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Abstract. Interpersonal relations facilitate information flow and give
rise to positional advantage of individuals. We ask the question: How
would an individual build relations with members of a dynamic social
network in order to arrive at a central position in the network? More
formally, we propose the dynamic network building problem. Two strate-
gies stand out to solve this problem: The first directs the individual to
exploit its social proximity by linking to nodes that are close-by. The sec-
ond links the individual with distant regions of the network. We test and
compare these two strategies with edge- and distance-based cost metrics.
Experiments over standard dynamic network models and real-world da-
ta sets reveal that the exploitative strategy, despite relying on restricted
parts of the network, often gives comparable or superior results. We then
present and test ways that combine these two strategies.
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1 Introduction

The network of social relations entails important properties of individuals. Take,
as an example, the structural construct of centrality [27]. Much has been re-
vealed about the correlation between centrality and social statues [8, 9, 22, 23].
By occupying a more central position in the social network, an individual may
exercise more control over the flow of information, accessing diverse knowledge
and skills, and hence gaining a higher positional advantage [32]. Exploiting this
principle, individuals may cultivate relationships with others towards improving
their social statues [10]. One famous example is the House of Medici, who rose
to prominence in 15th century Florence through intermarriage with other noble
families [29]. Another example is Moscows growing statues in 12-13th century
Russia thanks to trade relationships with other towns [30].

Imagine that an individual tries to embed herself at the center of a social
network through forming new ties. From a structural perspective, this individual
needs to choose a set of members to build links with1. To this end, the individual

1 Here we put aside issues such as attitude, personality, and individual preferences,
and focus on a structural perspective of network building.
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may adopt an exploitative or an exploratory strategy: The former ensures that
the individual exploits existing interpersonal ties and links to those that share
a common social proximity; On the contrary, the latter allows the individual to
explore far and bridge diverse parts of the network. A natural question arises
as to which strategy is more suitable. Moreover, social networks in real life are
rarely static, but rather, they constantly evolve with time. Thus the question
has an extra layer of complexity: How to incrementally build relationships in a
network to gain positional advantage while the network is evolving?

To attempt this question, we should settle several issues: Firstly, we need a
notion that reasonably reflects positional advantage; here centrality metrics may
be of use. Secondly, relation building costs time and effort; one needs to quantify
such costs. Thirdly, one needs models on how a social network evolves.

Contribution (1) In this paper, we propose the problem of dynamic network
building (DNB). The input to the problem consists of a connected graph G
that undergoes a sequence of updates. The problem asks for a plan that builds
edges incrementally between a node v and other nodes so that v gains centrality
as G evolves. (Sec. 2) (2) To solve this problem, we define exploitative and
exploratory strategies and present heuristics to realize each strategy. (Sec. 3)
(3) We compare the heuristics over various evolution models of social networks
and real-world networks. Exploration often builds less number of new links,
while the exploitative strategy produces better results when other factors, such
as distance and embeddedness is considered (Sec. 4). (4) Lastly, we propose and
evaluate ways that combine the exploitative and exploratory strategies (Sec. 5).

This work is meaningful in the following ways: Firstly, the exploitative strate-
gy resembles the acquaintance process in real-life: It is usually easier to acquaint
with those who are close to our own social circles than with those who are far
away [26]. Our results demonstrate that this intuition may give us effective means
to build relationship in a network. Secondly, while exploratory strategy tends to
improves centrality more quickly, exploitative strategy results in a much higher
embeddedness, which leads to stronger ties and a platform of trust [11]. Thirdly,
the tradeoff between exploration and exploitation has been a recurring theme in
artificial intelligence and knowledge management [28, 5, 33]. This work discovers
an incarnation of this tradeoff in the context of social networks and ways to mix
the two strategies to produce suitable strategies for relationship building.

Related works. The establishment of interpersonal ties has been a major prob-
lem in social network analysis. Granovetter’s pioneering work contrasts ties hav-
ing high embeddedness (strong ties) with ties that bridge two otherwise disjoint
social circles (weak ties); while embeddedness reflects important dimensions such
as trust, commitment and solidarity [17], bridges are important to the exchange
of knowledge and ideas [15]. We extends this discussion to study strategies for
building different types of ties. Network building (NB) has been studied in [25].
The problem studied in this paper has crucial differences: (a) While NB only
operates on static networks, here we focus on evolving networks, which demand
the node to be strategic towards future changes. (b) While NB focuses on small-
est eccentricity, DNB aims for optimal closeness centrality. (c) DNB considers
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costs incurred from the distance between the two nodes when forming an edge.
A large literature on strategic network formation explains tie establishment be-
tween rational agents using game theory; these works do not consider stochastic
models of network evolution [19]. The exploratory and exploitative strategies of
dynamic network building parallel the two modes of network formation in [20];
there, “meeting strangers” means exploratory encounters in the network, and
“meeting friends-of-friends” means utilizing existing social circles.

2 Dynamic Network Building Problem

A social network is a graph G = (V,E) where V is a set of nodes and E is
a set of undirected edges on V of the form uv where u 6= v ∈ V . Γ (u) =
{v | uv ∈ E} denotes the neighborhood of u. A path (of length k) is a sequence of
nodes u0, u1, . . . , uk where uiui+1 ∈ E for any 0 ≤ i < k. The (geodesic) distance
between u and v, denoted by distG(u, v), is the length of a shortest path between
u and v. We omit the subscript G writing simply dist(u, v) when the underlying
graph is clear. We also need the following formalism:

– For a node s ∈ V and v 6= s, denote by G ⊕s v the expanded network
(V ∪ {v}, E ∪ {sv}).

– We assume that the social network G evolves by some (discrete-time) s-
tochastic mechanism, which we define below:

Definition 1. An evolution mechanism M is a function that maps a social net-
work G to a probability distribution of social networks M(G). Starting at G, the
network evolves to a sample outcome of M(G) in the next time step.

Imagine v is a node who wants to build relationships in G (let’s call v the
newcomer). We assume that (1) v is a node with few connections in G; (2) v
may create edges from itself to nodes in V by paying costs (see below); and (3)
v has no knowledge regarding how G may evolve.

Abstractly, one can view the interactions between v and the social network G
as a two-player game; the players are v and a player representing the evolution
mechanism of the network. At each round, v creates an edge with a node in
G (keeping all existing edges).2 The evolution mechanism then modifies the
updated network. Through multiple rounds, v aims to get increasingly integrated
into the network. Note that we assume that v functions independently from the
evolution mechanism to highlight that v builds edges without prior knowledge
of the network evolution mechanism.

Definition 2. An (`-round) network building (NB) process between v and G
consists of a sequence of networks G0 = (V0, E0), G1 = (V1, E1), . . . , G` =
(V`, E`) and a sequence of nodes s0 ∈ V0, s1 ∈ V1, . . . , s`−1 ∈ V`−1 such that
G0 = G and each network Gi+1 is a sample output of M(Gi ⊕Si v).

2 For simplicity, we assume each round allows v to create at most one new edge. One
may easily generalize this setting to allow v to create several edges in a single round.
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Definition 3. An NB strategy is a function ϕ that outputs a node ϕ(G) in a
given network G. Any NB process (G0, . . . , G`, s0, . . . , s`−1) is said to be consis-
tent with strategy ϕ if ∀0 ≤ i < ` : si = ϕ(Gi).

Closeness centrality amounts to an important index of social capital that
captures a node’s ease in accessing information, social support and other re-
sources [12, 31, 1]. Thus we use closeness centrality here to indicate the position
advantage of nodes. For any connected G = (V,E) and v ∈ V , define

CCls(v) =
|V | − 1∑

u∈V \{v} dist(u, v)
.

A higher value of CCls(v) implies that v is in general closer to other nodes, thus it
occupies a better network position. The Cls-rank of v is the percentage of nodes
whose closeness centrality are higher or equal to CCls(v):

rankCls(v) = | {u ∈ V | CCls(u) ≥ CCls(v)} |/|V |.

We assume that the goal of v is to gain a higher closeness centrality (or a low
rankCls). One way to achieve this is to build a tie between v and all nodes in
the network. However, establishing new relationships requires time, efforts and
resources. To identify realistic solutions, one needs to define costs of relationship
building. Here we consider temporal and establishment costs. Temporal cost is
the number of rounds in the NB process and coincides with the number of edges
created for v. The proximity principle states that ties are generally more difficult
to establish between nodes that are further apart (e.g. reciprocal of distance is
a score for link prediction [24]). We thus define establishment cost as the sum of
distance between v and its linked nodes (prior to edge creation).

Definition 4. For an NB process (G0, G1, . . . , G`, s0, s1, . . . , s`−1),

1. the temporal cost is `, and
2. the establishment cost is

∑`−1
i=1

∑
u∈Si

distGi
(v, u).

We are now ready to present the dynamic network building (DNB) problem:
Given a connected social network G and newcomer v, the problem asks for
an NB strategy ϕ such that any NB process consistent with ϕ will have high
CCls(v) (or small rankCls(v)) value, and low temporal and and establishment costs.
Fig. 1 displays a simple example where the graph evolves with the dynamic BA
mechanism (see below); the newcomer gains a high centrality in three rounds.

The DNB problem differs from building relations in a static networks, which
has been discussed in [25]: (1) As the network evolves, the NB process may last
indefinitely where v tries to improves and maintains its centrality; (2) Network
evolution forces v to balance between current knowledge with future predict-
ed outcome. For example, linking to a central node will improve v’s centrality
quickly, but also incurs a high cost; on the other hand, linking to a low-centrality
node may seem undesirable in the current network, but this link may improve
the newcomer’s centrality in the future. In this way, the evolution mechanism
significantly impacts the newcomer’s strategy.
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Fig. 1. A newcomer adds one edge at each round and achieves high centrality after 3
rounds, while the network is evolving.

3 Exploratory and Exploitative Strategies

Exploitative strategy. This strategy utilizes existing social proximity of the
node v and searches for the most promising node that lies within a pre-defined
distance from v. Fix as parameter a centrality index C∗ : V → R for nodes. Let
d ≥ 2 be a proximity threshold. When creating an edge, the strategy traverses
through nodes with distance ≤ d from v, and picks a node found with maximum
C∗ value. Proc. 1 defines one round of the exploitative strategy. For the choice
of C∗, we use standard centrality metrics that reflect aspects of social capital.
The variety of centrality metrics below allow us to examine different potential
heuristics, which may not always correlate [6].

1. Degree: CDeg(u) = {w | uw ∈ E}.
2. Betweenness: CBtw(u) =

∑
s6=u6=t∈V |Pst(u)|/|Pst| where Pst is the set of

shortest paths between s and t, Pst(u) ⊆ Pst is those shortest paths that
contain u.

3. Closeness: CCls(u).

We denote using Ld-Deg, Ld-Btw and Ld-Cls the local heuristics with centrality
CDeg, CBtw, CCls, resp. When d = 2, the newcomer always links to a “friend-of-
friends”, a strategy studied in [20].

Procedure 1 Given G = (V,E), v ∈ V
U ← {u | dist(u, v) ≤ d}
return a node u ∈ U with maximum C∗(u)

Exploratory strategy. This strategy explores beyond the social proximity of v
and links v with promising nodes in potentially distant parts of the network: The
strategy takes a centrality index C∗ : V → R and a distance threshold d ∈ N as
parameters. Call all nodes within distance d from v covered; at each round, the
strategy will pick an uncovered node that has maximum C∗-value. Procedure 2
describes a single round of this strategy. We use Gγ-Deg, Gγ-Btw and Gγ-Cls to
denote the exploratory heuristic that use CDeg, CBtw and CCls, respectively.

Since the exploration creates edges to nodes which may be far away from
v, by definition it bridges different parts of the network more quickly than the
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exploitation. Indeed, this can be verified using a simple example: Fix a large
natural number n. Consider the path graph L2n+1 with 2n + 1 nodes (with
nodes v1, v2, . . . , v2n+1 and edges v1v2, v2v3, . . . , v2nv2n+1). Say v1 is the new-
comer. Assuming the network is static, G2-Cls builds O(1) edges from v1 (e.g. to
vn+1, vn−2, vn+2) and gives v1 the highest closeness centrality. On the contrary,
the exploitative strategy will create Ω(n) new edges to have the highest close-
ness centrality. In the next section, we compare the two strategies above through
experiments on standard network evolution mechanisms and real-world data.

Procedure 2 Given G = (V,E), v ∈ V
Find maximum γ′ ≤ γ with V 6= {u | dist(v, u) ≤ γ′}
U ← V \ {u ∈ V | dist(v, u) ≤ γ′}
return a node u ∈ U with maximum C∗(u)

4 Contrasting Exploitative and Exploratory Strategies

4.1 Network Evolution Mechanisms

We consider three standard network formation models. Originally, each of these
model were used to generated static networks. Here we extend them so that they
entail mechanisms for network generation and evolution.

(a) Dynamic ER Model. The Erdös-Renyi (ER) random graph model adds
edges between nodes as Bernoulli random variables with probability p. The
degree distribution in the resulting graph thus follows a binomial distribution
B(n, p) [7]. We extend the model to a death-birth evolution model: Start from
an ER random graph and introduce parameter r ∈ [0, 1]. At each round, first
remove a randomly chosen set of nodes of size rn (i.e., death); then, add rn new
nodes and link them with nodes in the graph with probability p (i.e., birth). It
is clear that the operation preserves the binomial degree distribution B(n, p).

(b) Dynamic BA Model. The Barabási-Albert model generates scale-free net-
works through a preferential attachment mechanism [3]. To define an evolving
network model, we follow Barabási’s dynamic extension. The key ideas include
growth, link establishment and node deletion [2]. (a) Growth takes a rate g ∈ [0, 1]
and adds gn new nodes; adds m edges from each new node to an existing node
with probability ki/

∑
vj∈V kj where kj is the degree of vj , ∀vj ∈ V . (b) Link es-

tablishment takes a parameter λ ∈ [0, 1]; selects λn pairs of nodes in the current
graph and randomly creates edges between these pairs; the probability of creat-
ing edge vivj is proportional to kikj . (c) Node deletion takes a rate d ∈ [0, 1];

picks dn nodes, and remove each of them (say, vi) with probability 1/ki∑
j 1/kj

.

(c) Dynamic WS-model. The Watts-Strogatz model starts from a regular
lattice, and performs random edge rewirings (with probability β) to obtain small-
world networks, which have high levels of clustering and low average path length
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[34]. We extend the process to an evolution mechanism: after initialization, the
network evolves in each round by rewiring those previously-rewired edges to a
random node. This dynamic network preserves the small-world property.

Table 1 summarizes the parameters used in our experiments. We choose these
values either because they are standard choices used by others (e.g. m = 2 for
dynamic BA [3]), or they ensure a gradual and smooth change at each round
(e.g. for dynamic ER and WS models). ’

Table 1. Parameters for evolving network models.

Evolving Model Parameters

Dynamic ER r = 5%, np = 4
Dynamic BA m = 2, λ = 4%, g = 5%, d = 2%
Dynamic WS β = 0.2

Experiment 1. (Costs) Through simulating DNB processes, we compare the
temporal and establishment costs between the exploitative and exploratory s-
trategies. DNB processes are generated by applying the heuristics in conjunction
with the ER,BA and WS models. As a DNB process may have indefinite length,
we need a termination condition to specify when the simulation stops. A nat-
ural method is to set a (high) threshold on centrality CCls(v), or set a (small)
threshold on rankCls(v), such that the process terminates once the threshold is
met. There are problems with this approach: (1) It is difficult to determine a
desired CCls(v) that facilitates fair comparisons across all evolving models. (2)
In certain cases (e.g. WS model), closeness centrality of nodes are distributed
within a small range; Hence, a node with low centrality may still have a small
rankCls. These concerns motivate us to set a termination condition based on the
ratio g(v) = CCls(v)/rankCls(v); we introduce a threshold ζ such that the process
terminates at the first round when g(v) ≥ ζ is satisfied.

We generate 10 networks of each size n = 100, 200, 500, 1000 using any net-
work models above. We compare the exploitative with the exploratory strategies
by running L2-∗, L3-∗ and G2-∗ heuristic on each graph. Note that L2-∗ only
links v to her “friends-of-friends” which amounts to the most “local” exploita-
tive strategy; L3-∗ reaches beyond this local proximity and results in a different
performance (see below); G2-∗ is an exploratory strategy which tries its to link
v to nodes outside of her local proximity. We do not include results for G3-∗ as
they are very similar to G2-∗. For any generated graph G and heuristic, we do
the following: (1) Build an edge between the newcomer v and a randomly chosen
node in G.3 (2) Apply the heuristic to the evolution mechanism (corresponding
to the network formation model) to generate 100 DNB processes; the threshold

3 We run the same experiment while linking v with initial nodes of different Cls-rank
(10%− 90%). The resulting temporal and establishment costs are very similar. This
shows that the rank of the initial node does not significantly affect the performance
of the strategies.
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ζ is 33. 4 (3) After the DNB process terminates, measure the resulting temporal
and establishment costs. (4) Finally, record the average costs among all DNB
processes of the same evolving network model, initial network size, and heuristic.

Fig. 2. Average temporal and establishment costs of simulated DNB processes by dif-
ferent heuristics on networks of different sizes.

A few facts stand out from the results in Fig. 2: (i) Temporal costs are mostly
below 10, suggesting that a small number of edges are built by the strategies, even
when the size of the network becomes 1000. (ii) For ER and WS, exploration
results in a lower temporal cost compared to the exploitation. (iii) For the
scale-free model BA, the number of edges built decreases as n increases. This
may be due to the expanding nature of the dynamic BA model and the skewed
degree distribution. As a result, exploitation creates less or similar numbers of
edges than exploration. (iv) In general, exploration results in a much higher
establishment costs. This is easy to understand: the strategy links to distant
nodes from v. The L3 heuristics builds less edges than L2 due to the ability to
traverse to a wider part of the graph. (v) The effects of the centrality metrics
C∗ vary with graph models: For ER, closeness centrality is in general preferred,
while for BA, degree centrality is slightly more preferred. For WS, CBtw is better
for exploration, while CCls is better for exploitation as the graph becomes large.

We then plot v’s Cls-rank as new edges are created during the DNB process;
See Fig. 3. rankCls(v) reaches < 1% after 10 rounds under all heuristics. G2
improves Cls-rank faster than L2 heuristics. This is most evident for L2-Deg
and L2-Cls in WS-graphs: the high level of clustering may make it hard for

4 The value ζ = 33 reflects the fact that the desired CCls(v) ≈ 1/3 and rankCls(v) ≈ 1%.
Other outcomes with g(v) = 33 that have either considerably lower centrality and
Cls-rank, or considerably higher centrality and Cls-rank (e.g. (CCls(v), rankCls(v)) is
(1/6, 0.5%) or (1, 3%)) have been empirically shown to be unlikely.
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exploitation to get out of a dense cluster, but clustering does not seem to pose
a problem for L2-Btw.
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Fig. 3. Changes to rankCls(v) (solid lines) and the establishment costs (dashed lines)
during 10 rounds of the DNB process. The network starts with 1000 nodes and v
initially connects to a node with lowest centrality.

Experiment 2. (Embeddedness and clustering) Exp. 1 implies that, to
some extend, exploitation and exploration perform on par with each other from
a centrality perspective. In building relationship, trust, tie strength and role
integrity are other important dimensions not captured by centrality alone [16].
These notions are closely affected by two concepts:

1. Embeddedness in a social network refers to the degree to which an individual
is constrained by social relationships and is often viewed as a platform for
trust [17]. The embeddedness of an edge between x, y is defined as the size
of their shared neighborhoods D(x) ∩ D(y) [11]. We define embed(v) as a

normalized sum of embeddedness: embed(v) =
∑

vu∈E |{w∈V |wu,wv∈E}|
(|V |−1)(|V |−2) .

2. Clustering coefficient of a node measures the probability of two randomly
chosen friends of the node are also friends and relates to the self-identify of
individuals [4]: cc(v) = deg(v)(deg(v)− 1)/2.

We measure embed(v) and cc(v) during DNB processes; See Fig. 4. Remark-
ably, embed(v) increases drastically with exploitation, while staying close to 0
with exploration. The clustering coefficient cc(v) also stays close to 0 with ex-
ploration, while with exploitation, it quickly rises to a very high level in the first
few rounds, and drops down to below 0.1 after 10-15 rounds. This highlights
the newcomer’s ability to cut across different clusters. Overall, this experiment
demonstrates the crucial difference between the strategies: while both strategies
improve v’s closeness centrality, exploitation enables a higher embeddedness and
clustering coefficient which positively correlates with tie strength and trusts on
its social relations.

4.2 Real-World Evolving Networks

We next take real-world evolving network data as case studies.
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Fig. 4. Changes to v’s embeddedness and cc as edges are added to v. The network
starts with 1000 nodes where v is connected to a node with the lowest centrality.

Trade network 1949–2009. The first case study utilizes annual bilateral trade
and GDP data between 1949 and 2009 [14]. Using the same approach as in [21],
we measure the level of trade between two countries based on exchanged goods
divided by GDP5: An edge represents trade partnership, which exists between
two countries a and b if the export of one to the other is ≥ 0.5% of its GDP
in that year. International trade has expanded enormously in the last 60 years.
The number of countries in the data set grows from 38 (with 43 partnerships) in
1949 to 176 (with 1229 partnerships) in 2009. We perform a thought experiment:
Suppose the year is 1949 and v is a newly established economic zone. Adding
one trade partner every two years, what countries should v establish trade with
in the next 60 years to gain a central position in the world market?

We start by linking v with New Zealand6, and apply L2 and G2 to build edges
biennially. Fig. 5 plots the resulting Cls-rank, embeddedness and clustering co-
efficient of v through time. All heuristics, with the exception of G2-Cls, quickly
bring CCls(v) to within top 10% of all countries. The ranking then fluctuates,
which may be explained by consistent expansions of the network. On the other
hand, L2 heuristics lead to considerably higher embeddedness and clustering co-
efficient than G2, suggesting higher integrity of v’s trade partnerships. As Table 2
shows, the list of partner countries produced by L2-Deg is remarkably consistent
with real historical events, connecting to countries during major boom: e.g. USA
& UK were the leading powers in the 1950s, West Germany’s Wirtschaftswunder

5 Measured in terms of Parity Purchase Power of USD in 2005
6 We choose New Zealand as the initial node connected to v. This is because New

Zealand has low-mid level Cls-rank.
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(1950s), Japan’s miracle (1960s), Germany reunification (1990), China’s joining
of WTO (early 2000s). On the contrary, the list by G2-Deg is somewhat surpris-
ing, comprising countries during economic or political crisis such as Argentina
(1953), Lebanon (1979), GDR (1981), Burundi (1991) and Zimbabwe (2007).
This reflects numerous discussions on embeddedness in economical theories [17]:
exploitation tends to produce meaningful alliance and cooperation, while explo-
ration tends to be more opportunistic and speculative. A video visualizing the
DNB process computed by L2-Deg is in https://youtu.be/sz5BGHtwPu4

Fig. 5. Changes to Cls-rank, embed(v), cc(v) resulted from all heuristics.

Table 2. Lists of countries computed by L2-Deg and G2-Deg, respectively.

Contact networks. We then take two evolving physical contact networks: The
first records face-to-face contacts among ∼110 attendees of ACM Hypertext
2009 conference during 2.5 days [18]. The second records contacts among ∼100
employees in a French workplace June 24 to July 3, 2013 [13]. In both data
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sets, contacts are updated every 20 seconds. We ask the question: If a newcomer
attends the conference, or joins the workplace, how does she utilize face-to-face
contacts to reach a central position of the network? We simulate DNB processes
on the accumulated network, i.e., networks constructed by accumulating edges
in previous times, using the G2 and L2 heuristics. For the first data set, an edge
is built every 15 minutes, and for the second data set, an edge is built very
hour. Fig. 6 plots the changes on the newcomer’s Cls-rank. All heuristics have
similar results to improve the Cls-rank as time progresses. As the network is small
and edges are accumulated, the heuristics somehow fail to improve newcomer’s
rank in the last three days of the second network beyond 20%. The exploitative
strategy, however, gives much smaller establishment costs.

Fig. 6. (left) ACM Hypertext 2009 contact network; (right) French workplace contact
network.

5 Combining Exploitation and Exploration

We use UCB1 (Upper Confidence Bound) algorithm to combine exploitative and
exploratory strategies. Exploitative and exploratory strategies are regarded as
two choices and in each round of DNB problem and one strategy is selected in
each round which achieves the maximum value:

UCB(i) =

∑N
j=1 rankCls(rij − 1)− rankCls(rij)

N︸ ︷︷ ︸
average function

+

√
2 ln t

ni︸ ︷︷ ︸
padding function

where t is the number of rounds passed, ni is the times that strategy i is selected,
rij is the j−th round that strategy i is selected, N is the total number of times
when strategy i is selected. Average function denotes average benefit that the
newcomer has got so far and we use the difference value of newcomer’s rankCls
between two contiguous rounds to define the benefit that the newcomer gets after
making the decision in each round. Padding function denotes an approximation
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of the uncertainty on strategy i, the more times that strategy i is selected, the
less uncertainty it has.

Intuitively, we can get from the this combining method that if one strategy
seems to have no capacity to increase newcomer’s rankCls, try the other one.

In the beginning of DNB process, we use exploratory and exploitative s-
trategies in round1 and round2, resp. Then, in the following rounds, select the
strategy achieving the bigger value in UCB. Procedure 3 shows the mechanism
of DNB−UCB in a DNB process in detail, where v is the newcomer.

Procedure 3 DNB-UCBγ-∗: Given G = (V,E), v ∈ V

Initialization: Select Lγ-∗ and Gγ-∗ at round 0 and round 1 resp.
if UCB(Lγ-∗) ≥ UCB(Gγ-∗) then

Find maximum γ
′
≤ γ with V 6= {u ∈ V |dist(v, u) ≤ γ

′
}

U ← V \{u ∈ V |dist(v, u) ≤ γ
′
}

return a node u ∈ U with maximum C∗(u)
else
U ← {u ∈ V |dist(u, v) ≤ γ}
return a node u ∈ U with maximum C∗(u)

endif

6 Conclusion and Future Work

The paper proposes dynamic network building problem and concentrates on
contrasting exploratory and exploitative strategies. While both strategies lead
to high closeness centrality of the newcomer, the local strategy tends to have
lower establishment cost and resembles natural network building process. More
experiments are needed to reveal further insights on these strategies. The general
question is, How much social capital does each strategy bring to the newcomer?
The answer of this question requires precise definitions of social capital beyond
centrality and embeddedness [10]. Furthermore, [20] describes a network forma-
tion model where “meeting strangers” is combined with “friends-of-friend”. Fol-
lowing the same spirit, one asks: How to amalgamate local and global strategies
to achieve better network building? As the local strategy does not necessarily re-
quire global information about the network, a third question asks: can we utilize
the local strategy to design distributed algorithms for efficient network building
in very large social network? We will explore these questions as future works.

References

1. F. Agneessens, S. P. Borgatti, and M. G. Everett. Geodesic based centrality:
Unifying the local and the global. Social Networks, 49:12–26, 2017.

2. A.-L. Barabási. Network Science. Cambridge University Press, 2016.



14 Yang Chen, Bo Yan, Jiamou Liu

3. A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science,
286(5439):509–512, 1999.

4. P. S. Bearman and J. Moody. Suicide and friendships among american adolescents.
American Journal of Public Health, 94(1):89–95, 2004.

5. M. Benner and M. Tushman. Exploitation, exploration, and process management:
The productivity dilemma revisited. Acad. Manage. Rev., 28(2):238–256, 2003.

6. J. Bolland. Sorting out centrality: An analysis of the performance of four centrality
models in real and simulated networks. Social Networks, 10:233–253, 1988.

7. B. Bollobás. Random Graphs (2nd ed.). Cambridge University Press, 2001.
8. P. Bonacich. Power and centrality: A family of measures. Am. J. Sociol, 92:1170–

1182, 1987.
9. S. Borgatti. Identifying sets of key players in a social network. Computational &

Mathematical Organization Theory, 12(1):21–34, 2006.
10. R. Burt. Brokerage and closure: An introduction to social capital. Oxford University

Press, 2005.
11. D. Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning About a

Highly Connected World. Cambridge University Press, 2010.
12. L. Freeman. Centralityinsocialnetworks:conceptualclarification. SocialNetworks,

1:215–239, 1979.
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