumption.

(3) Suppose β <L α. Then there is γ <pref β such that Mα,t+1 ∈ Oγ,t+1. This means that

Mα,t+1 < Cβ,t+1 ∪ {Mβ,t+1} ∪Wβ,t+1. Hence mC
β <Mα,t+1.

(4) Suppose β <pref α. There is a step s′ < s at stage t + 1 such that Forbidδt+1↾s′ = n.

Therefore s′ is a δt+1 ↾ s′-waiting step. This means that Mα,t+1 ∈ Oδt+1↾s′,t+1 and thus

n <Mα,t+1.

Since we arrive at a contradiction in all cases above, (b) is proved.

After finishing all steps, we create new components N1 = {n1},N2 = {n2}, where n1, n2

are distinct and unused weights. Add N1 and N2 toO1m,t+1 for all m ∈N. In particular, add

N2 to OM
1m,t+1

. This completes the construction of Ft+1.

6.5.3 Verification

We now prove that the invariants are preserved by the construction. Suppose all invariants

hold at stage t.

Lemma 6.5.8 The invariants (S1) – (S4) hold at stage t + 1.

Proof. Fix α ∈ T. We prove that all invariants hold for α at stage t + 1.

(S1) : Whenever a component is set as Aα,t+1 for some α with |α| > 0, the construction

will add into Aα,t+1 any element n if n ∈ Aδ↾|α|−1,t+1 and n < Aα,t+1. Also, by the

construction, once a component is set as Aα,t+1, it will no longer be extended in the

future. Hence for all β ∈ T, α <pref β implies Aα,t ≺ Aβ,t.

(S2) : By the construction once a component is an element of Oα,s \O
M
α,s for some α ∈ T

and s ∈N, it will never be extended in the future. Note also that the set of components

Oε,t+1 \ O
M
ε,t+1

is a subset of (Oε,t \ O
M
ε,t)∪N1. Hence (S2) holds by assumption and the

fact that N1 contains an unique element.

6.5. ∆0
3
-CHAIN OF EMBEDDED COMPONENTS 155

(S3) : This invariant holds at stage t + 1 because a component C is moved to Cα,t+1

only when fα,t+1 maps some element in Ft+1 to C.

(S4) : Take a component C ∈ (Cα,t+1\C
M
α,t+1

)∪{Mα,t+1}∪Wα,t+1. We prove, by induction

on the number of steps performed, that the element mC
α contained in C is unique in

Ft+1. Suppose mC
α is unique (if it is defined) at step s − 1. Let β = δt+1 ↾ s. At step s,

there are two cases where an element with a used weight could be created:

(i) If Aβ,t+1 is undefined before the step and OM
β,t+1

is not empty, a component in

OM
β,t+1

is selected as the new Aβ,t+1 and the construction adds to Aβ,t+1 all elements

n where n ∈ Aδt+1↾s−1,t+1. We prove below that Aδt+1↾s−1,t+1 does not contain mC
α .

If α ≮pref β, then it is clear that Aδt+1↾s−1,t+1 < Cα,t+1 ∪ {Mα,t+1} ∪ Wα,t+1. If

α <pref δt+1 ↾ s − 1, Aδt+1↾s−1,t+1 either belongs to CM
α,t+1

or OM
α,t+1

and hence does

not contain mC
α by the inductive hypothesis. If α = δt+1 ↾ s − 1, then also by the

inductive hypothesis, Aα,t+1 clearly does not contain mC
α .

(ii) If s is a β-recovery stage, then the construction sets the componentWM
β,t+1

as the

new β-marked component and adds to it all elements n that are contained in

the previous β-marked component. We use M to denote the previous β-marked

component. Using a similar argument as in (i), one can prove that M does not

contain mC
α .

Now take C ∈ CM
α,t+1

. By construction there is a stage t′ ≤ t + 1 where C is marked by

α at stage t′. Then a component contains mC
α,t+1

if and only if it is marked by α after

stage t′. Hence all components containing mC
α,t+1

belong to CM
α,t+1
∪ {Mα,t+1}.

Note also that by construction, as a component C is moved to Cα,t+1, f−1
α,t is defined

on the element with weight mC
α in C.

The next lemma shows that the construction visits every level of the tree infinitely often.

Lemma 6.5.9 For every e ∈ N, there is some α ∈ T such that |α| = e and α is visited by infinitely

many δs.

Proof. We prove the lemma by induction on the stages. The base case is when e = 0 and

α = ε. The inductive hypothesis assumes that for e ≥ 0 there is α ∈ T where |α| = e and for

infinitely many stages t, we have (1) α ∈ δt and (2) Oα,t , ∅. We have two cases:

Case 1: If R|α| recovers at α infinitely often, then α0 is visited infinitely often. At any stage

s where α0 ∈ δs, the construction will move the marked and waiting components for α to

Oα0,s. Hence the inductive hypothesis holds for e + 1.

Case 2: If after some stage, R|α| would never recover, then α1 is visited infinitely often. Let

γ be the shortest word such that α = γ1m for some m ∈N. Since γ is visited infinitely often,

156 Chapter 6. Computably Categorical Graphs with Finite Components

for infinitely many stages s, some new components are added to Oγ,s. Since α = γ1m ∈ δ,

there is a stage s after which all nodes in {γ1k | k ≤ m} are never initialized. Therefore at all

stages s′ > s there are some components put in Oβ,s′ . Hence the inductive hypothesis holds

for e + 1.

We define the true path δ such that for all e ∈ N, δ ↾ e = lim infs δs ↾ e. In other words, for

any e ∈ N, δ ↾ e is the leftmost γ such that |γ| = e and ∃∞s : γ ∈ δs. By Lemma 6.5.9, the

true path δ exists. For all e ∈N, let se be the least stage after which the construction would

never initialize the node δ ↾ e. Let Ae = Aδ↾e,se .

Lemma 6.5.10 The structure F contains an infinite chain of properly embedded components. The

set of elements whose components properly embed into infinitely many components is computable

in 0”

Proof. By (S1), for all e, Ae ≺ Ae+1. Hence the sequence A0,A1,A2, . . . forms an infinite

chain of properly embedded components in F . Note also that the set of elements whose

components properly embed into infinitely many components are exactly the elements in⋃
e Ae. Since the true path δ satisfies that ∀e : δ ↾ e = lim inft δt ↾ e, δ is computable in 0′′.

For each e ∈ N, using a 0′′-oracle, we are able to compute the least stage se after which

δ ↾ e is never initialized. Running the construction till stage se reveals the component

Aδ↾e,se = Ae.

The next lemma shows that, intuitively speaking, the true path δ indicates which Ee is

isomorphic to F .

Lemma 6.5.11 For all e ∈N, Ee � F implies δ(e) = 0.

Proof. Suppose thatEe � F and there is a stage t after which Re never recovers, i.e., δ(e) = 1.

Let α = δ ↾ e. Without loss of generality, assume α is never initialized after stage t. Thus

Wα,t =Wα,s for all s > t. Take a component H ∈ Wα,t ∪ {Mα,t}. By (S4), for all s > t, H

has a unique element mH
α in Fs. Therefore H is the only component in F that contains mH

α .

Since Ee � F , in Ee there is a unique element CH that is isomorphic to H. We prove next

that before stage s, the function fα,t is not defined on CH and hence the construction will

eventually find CH in Ee. This is sufficient to prove the lemma as Re would recover at α

when CH is found for all H ∈ {Mα,t} ∪Wα,t, which is in contradiction with the assumption.

Suppose H ∈ Wα,t. By (S4), every component C ∈ Cα,t has some element n that is not

contained in H and f−1
α,t is defined on n. This means that the component f−1

α,t (C) in Ee is not

isomorphic to H. Therefore fα,t is not defined on CH.

Suppose H =Mα,t. Then for all t′ < t, Mα,t′ ≺Mα,t. Suppose for the sake of contradiction

that there is a stage t′ < t such that fα,t′ maps the component CH to Mα,t′. Let s be the last

stage where Re recovers at α before t. Note thatWM
α,s and Mα,t are the same component.

6.5. ∆0
3
-CHAIN OF EMBEDDED COMPONENTS 157

By the definition of an α-recovery stage, f−1
α,s (WM

α,s) contains m
WM

α,s
α = mH

α . Let ℓ ≥ s be the

first stage when CH completely reveals itself. At stage ℓ, both components CH and f−1(H)

in Ee,ℓ contain an element with weight mH
α , whereas only one component H in Fℓ contains

an element with weight mH
α . Furthermore, it is clear that mH

α ∈ Checkα,ℓ. Therefore at

stage ℓ, the construction would set Forbidα = mH
α and guarantee that Ee � F . This is in

contradiction with the assumption. Therefore, fα,t is not defined on CH.

The next lemma shows that all requirements Re, e ∈ N, are satisfied. Let F (e) be the

structure obtained by the union

⋃

s≥se

Cδ↾e,s ∪ {Mδ↾e,s} ∪Wδ↾e,s ∪ Oδ↾e,s.

Since δ ↾ e is never initialized after se and is visited infinitely often, the structure F (e)

contains all but finitely many components in F

Lemma 6.5.12 If Ee � F , then Ee and F are computably isomorphic. Hence the requirement Re

for all e ∈N are satisfied.

Proof. Suppose Ee � F . By Lemma 6.5.11, δ(e) = 0 and Re recovers infinitely often at

α = δ ↾ e. Hence by construction, all components in F (e) are eventually covered by fα, i.e.,

F (e) =
⋃

s≥se

Cδ↾e,s. (6.1)

By (S3) this means that fα is eventually defined on all components in F (e). We define a

mapping f as follows:

– First non-uniformly map the components not in F (e) with their corresponding

isomorphic copies in Ee.

– Then extend f by the function fα =
⋃

s fα,s.

We now prove that f is indeed an isomorphism from Ee to F . Let H be a component of

F (e). By (6.1), H ∈ Cα,t for some t ≥ se ∈N There is a stage s > t where H ∈ Wα,s. We have

the following two cases:

– Case 1. The component H is never marked by α. At stage s, by (S4), H contains an

element mH
α that is unique in Fs. Since H is never marked by α, it does not belong to

CM
α,s′ for all s′ ≥ s. By (S4), for all s′ ≥ s, H is the only component containing mH

α in

Fs. Hence H is the only component containing mH
α in F . At the next recovery stage

s′ after s, fe,s′ maps a component CH from Ee to H such that CH is the only component

in Ee containing mH
α , and thus CH � H.

158 Chapter 6. Computably Categorical Graphs with Finite Components

– Case 2. The component H isWM
α,s and therefore is marked byα in the next stage s′. At

stage s′, fα,s′ maps a component CH in Ee to H. Suppose for the sake of contradiction

that the component CH is not isomorphic to H. Then CH must be isomorphic to a

component that is marked by α at a later stage. In other words, there is a stage t′ > s′

such that CH � Mα,t′. At stage t′, Mα,t′ contains m
Mα,t′

α that is unique in Ft′ . Let ℓ ≥ t′

be the least stage where Re recovers at α and CH has completely revealed itself. Every

stage i ∈ {t′, . . . , ℓ}where Re recovers at α the construction will define a new α-marked

component Mα,i and fα,i will map a component in Ee isomorphically to Mα,i. Both Mα,i

and f−1
α,i (Mα,i) contain m

Mα,t′

α . Therefore at stage ℓ, the number of components in Ee,ℓ

containing m
Mα,t′

α (all f−1
α,i (Mα,i) and CH) is one more than the number of components

in Fℓ containing m
Mα,t′

α (all Mα,i). Note also that m
Mα,t′

α ∈ Checkα,ℓ. Therefore the

construction would set Forbidα = m
Mα,t′

α and guarantee that Ee � F . Contradiction.

Therefore CH � H.

We have proved that fα is indeed a partial isomorphism that maps components in Ee

isomorphically to F (e). Hence f is an isomorphism from Ee to F .

Lemma 6.5.12 implies that F is computably categorical. It remains to prove that

every component in the structure F is finite. The next lemma concludes the proof of

Proposition 6.5.5.

Lemma 6.5.13 Each component in F is finite.

Proof. Fix a component C inF . If C ∈ Oα,t \O
M
α,t for some α, t, then it will never be extended

at any stages t′ > t. Hence C is a finite component. Suppose for all α ∈ T, t ∈ N, C ∈ Oα,t
implies C ∈ OM

α,t. We have two cases:

– Case 1: For some e and t > se, C ∈ Oα,t for some node α <L δ ↾ e. After se, the

construction will never act on α again and so C would not be extended any further.

– Case 2: For all e and all t > se, C < Oα,t for any node α <L δ ↾ e. For all e ∈ N, if

C ∈ Oδ↾e,t for some t ∈ N, then C ∈ OM
δ↾e,t

. Note that for all d > e, the component Ad

are taken from the components

Me =
⋃

s>se

CM
δ↾e,s ∪ {Mδ↾e,s} ∪W

M
δ↾e,s ∪ O

M
δ↾e,s.

Also note that there are only finitely many components in Me that are before the

component C. Therefore eventually,Me will be set as Ad for some d > e.

In both cases, the component C is finite. This proves the lemma and hence Prop. 6.5.5 is

proved.

Bibliography

[1] M. Ajtai and R. Fagin. Reachability is harder for directed than for undirected graphs.

Journal of Symbolic Logic, 55:113–150, 1990.

[2] S. Arora and R. Fagin. On winning strategies in Ehrenfeucht-Fraı̈ssé games. Theoret-

ical Computer Science, 174:97–121, 1997.

[3] V. Bárány. Automatic Presentations of Infinite Structures. PhD thesis, RWTH Aachen,

2007.

[4] V. Bárány, E. Grädel, and S. Rubin. Automata-based presentations of infinite struc-

tures. 2010.

[5] M. Benedikt, L. Libkin, and F. Neven. Logical definability and query languages over

ranked and unranked trees. ACM Trans. Comput. Log., 8(2), 2007.

[6] A. Blumensath. Automatic structures. Diploma thesis, RWTH Aachen, 1999.

[7] A. Blumensath and E. Grädel. Automatic structures. In Procedings of the 15th Annual

IEEE Symposium on Logic in Computer Science, LICS’00, pages 51–62. IEEE Computer

Society Press, 2000.

[8] A. Blumensath and E. Grädel. Finite presentations of infinite structures: Automata

and interpretations. Theory of Computing Systems, 37(6):641–674, 2004.

[9] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata:

Application to model-checking. In Proceedings of the 8th International Conference on

Concurrency Theory (CONCUR’97), volume 1243 of LNCS, pages 135–150. Springer,

1997.

[10] J. Büchi. Weak second-order arithmetic and finite automata. Zeitschrift für Mathema-

tische Logik und Grundlagen der Mathematik, 6:66–92, 1960.

[11] J. R. Büchi. On a decision method in restricted second-order arithmetic. In E. Nagel,

P. Suppes, and A. Tarski, editors, Logic, Methodology, and Philosophy of Science: Proc. of

the 1960 International Congress, pages 1–11. Stanford University Press, 1962.

159

160 BIBLIOGRAPHY

[12] P. Cholak, S. Goncharov, B. Khoussainov, and R. Shore. Computably categorical

structures and extensions by constants. Journal of Symbolic Logic, 64:13–37, 1999.

[13] T. Colcombet and C. Löding. Transforming structures by set interpretations. Logical

Methods in Computer Science, 3(2), 2007.

[14] B. F. Csima, B. Khoussainov, and J. Liu. Computable categoricity of graphs with finite

components. In Proceedings of the 4th Conference on Computability in Europe (CiE’08),

volume 5028 of Lecture Notes in Computer Science, pages 139–148. Springer, 2008.

[15] A. Dawar. Infinitary logic and inductively definability over finite structures. Infor-

mation and Computation, 119(2):160–175, 1995.

[16] C. Delhommé. Rado’s graph is not automatic. 2001. manucript.

[17] R. Downey. On presentations of algebraic structures. In in Complexity, Logic and

Recursion Theory, pages 157–205. Dekker, 1995.

[18] V. Dzgoev and S. Goncharov. Autostability of models. Algebra i Logika, 19:45–58,

1980.

[19] H. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, 1995.

[20] A. Ehrenfeucht. An application of games to the completeness problem for formalized

theories. Fundamenta Mathematicae, 49:129–141, 1961.

[21] C. Elgot. Decision problems of finite automata design and related arithmetics. Trans.

Am. Math. Soc., 98:21–51, 1961.

[22] J. L. Ershov. Decision problems and constructive models. Nauka, Moscow, 1980.

[23] Y. L. Ershov, S. S. Goncharov, A. Nerode, J. B. Remmel, and V. W. Marek, editors.

Handbook of recursive mathematics. Vol. 1 and Vol. 2, volume 138-139 of Studies in Logic

and the Foundations of Mathematics. North-Holland, 1998.

[24] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for model

checking pushdown systems. In Proceedings of the 12th International Conference on

Computer Aided Verification (CAV’00), volume 1855 of LNCS, pages 232–247. Springer,

2000.

[25] R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets. In

R. Karp, editor, Compleixty of Computation, volume 7 of SIAM-AMS Proceedings, pages

43–73, 1974.

BIBLIOGRAPHY 161

[26] R. Fagin. Monadic generalized spectra. Zeitschrift für Mathematische Logik und Grund-

lagen der Mathematik, 21:89–96, 1975.

[27] R. Fagin, L. Stockmeyer, and M. Vardi. On monadic NP vs monadic co-NP. Information

and Computation, 120:78–92, 1994.

[28] R. Fraı̈ssé. Sur quelques classifications des systeémes de relations. Université d’Alger,

Publications Scientifique, Série A, 1:35–182, 1954.

[29] A. Fröhlich and J. C. Shepherdson. On the factorisation of polynomials in a finite

number of steps. Math. Z., 62:331–334, 1955.

[30] A. Fröhlich and J. C. Shepherdson. Effective procedures in field theory. Philos. Trans.

Roy. Soc. London. Ser. A., 248:407–432, 1956.

[31] H. Gaifman. On local and non-local properties. In Proc. Herbrand Symp., Logic

Colloquium ’81, pages 105–132. North-Holland, 1982.

[32] S. Göller and M. Lohrey. Branching-time model checking of one-counter processes. In

Proceedings of the 27th International Symposium on Theoretical Aspects of Computer Science

(STACS’10), volume 5 of LIPIcs, pages 405–416. Schloss Dagstuhl - Leibniz-Zentrum

fuer Informatik, 2010.

[33] S. Göller, R. Mayr, and A. W. To. On the computational complexity of verifying

one-counter processes. In Proceedings of the 24th Annual IEEE Symposium on Logic in

Computer Science (LICS’09), pages 235–244. IEEE Computer Society Press, 2009.

[34] S. Goncharov. Automstability of models and abelian groups. Algebra i Logika, 19(1):23–

44, 1980.

[35] S. Goncharov and B. Khoussainov. Open problems in the theory of constructive

algebraic systems. In Computability theory and its applications, volume 257 of Contemp.

Math., pages 145–170. Amer. Math. Soc., 2000.

[36] S. Goncharov, S. Lempp, and R. Solomon. The computable dimension of ordered

abelian groups. Adv. Math., 175(1):102–143, 2003.

[37] S. S. Goncharov. Selfstability and computable families of constructivizations. Algebra

i Logika, 14(6):647–680, 1975.

[38] S. S. Goncharov. Constructive models of ℵ1-categorical theories. Mat. Zametki,

23(6):885–888, 1978.

[39] S. S. Goncharov. Computable univalent numerations. Algebra i Logika, 19(5):507–551,

1980.

162 BIBLIOGRAPHY

[40] S. S. Goncharov. The problem of the number of nonautoequivalent constructiviza-

tions. Algebra i Logika, 19(6):621–639, 1980.

[41] S. S. Goncharov. Limit equivalent constructivizations. Mathematical logic and the theory

of algorithms, 2:4–12, 1982.

[42] E. Grädel, P. Kolaitis, L. Libkin, M. Marx, J. Spencer, M. Vardi, Y. Venema, and

S. Weinstein. Finite Model Theory and Its Applications. Springer-Verlag, 2005.

[43] E. Griffor, editor. Handbook of computability theory, volume 140 of Studies in Logic and

the Foundations of Mathematics. North-Holland, 1999.

[44] M. Grohe. Equivalence in finite-variable logics is complete for polynomial time. In

Proceedings of the 37th Annual Symposium on Foundations of Computer Science (FOCS’96),

pages 264–273. Society Press, 1996.

[45] S. Grumbach and J. Su. Finitely representable databases. J. Comput. Syst. Sci.,

55(2):273–298, 1997.

[46] Y. Gurevich. Toward logic tailored for computer science. In R. et al., editor, Compu-

tation and proof theory, volume 1104 of Lecture Notes in Mathematics, pages 175–216.

Springer, 1984.

[47] P. Hájek. Generalized quantifiers and finite sets. Prace Nauk. Inst. Mat. Politech.

Wroclaw No. 14 Ser. Konfer, (1):91–104, 1977.

[48] W. Hanf. Model-theoretic methods in the study of elementary logic. In J. Addison,

L. Henkin, and A. Tarski, editors, The Theory of Models, pages 132–145. North-Holland,

1965.

[49] P. Hell and J. Nešetřil. Graphs and Homomorphisms. Oxford University Press, 2004.

[50] L. Hella. Logical hierarchies in ptime. Information and Computation, 129:1–19, 1996.

[51] L. Hella, L. Libkin, and J. Nurmonen. Notions of locality and their logical character-

izations over finite models. Journal of Symbolic Logic, 64:1751–1773, 1999.

[52] D. R. Hirschfeldt. Degree spectra of relations on computable structures. Bulletin of

Symbolic Logic, 6(2):197–212, 2000.

[53] G. Hjorth, B. Khoussainov, A. Montalbán, and A. Nies. From automatic structures to

borel structures. In Proceedings of the Twenty-Third Annual IEEE Symposium on Logic

in Computer Science, Pittsburgh, PA, USA, pages 431–441, 2008.

BIBLIOGRAPHY 163

[54] W. Hodges. Model theory. Encyclopedia of Mathematics. Cambridge University Press,

1993.

[55] B. R. Hodgson. On direct products of automaton decidable theories. Theoretical

Computer Science, 19:331–335, 1982.

[56] J. Honkala. On the problem whether the image of an N-rational series equals N.

Fund. Inform., 73(1-2):127–132, 2006.

[57] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory, Lan-

guages, and Computation (2nd Edition). Addison Wesley, 2000.

[58] J. E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism of planar

graphs (preliminary report). In Proceedings of Sixth Annual ACM Symposium on Theory

of Computing (STOC’74), pages 172–184, 1974.

[59] N. Immerman. Ralational queries computable in polynomial time (extended ab-

stract). In ACM Symp. on Theory of Computing, pages 147–152. ACM Press, 1982.

[60] N. Immerman. Upper and lower bounds for first order expressibility. Journal of

Computer and System Sciences, 25:76–98, 1982.

[61] N. Immerman. Nondeterministic space is closed under complementation. SIAM

Journal on Computing, 17(5):935–938, 1988.

[62] L. Kaiser, S. Rubin, and V. Bárány. Cardinality and counting quantifiers on omega-

automatic structures. In Procedings of the 25th Annual Symposium on Theoretical Aspects

of Computer Science, STACS’08, Bordeaux, France, pages 385–396, 2008.

[63] C. Karp. Finite quantifier equivalence. In J. Addison, L. Henkin, and A. Tarski,

editors, The Theory of Models, pages 407–412. North Holland, 1965.

[64] B. Khoussainov and J. Liu. On complexity of Ehrenfeucht-Fraı̈ssé games. In Proceed-

ings of International Symposium on Logical Foundations of Computer Science (LFCS’07),

volume 4514 of Lecture Notes in Computer Science, pages 293–309. Springer, 2007.

[65] B. Khoussainov and J. Liu. On complxity of Ehrenfeucht-Fraı̈ssé games. Annals of

Pure and Applied Logic, 161(3):404–415, 2009.

[66] B. Khoussainov, J. Liu, and M. Minnes. Unary automatic graphs: An algorithmic

perspective. In Proceedings of the 5th International Conference on Theory and Applications

of Models of Computation (TAMC’08), volume 4978 of Lecture Notes in Computer Science,

pages 542–553. Springer, 2008.

164 BIBLIOGRAPHY

[67] B. Khoussainov, J. Liu, and M. Minnes. Unary automatic graphs: an algorithmic

perspective. Mathematical Structures in Computer Science, 19(1):133–152, 2009.

[68] B. Khoussainov and M. Minnes. Three lectures on automatic structures. In Proceedings

of the Logic Colloquium ’07, volume 35 of Lecture Notes in Logic, pages 132–176–704.

Springer, 2007.

[69] B. Khoussainov and M. Minnes. Model theoretic complexity of automatic structures.

In Proceedings of TAMC 08. Springer, 2008. to appear.

[70] B. Khoussainov and A. Nerode. Automatic presentations of structures. In LCC:

International Workshop on Logic and Computational Complexity, number 960 in LNCS,

pages 367–392, 1995.

[71] B. Khoussainov and A. Nerode. Open questions in the theory of automatic structures.

Bulletin of the EATCS, 94:184–204, 2008.

[72] B. Khoussainov, A. Nies, S. Rubin, and F. Stephan. Automatic structures: Richness

and limitations. In Proceedings of the 19th Annual IEEE Symposium on Logic in Computer

Science (LICS’04), Turku (Finnland). IEEE Computer Society Press, 2004. 44–53.

[73] B. Khoussainov and S. Rubin. Graphs with automatic presentations over a unary

alphabet. Journal of Automata, Languages and Combinatorics, 6(4):467–480, 2001.

[74] B. Khoussainov and S. Rubin. Graphs with automatic presentations over a unary

alphabet. Journal of Automata, Lnaguages and Combinatorics, 6(4):467–480, 2001.

[75] B. Khoussainov, S. Rubin, and F. Stephan. Automatic partial orders. In Proceedings of

the 18th Annual IEEE Symposium on Logic in Computer Science (LICS’03), pages 168–177.

IEEE Computer Society Press, 2003.

[76] B. Khoussainov, S. Rubin, and F. Stephan. Definability and regularity in automatic

structures. In V. Diekert and M. Habib, editors, Proceedings of the 21th Annual Sym-

posium on Theoretical Aspects of Computer Science (STACS’04), Montpellier (France),

number 2996 in LNCS, pages 440–451. Springer, 2004.

[77] B. Khoussainov, S. Rubin, and F. Stephan. Automatic linear orders and trees. ACM

Transactions on Computational Logic, 6(4):675–700, 2005.

[78] B. Khoussainov and R. Shore. Computable isomorphisms, degree spectra of relations,

and scott families. Annals of Pure and Applied Logic, 93(1-3):153–193, 1998.

[79] B. Khoussainov and R. A. Shore. Effective model theory: the number of models

and their complexity. In Models and computability (Leeds, 1997), volume 259 of London

Math. Soc. Lecture Note Ser., pages 193–239. Cabridge Univ. Press, 1999.

BIBLIOGRAPHY 165

[80] P. Kolaitis and J. Panttaja. On the complexity of existential pebble games. In Proceed-

ings of the 17th International Workshop on Computer Science Logic (CSL’03), volume 2803

of LNCS, pages 314–329, 1999.

[81] D. Kuske, J. Liu, and M. Lohrey. The isomorphism problem on classes of automatic

structures. In Proceedings of the 25th Annual IEEE Symposium on Logic in Computer

Science (LICS’10). IEEE Computer Society, 2010.

[82] D. Kuske, J. Liu, and M. Lohrey. The isomorphism problem on classes of automatic

structures. CoRR, abs/1001.2086, 2010.

[83] D. Kuske and M. Lohrey. First-order and counting theories of mega-automatic struc-

tures. In Proceedings of the 9th International Conference on Foundations of Software Science

and Computation Structures (FOSSACS’06), pages 322–336, 2006.

[84] S. Lempp, C. McCoy, R. Miller, and R. Solomon. Computable categoricity of trees of

finite height. J. Symbolic Logic, 70(1):151–215, 2005.

[85] L. Libkin. Elements of Finite Model Theory. Springer-Verlag, 2004.

[86] J. Liu and M. Minnes. Analysing complexity in classes of unary automatic structures.

In Proceedings of the 3rd International Conference on Language and Automata Theory

and Applications (LATA’09), volume 5457 of Lecture Notes in Computer Science, pages

518–529. Springer, 2009.

[87] A. I. Mal’cev. Constructive algebras. I. Uspehi Mat. Nauk, 16(3(99)):3–60, 1961.

[88] Y. Matiyasevich. Hilbert’s Tenth Problem. MIT Press, 1993.

[89] G. Metakides and A. Nerode. Recursion theory and algebra. Algebra and logic (Four-

teenth Summer Res. Inst., Austral. Math. Soc., Monash Univ., Clayton, 1974), 450, 1975.

[90] T. Millar. Foundations of recursive model theory. Ann. Math. Logic, 13(1):45–72, 1978.

[91] M. Minnes. Computability and Complexity Properties of Automatic Structures and their

Applications. PhD thesis, Cornell University, 2008.

[92] A. Nies. Describing groups. Bull. Symbolic Logic, 13(3):305–339, 2007.

[93] G. P. Oliver and R. M. Thomas. Automatic presentations for finitely generated

groups. In V. Diekert and B. Durand, editors, Proceedings of the 22th Annual Symposium

on Theoretical Aspects of Computer Science (STACS’05), number 3404 in LNCS, pages

693–704. SPRINGER, 2005.

166 BIBLIOGRAPHY

[94] E. Pezzoili. Computational complexity of ef games on finite structures. In Proceedings

of the 12th International Workshop on Computer Science Logic (CSL’98), pages 159–170,

1999.

[95] B. Poizat. Deux ou trois choses que je sais de ln. Journal of Symbolic Logic, 47:641–658,

1982.

[96] M. O. Rabin. Recursive unsolvability of group theoretic problems. Ann. of Math.,

67(2):172–194, 1958.

[97] M. O. Rabin. Computable algebra, general theory and theory of computable fields.

Trans. Amer. Math. Soc., 95:341–360, 1960.

[98] M. O. Rabin. Decidability of second-order theories and automata on infinite trees.

Transactions of the American Mathematical Society, 141:1–35, 1969.

[99] J. Remmel. Recursively categorical linear orderings. Proce. Amer. Math. Soc., pages

387–391, 1981.

[100] H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill,

1968.

[101] J. Rosenstein. Linear Ordering. Academic Press, 1982.

[102] S. Rubin. Automatic Structures. PhD thesis, University of Auckland, 2004.

[103] S. Rubin. Automata presenting structures: A survey of the finite string case. Bulletin

of Symbolic Logic, 14:169–209, 2008.

[104] K. Salomaa, C. Campeanu, K. C. II, and S. Yu. State complexity of basic operations

on finite languages. In Proceedings of Fourth International Workshop on Implementing

Automata (WIA’99), volume 2214 of Lecture Notes in Computer Science, pages 60–70.

Springer, 2001.

[105] T. Schwentick. On winning Ehrenfeucht games and monadic np. Annals of Pure and

Applied Logic, 79:61–92, 1996.

[106] D. Scott. Logic with denumerable long formulas and finite strings of quantifiers.

In A. T. L. Henkin, editor, The Theory of Models, volume 1104, pages 329–341. North

Holland, 1965.

[107] O. Serre. Parity games played on transition graphs of one-counter processes. In

Proceedings of the 9th International Conference on Foundations of Software Science and

Computation Structures (FOSSACS’06), volume 3921 of LNCS, pages 337–351. Springer,

2006.

BIBLIOGRAPHY 167

[108] R. Soare. Tree arguments in recursion theory and the 0”’-priority method. In Recursion

Theory, Proc. Symp. Pure Math. 42, pages 53–106. Amer. Math. Soc., 1985.

[109] R. Soare. Recursively enumerable sets and degrees. Perspectives in Mathematical Logic.

Springer-Verlag, 1987.

[110] W. Tait. A counterexample to a conjecture of scott and suppes. Journal of Symbolic

Logic, 24:15–16, 1959.

[111] W. Thomas. A short introduction to infinite automata. In Proceedings of the 5th

International Conference on Developments in Language Theory (DLT’01), volume 2295 of

LNCS, pages 130–144. Springer, 2001.

[112] A. W. To. Model checking FO(r) over one-counter processes and beyond. In Proceed-

ings of the 23rd international Workshop on Computer Science Logic (CSL’09), volume 5771

of LNCS, pages 485–499. Springer, 2009.

[113] D. Trakhtenbrot. The impossibility of an algorithm for the decision problem for finite

models. Doklady Academii Nauk SSSR, 70:569–572, 1950.

[114] T. Tsankov. The additive group of the rationals does not have an automatic presen-

tation. preprint, 2009.

[115] B. L. van der Waerden. Eine bemerkung über die unzerlegbarkeit von polynomen.

Mathematische Annalen, 102:738–739, 1930.

[116] M. Vardi. The complexity of relational query languages. In ACM Symp. on Theory of

Computing, pages 137–146. ACM Press, 1982.

[117] M. Vardi. Model checking for database theoreticians. In Proc. 10th International

Conference on Database Theory, pages 1–16, 2005.

[118] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program

verification (preliminary report). In In Proceedings of the Symposium on Logic in Com-

puter Science (LICS’86), pages 332–344, 1986.

[119] S. Yu. Regular languages. In Handbook of Formal Languages, pages 40–110. Springer,

1997.

[120] S. Yu. State complexity: recent results and open problems. Fundamenta Informaticae,

64(1-4):471–480, 2005.

168 BIBLIOGRAPHY

LIST OF NOTATIONS 169

List of Notations

— Chapter 2 —

N, 17

N+, 17

Z, 17

Q, 17

x, 17

⊎, 18

FO, 19

MSO, 19

We, 21

K, 21

ΦX
e (x) = y, 21

ΦX
e (x) ↓, 21

ΦX
e,s(x) = y, 21

K, 21

Π0
n, 21

Σ0
n, 21

∆0
n, 21

FOTh(N;+,×), 22

ε, 23

L⋆, 23

⊗(w1, . . . ,wn), 24

≤lex, 25

≤llex, 25

≤pref, 25

FO + ∃∞ + ∃n,m, 28

∃∞, 28

∃n,m, 28

— Chapter 3 —

Gn(A,B), 30

FO[n], 30

qr(ϕ), 30

qEt , 32

qE≥r, 32

qE, 32

AC((i, j), k), 37

AN((i, j), k), 37

CA
(i, j),k

, 37

NA
(i, j),k

, 37

qC
(i, j),k

, 37

qA,C
(i, j),k

, 37

q
A, j
λ,k

, 40

C
A, j
λ,k

, 40

A j(λ, k), 40

≡
j
n, 40

q
j

λ,k
, 40

≡n, 41

CA
σ,i

, 42

A(σ, i), 42

qσ,i, 42

qA
σ,i

, 42

— Chapter 4 —

Reach, 52

unwind(F,D, R̄, L̄), 53

t, ℓ, 53

G(O), 57

Gησω , 58

AReach, 63

Clk(x), 65

GFin, 70

PartitionS
k (P1, . . . ,Pk), 71

TypeF (X,Y1, . . . ,Yk), 71

F×3, 71

SuccFσ (X,Y,Z1, . . . ,Z3k), 71

αL, 73

Wi, 75

Left([j]∼), 77

hE, 81

UF(Γ), 88

W j,m, 89

170 BIBLIOGRAPHY

— Chapter 5 —

Σ1
1
, 97

A1 ⊎A2, 98

D ⊎A2, 99

A[p(x)], 99

A1 ×A2, 99

⊗k(L), 99

RunA = (S, I,∆′, F), 100

C(x, y), 100

H1 ∼ H2, 105

Hω
1

, 105

r ◦H, 105

unfold(D), 110

L1 + L2, 115

L1 · L2, 115∑
L, 115

≤lex, 116

L[n1, n2], 117

Shuf(L), 117

⊑, 122

σ(D), 123

DA, 125

A[q1, q2], 126

— Chapter 6 —

dim(S), 133

GSLF, 135

Cn, 135

Sn, 135

Ln, 135

C′n, 136

C′′n , 136

C(v), 136

sizeG, 136

extG, 137

n, 146

Ei, 147

≤L, 148

≤pref, 148

Aα,t, 149

Mα,t, 149

CM
α,t, 149

Cα,t, 149

OM
α,t, 149

Oα,t, 149

WM
α,t, 149

Wα,t, 149

δ(n), 149

δ ↾ n, 149

Fα,t, 150

INDEX 171

Index

∆0
2
-approximation, 135

MSO-theory, 51

m-reduction, 22

n-equivalent, 41

arithmetic hierarchy, 21

automatic presentation, 26

automaton, 23

run, 23

synchronous n-tape, 24

unary, 23

Boolean algebra, 19

with distinguished ideals, 47

c.e. set, 21

characteristic string, 21

complete set, 22

computable

categoricity, 133

dimension, 133

function, 21

isomorphism type, 133

set, 21

computably equivalent, 22

connectivity, 54, 68

connectivity problem, 54

dags, 110

definable

class, 20

relation, 20

dense I-coloring, 117

disparity, 34, 42

colored, 37

occurs with respect to c j, 40

Ehrenfeucht-Fraı̈ssé games, 29

equivalence structure, 18, 32

automatic, 98

embedded, 41

homogeneously colored, 35

unary automatic, 81

weighted, 145

with colors, 36

forest, 19

graph, 18

component, 18, 59

computable, 133

cycle, 135

line, 135

special cyclic, 145

strongly locally finite, 101, 134

sun, 135

halting problem, 21

infinite component problem, 54, 59

infinity testing problem, 54, 62

interval, 115

isomorphism, 18

isomorphism problem, 55

unary automatic structure, 70

linear order, 19

automatic, 115

unary automatic, 73

loop, 53

loop constant, 56

Matiyesevich’s theorem, 23

membership problem, 55

one-counter process, 57

one-loop automaton, 56

172 BIBLIOGRAPHY

oriented walk, 60

proper extension function, 137

pumping lemma, 24

pushdown graphs, 63

quantifier rank, 30

reachability, 52, 54, 63

reachability problem, 27, 54

regular language, 23

shuffle sum, 117

signature, 17

size function, 136

state complexity, 55, 85, 95

structure, 17

automatic, 26, 51, 97

computable, 28, 133

unary automatic, 26

with unary predicates, 18

substructure, 18

tail, 53

theory, 20

decidable, 20

tree, 19

automatic, 102

computable, 114

height, 20

unary automatic, 87

with level predicates, 45

tree argument, 148

true arithmetic, 22

Turing jump, 22

Turing machine, 27

configuration graph, 27, 52

unary automatic

graphs, 56

unary predicate, 31

unfolding operation, 58

NAME INDEX 173

Name Index

Ajtai, 2

Arora, 2

Büchi, 3

Bárány, 4

Benedikt, 4

Blumensath, 3, 73

Bouajjani, 10

Colcombet, 4

Csima, 16

Ebbinghaus, 2

Ehrenfeucht, 2, 29

Elgot, 3

Ershov, 4

Esparza, 10

Fagin, 2

Flum, 2

Frölich, 4

Fraı̈ssé, 2, 29

Gaifman, 2

Goncharov, 4, 14, 134

Grädel, 2, 3

Grohe, 6

Gurevich, 2

Hanf, 2

Hella, 2

Hilbert, 23, 99

Hjorth, 4

Hodges, 17

Hodgson, 3

Honkala, 13, 98

Immerman, 2

Kaiser, 4

Khoussainov, 3, 53, 73, 97

Kleene, 23

Kolaitis, 6

Kuske, 4, 14

Libkin, 2

Lohrey, 4, 14

Mal’cev, 4

Maler, 10

Matiyasevich, 13, 106

Matiyesevich, 23

Metakides, 4

Minnes, 4, 12

Nerode, 3, 4, 97

Neven, 4

Nies, 4

Nurmonen, 2

Oliver, 4

Panttaja, 6

Pezzoili, 6

Poizat, 2

Rabin, 3, 4

Rubin, 4, 53, 73

Schwentick, 2

Shepherson, 4

Stephan, 4

Stockmeyer, 2

Thomas, 4

Trakhtenbrot, 2

Tsankov, 3

van der Waerden, 4

Vardi, 2

