
Community Detection Based on Graph Dynamical Systems with Asynchronous Runs

Jiamou Liu
School of Computer and Mathematical Sciences

Auckland University of Technology
Auckland, New Zealand

jiamou.liu@aut.ac.nz

Ziheng Wei
School of Computer and Mathematical Sciences

Auckland University of Technology
Auckland, New Zealand
bys7090@aut.ac.nz

Abstract—A community in a network is a group of nodes
that are densely connected internally but sparsely connected
externally. We propose a novel approach for detecting commu-
nities in networks based on graph dynamical systems (GDS),
which are computation models for networks of interacting
entities. We introduce the Propose-Select-Adjust framework – a
GDS-based computation model for solving network problems,
and demonstrate how this model may be used in community
detection. The advantage of this approach is that computation
is distributed to each node which asynchronously computes its
own solution. This makes the method suitable for decentralised
and dynamic networks.

Keywords-Community detection; graph dynamical systems;
dynamic networks

I. INTRODUCTION

Graph dynamical systems (GDS) are computation models
that capture networks of interacting entities such as biolog-
ical cells, molecules, and agents, where each entity behaves
like a finite-state automaton. Such computation models have
been used to simulate complex networks such as traffic net-
works, spreading of diseases in human interaction networks,
and gene annotation in bioinformatics. In this paper, we
proposed a GDS-based, distributed approach for community
detection in social networks. The goal is to develop a method
suitable for decentralised and dynamic networks.

Community detection has received a huge amount of
attention in recent years due to applications in e-commerce,
biology, and political sciences. For example, detecting cus-
tomer communities for online retailers like Amazon helps
to build effective recommendation systems [19]. Detecting
scientific communities based on research collaboration net-
works helps to reveal collaboration patterns [16]. Detecting
communities in the protein-protein interaction (PPI) net-
works help to reveal functional groups that are associated
to cancer and metastasis [11]. Other applications appeared
in marketing [2], epidemiology [13] and counter-terrorism
[23].

Most established methods for community detection are
centralised approaches, where the algorithm needs to know
in advance the entire network topology [8], [9], [18]. These
methods produce highly accurate results. However, such
centralized methods prove to be difficult to scale to large

decentralised networks where global information is inacces-
sible. Real networks are expanding at an unprecedented way,
e.g. online social networks such as Facebook attract billions
of users who interact on a daily base in huge social groups
with millions of people. Furthermore, real-life networks are
dynamic in the sense that links frequently come and go,
and communities evolve continuously. In coping with such
dynamic networks, classical approaches such as snapshots
analysis may be ineffective, as snapshots may not smoothly
track community evolution across different time stamps [3],
[17]. All the above pose new challenges and hence call for
a novel approach for community detection.

Our contribution. We present GDS as a viable founda-
tion for detecting communities in a decentralised, dynamic
network. Here, we view a network as a GDS; each node
computes its own community under the assumptions that
(a) the node only accesses its local information provided
by the neighbourhood and (b) the node functions without
synchronisation from a central clock. More specifically
we introduce the Propose-Select-Adjust (PSA) framework
(Sec. III), which is inspired by the decision making process
among a group of people. Each node in the framework
repeatedly performs three stages:

(1) Propose: Based on the current information in its neigh-
bourhood, the node makes a proposal to those nodes it
hopes to include in its community.

(2) Select: The node selects a received proposal.
(3) Adjust: Based on the selections, the node adjusts its

own community, before going back to Propose.

We present the formal definition of a PSA-system, which
is targeted not only at community detection, but network
problems in general. We then provide an intuitive description
of our GDS-based distributed algorithm for community
detection (Sec. IV). To evaluate our algorithm, we ran
it on several real-life benchmark networks (Sec. V), and
measured performance of our algorithm using two quality
functions: modularity and performance. Lastly, we apply our
algorithm to dynamic networks. As each node in the GDS
stores explicitly its own community, the framework naturally
reveals community evolution in a changing network.

Figure 1. The community structure of an university karate club analyzed
by Zachary [25]. The two communities are in two different colours.

II. PRELIMINARIES

Community detection. We regard a network as an undi-
rected graph G = (V,E) where V,E are the sets of nodes
and edges, respectively. We assume V is the {1, 2, . . . , n}
and abuse the notation writing an undirected edge as (u, v) ∈
V 2. For any node u ∈ V , the neighbourhood of u, N(u), is
the set {v} ∪ {v ∈ V | (u, v) ∈ E} that contains v and all
neighbours of v. For C ⊆ V , N(C) denotes

⋃
u∈C N(u).

Girvan and Newman discovered that very often real
networks exhibit a special property: nodes in the network
can be partitioned into clusters, with high density of edges
within each cluster, but low density of edges between these
clusters [8]. Any graph with this property is named a
community structure where each cluster mentioned above is
called a community. For example, Fig. 1 illustrates the two
communities formed in the member network of a karate club
in an American university, identified by Zachary [25]. An
internal dispute subsequently split the club into two parts,
which coincided with Zachary’s predication.

Formally, we define a clustering of a graph G = (V,E) as
a partition C = {C1, C2, . . . , Ck} of V where each cluster
Ci ⊆ V induces a connected subgraph. A set C ⊆ V is said
to be C-consistent if it is the union of sets in C.

Let C be a clustering of a graph G = (V,E), and C ∈ C
be a cluster. The intra-cluster density of C represents the
edge connectivity within C; it is defined as

δint(C) =
|E�C|

|C|(|C| − 1)/2
, if |C| > 1

and δint(C) = 1 if |C| = 1. Let D1, D2, . . . , Dm be all
clusters in C such that C∩Di = ∅ and Di∩N(C) 6= ∅ for
all 1 ≤ i ≤ m. The inter-cluster density of C represents the
edge connectivity between C and its neighbouring clusters;
it is computed as

δext(C) =
|C| × |N(C) \ C|

|C| × (|D1|+ · · ·+ |Dm|)
, if m ≥ 1

and δext(C) = 0 if m = 1.
As networks vary greatly in the real-world, there has not

been a universally accepted formal definition of communities
in networks. This paper hence does not aim to provide a for-
mal definition, but instead uses the following intuition: The
community detection problem aims to compute a clustering
C of a given graph G = (V,E) where each cluster in C has
high intra-cluster density but a low inter-cluster density.

Graph Dynamical Systems. GDS are natural models of
networks that consist of cells linked in undirected graphs.
The notion of GDS naturally generalises from cellular
automata, where cells are normally synchronously updated.
Each cell in a GDS functions as a finite state machine: at
any time, a cell is in one of a finite number of states and
may transit to other states based on its current state, and the
states of its neighbouring cells (See [14]).

Definition 1: An graph dynamical system (GDS) is a
tuple A = (V,E,Q, (δv)v∈V , q0), where
• (V,E) is a graph, and nodes in V are called cells;
• Q is a finite set of states; q0 ∈ Q is the initial state;
• for each v ∈ V , δv : Q|N(v)| → Q is the local transition

function of v.
A configuration of A is a function c : V → Q. A
configuration c is called initial if every cell in the GDS
is at its initial state. Recall that the set of nodes V is
{1, 2, . . . , n}. For every node v ∈ V , denote the cells in
N(v) as {i1 < i2 < . . . < ikv}. An asynchronous run
of A is a (possibly infinite) sequence of configurations
ρ = c0, c1, c2, c3, . . . satisfying the following property:

∀j ≥ 0∀u ∈ V : cj+1(u) 6= cj(u)

⇒ cj+1(u) = δv (cj(i1), . . . , cj(ikv)) . (?)

The run ρ is initialised if c0 is an initial configuration.
The above notion of asynchronous runs is defined in

a spirit similar to asynchrnous CA [1], [15]. Such runs
differ from both the parallel and sequential GDS as state
transitions are nondeterministic in the following sense: at
each stage, a node v may either change state according to
its local transition, or wait. Hence an GDS has more than
one run. In this way, the definition captures the fact that
state transitions of cells are asynchronous; there is no central
clock synchronising state transitions.

III. THE Propose-Select-Adjust FRAMEWORK

The Propose-Select-Adjust (PSA) framework is used for
realising a special type of GDS. It describes a general
procedure for implementing a single cell. The framework
is inspired by the decision making process among a group
of people: Imagine a group of individuals trying to decide
on a partitioning of the group, where every member would
belong to one and only one subgroup. The constraint is that
each individual only sees local information about her own
“friendship” – no knowledge is shared among all members.
Thus individuals can only make self-centred judgements
and decide on the people that she would like to be with.
Under this constraint, the following procedures can ensure
the group arriving at a collective decision:
1) Propose: Each person individually decides a list of people
whom she would like to include in her own community. She
then sends an invitation to everyone on the list to form a
community. Here we implicitly assume that a person makes
an invitation to herself.

2) Select: After all invitations are received, the person
evaluates the quality of each proposed community, selects
and accepts the best invitation.

3) Adjust: Once a person accepts an invitation, she then
updates her own community according to the accepted
proposal. After every individual finishes this step, the whole
group would have been divided into a number of communi-
ties, and thus a clustering is formed.

The resulting clustering of individuals may not be optimal.
In this case, the person should repeat the processes for
another iteration. Let G = (V,E) be a graph. In the PSA-

Figure 2. The Propose-Select-Adjust Framework

framework of G, each node v ∈ V acts as an individual in
the above description. Figure 2 illustrates the general stages
of a single cell in the PSA-framework. It is important to note
that we define the PSA-framework in an abstract sense so
that it is not restricted to the community detection problem,
but rather, serves as a GDS-based framework for solving
network problems in general.

Definition 2: Let G = (V,E) be a finite graph, v ∈ V
and Σ = {p, s, a}. A PSA-cell defined on v is a tuple

Mv = (P,S,A, Q, (δσ,v)σ∈Σ, Fv) where

• P,S,A are finite sets of proposals, selections and
solutions, respectively; Q is a finite set of control states

• δp,v :(A×P×Q)|N(v)| → P×Q is the propose function
• δs,v : (P × S ×Q)|N(v)| → S ×Q is select function
• δa,v : (S ×A×Q)|N(v)| → A×Q is adjust function
• Fv : Σ×Q|N(v)| → Q is the change-step functions.

A PSA-cell defines a cell in a GDS: the states are the product
Σ× P × S ×A×Q; at any time, a cell v is in a state

(σ, P (v), S(v), A(v), q) ∈ Σ× P × S ×A×Q
where P (v), S(v), A(v) are the current proposal, selection
and solution of the cell v, respectively, q ∈ Q and σ ∈
{p, s, a} is called the step of v, denoting propose, select and
adjust, respectively. The cell v applies the three transition
functions δp,v, δs,v and δa,v one-by-one to the appropriate
components of its current state:

(i) The cell v starts in step p and applies the propose function
δp,v to compute a proposal P (v) ∈ P , according to current
solutions and proposals (and control states) of cells in its
neighbourhood N(v).

(ii) Then v moves to step s and applies the select function
δs,v to compute a selection S(v) ∈ S, according to proposals
and selections (and control states) of cells in N(v).

(iii) Then v moves to step a and applies the adjust function
δa,v to update its candidate solution A(v), according to
selections and solutions (and control states) of cells in N(v).
The cell then repeats the above cycle.
A PSA-cell v in step σ may change to the next step σ′, where
(σ, σ′) ∈ {(p, s), (s, a), (a, p)}, by performing a transition

(σ, P (v), S(v), A(v), q) 7→ (σ′, P (v), S(v), A(v), q′)

only if Fv(σ, q1, . . . , qk) = q′ where q1, . . . , qk are the
current control states of cells in N(v). In this regard, one
obtains a transition function δv on Σ× P × S ×A×Q.

Definition 3: A PSA-system is a tuple

Γ = (V,E, (Mv)v∈V ,P,S,A, Q, p0, s0, a0, q0)

where (V,E) is a finite graph, for each v ∈ V ,Mv is a PSA-
cell defined on v with proposal set, selection set, solution set
and control states P,S,A, Q, respectively, p0 ∈ P , s0 ∈ S,
a0 ∈ A and q0 ∈ Q.
A PSA-system is essentially a GDS; the initial state of
the GDS is (p, p0, s0, a0, q0). A configuration of the PSA-
system is as in a GDS, i.e., a function c : V → Σ×P×S×
A × Q. For v ∈ V , we use A(c, v) to denote the solution
in the state c(v). A run of the PSA-system is a sequence
c0, c1, . . . of configurations that satisfies (?) and for each
v ∈ V and σ ∈ Σ, there are infinitely many i’s such that
ci(v) is in step σ (this makes sure every cell cycles through
propose, select and adjust infinitely often).

A run ρ = c0, c1, . . . is stablising if there is i ≥ 0 such
that ∀j ≥ i∀v ∈ V : A(ci, v) = A(cj , v); call the function
αρ : v 7→ A(ci, v) the limit of ρ.

Definition 4: A PSA-system is converging if all runs are
stablising and have the same limit.
We next present a converging PSA-system Γ to solve the
community detection problem.

IV. COMMUNITY DETECTION WITH A PSA-SYSTEM

We first describe the proposal set P and the solution set
A for Γ. We use the notion of a tendency tree, defined with
the following intuition: In a social network, an individual
u would tend to form a group with another individual v;
the node v may either be a neighbour of u or, in case no
other node is better suited, the node u itself. In this case we
say u tends to v. Suppose every node tends to exactly one
node. The resulting tendency connections among all nodes
will form a directed graph where every node has exactly one
outgoing edge. When such a directed graph doesn’t contain
a cycle (excluding self-loops), it is a forest. A tree in this
forest is called a tendency tree.

In the following by a tree we mean a tuple (T, f) where
T is a set of nodes, and f : T → T is an edge function such
that f(r) = r for exactly one node (the root) r ∈ T and
∃i > 0 : f i(u) = r for all other nodes u 6= r.

Definition 5: A tendency tree of a graph (V,E) is a tree
(T, f) where T ⊆ V and for any u 6= v ∈ T , f(u) = v
implies (u, v) ∈ E.

Figure 3. The initial configuration of Zachary’s karate club example.

Figure 4. The general computation flow of a cell in the PSA-system Γ.

The proposal set P and solution set S of the PSA-system
Γ is the set of all tendency trees of (V,E) where the initial
proposal and solution are both the empty tree. The selection
set S is V ∪ {null} where the initial selection is null.

It remains to describe the control states Q and the
transition functions of each node v ∈ V in Γ. Due to
space limitation, we only describe in an intuitive manner
the behaviors of cells; from this description the reader will
see that the computation can be implemented as a PSA-cell.
We also use a running example (Zachary’s karate club graph)
to illustrate our ideas.

A cell runs a number of rounds of the propose-select-
adjust cycle, indexed by 1, 2, 3, . . . and ω. The rounds can
be divided into three stages: round1, round i > 1, and round
ω as illustrated in Fig 4; we use the control states in Q to
indicate which of these three stages a cell is in. Next we
describe informally the runs of a cell v in different stages.

A. Stage 1 Propose. A k-core in a graph is an induced
subgraph where all nodes have degree at least k . The core
number of a node v is the largest κ(v) such that N(v)
contains a κ(v)-core. For v ∈ V , the local core of v is
the set K(v) = {u ∈ N(v) | |N(u) ∩ N(v)| ≥ κ(v) + 1}.
In most practical networks, K(v) is a clique-like subgraph;
we use K(v) here to approximate the maximal clique that
contains v. This is because finding maximal cliques is well-
known to be NP-hard, while local cores can be efficiently
computed [10]. To make a proposal, the node v sets P (v)
to a tendency tree defined on K(v). The proposal for each
node in Zachary’s karate club is shown in Fig. 5.
Select. The cell v waits for all cells in N(v) to make a
proposal. Let I(v) = {u ∈ N(v) | v ∈ K(u)}. Note that
every cell in I(v) has proposed v to join with itself. To make
a selection, v pick the “best” proposal among all P (u) where
u ∈ I(v). For the next definition, recall that a C-consistent
set for a clustering C is a union of clusters in C.

Figure 5. The proposal P (v) made by a node v in Zachary’s karate club in
Stage 1 consists of nodes in the local core K(v). Every node has a different
colour. Self-loops in the tendency trees are omitted. E.g. the tendency tree
of 0 contains nodes 0,1,2,3,7.

Figure 6. The selection of each node is labeled by an arrow with the same
colour as the node. Self-selections are omitted.

Definition 6: Let C be a clustering of the graph (V,E).
We define the preference relation � on all C-consistent sets
such that C ≺ C ′ if (1) δint(C) < δint(C

′); or (2) δint(C) =
δint(C

′) and |C| < |C ′|; or (3) δint(C) = δint(C
′), |C| =

|C ′|, δext(C, C) > δext(C
′, C).

Recall that V = {1, . . . , n}. The node v sets its selection
S(v) as min{u ∈ I(v) | µ(P (u′)) �lex µ(P (u)) for all
u′ ∈ N(v)}. The selections of each node in Zachary’s karate
club is shown in Fig. 6.

Adjust. The cell v waits for all cells in N(v) to make a
selection. It then extend its solution A(v) to include all cells
who have selected v, i.e., {u ∈ N(v) | S(u) = v}. After
this step all cells would have declared a community A(v); all
these communities constitutes a clustering C0 of the graph.
Fig. 7 shows the resulting clustering in Zachary’s example.

B. Stage 2 In this stage, each cell aims to optimize
the preference of its cluster until no improvement can be
achieved. We only present the intuitive ideas:

Propose. Recall that (T, f) is the current tendency forest
A(v) of v. The cell v examines all u ∈ K(v) and compares
the current solution A(v) with the union of A(v) and A(u).
The new proposal P (v) contains the union of A(v) and
A(u) that has the highest preference. This proposal is then
propagated to the root of T , who makes a proposal based
on proposals of its children and passes it down to all cells
in T . In this way, all v ∈ T will produce the same proposal.

Select. We say that a cluster C ⊆ C0 receives a proposal
P (u) ∈ P , if P (u) contains C. Through propagation of in-
formation, the cluster of v examines all proposals it receives
and chooses the proposal with the highest preference.

Adjust. For every cluster C ∈ C0, we define a tendency
cluster τ(C) ∈ C. There are two cases: 1) every cell x ∈ C

Figure 7. The resulting clustering in Zachary’s karate club after the first
round. Nodes belong to the same community have the same colour.

selects its parent f(x) in its current tendency tree; in this
case the cluster set τ(C) = C. 2) Some cell x ∈ C selects
a node u /∈ C; in this case the cluster C has decided to join
with the community C ′ that contains u, and we set τ(C) =
C ′. Note that whenever τ(C) 6= C, τ(C) always has higher
utility vector than C. Hence for every C ∈ C0, there is some
j ∈ N and D ∈ Ci−1 such that D = τ j(C) = τ j+1(C). We
call D the sink of C.

We define the clustering C1: C,C ′ ∈ C0 belong to the
same cluster in C1 whenever they have the same sink. Each
node v adjusts its solution A(v) to its new cluster in C1. For
this to happen, the tendency tree of A(v) may need to be
changed so that it is linked with another cluster in C0; the
resulting tendency tree’s root would be the root of its sink.

After all cells in N(v) update their solutions, v then
moves back to step p and starts another round. The node
v moves on to Stage 3 when no change occurs to A(v) after
step a. In Zachary’s example, the clustering C0 and C1 are
the same, so every node directly moves on to Stage 3 after
one round in Stage 2.

C. Stage 3 After Stage 2 all cells have computed their
clusters which form a clustering C∗. The clusters in C∗ has, in
a certain sense, reached local optimality: they cannot achieve
a higher utility vector if combined with any neighbouring
clusters. While they capture the intuitive notion of commu-
nities with high intra-cluster density and low inter-cluster
density, they are normally too small to reveal any global
structure of the network. In real-world networks, communi-
ties tends to combine several such optimized clusters (e.g.
the two communities in Fig. 1 are formed by combining
several clusters in Fig. 7). Hence we use Stage 3 to find such
tendency and obtain the final clustering of the network.

Stage 3 is performed similarly as Stage 2. The difference
is that a cluster C ∈ C∗ would send a proposal to every node
in its neighbourhood. The clustering Cω is the outcome of
the PSA-system and contains all the communities identified
in this network. For Zachary’s example, we obtained the
same clustering as shown in Fig. 1. This shows that the
PSA-system correctly detected the communities in Zachary’s
karate club. Fig. 8 shows tendency of each cluster C ∈ C∗
in Zackary’s example.

V. EXPERIMENTAL RESULTS

We ran PSA-systems on several other real-life networks
used as benchmarks for community detection algorithms.

Figure 8. The τ(C) of each cluster C is shown with an arrow. Self-loops
are omitted from the diagram. The two sinks are the cluster of node 0 and
the cluster of node 33. Hence the resulting clustering Cω consists of two
communities which coincide with Zachary’s finding in Fig. 1.

Figure 9. Running our PSA-system reveals several geographical region,
which roughly classified such as South-Eastern Asia (including China),
North-Eastern Europe (including Russia), Western Europe, Middle-East,
Southern Europe.

Fig. 9 shows the resulting communities in the Euro-Asia
country network, where edges indicate land borders between
countries. Our algorithm accurately revealed several geo-
graphical regions. Fig. 10 shows the resulting communities
in the American college football league network, where
our algorithm accurately revealed conferences in the league.
Fig. 11 shows the resulting communities in the Doubtful
sound bottlenose dolphin network, where edges are social

Figure 10. Running our PSA-system reveals several communities in the
American college football league, which match the actual conferences to a
high precision.

Figure 11. Running our PSA-system reveals four communities in the
Doubtful sound bottlenose dolphin social network. Our algorithm revealed
four communities which are consistent with the four sub-communities
identified by [12].

interactions between dolphins.
We then synthesized networks with 500 nodes based on

the relaxed caveman model [22], dividing the nodes into
ten group of random sizes. Initially each group forms of a
clique. Then we rewire edges in the cliques to another group
with probability p ∈ [0, 1]. We ran our algorithm on the
synthesized graphs with different values for p ∈ [0.05, 0.3]
and measured the quality of the resulting clusterings using
two quality functions: For each graph, let C = {C1, . . . , C`}
be the clustering obtained by the algorithm on graph G.

1) Performance: This function counts edges within commu-
nities and pairs of nodes that are not linked by edges between
different communities (the “correctly interpreted pairs”) [7];
it is defined as |X∪Y |

(|V |−1)|V | where X= {(u, v) ∈ E |C(u) =

C(v)}, Y= {(u, v) /∈ E| C(u) 6= C(v)} and C(x) is the
community of x.

2) Modularity: This widely used quality function mea-
sures the proportion of in-cluster edges taking into ac-
count the expected proportion; it is defined as Mod(C) =∑`
i=1

[
|E�Ci|
|E| −

d2i
4|E|2

]
where di is the sum of degrees of

nodes in Ci [7].

We also ran another well-established modularity-based
approximation algorithm for community detection on each
graph [5], whose result is compared with outcomes of our
algorithm. See Fig. 12.

Dynamic networks. A network is dynamic when it under-
goes continuous changes such as adding/deletion of edges.
In a PSA-system, a cell continues to loop through the PSA-
cycle even when the solution has been stablised. Whenever
a change occurs to the neighbourhood of a node v, v would
change back to Stage 1 and repropose to its neighbours an
updated local core K(v). The change may then propagate
to other nodes in v’s community, resulting in every node re-
assigning their solutions. The change is then notified through
proposals to the neighbours of the community, who goes
back to Stage 2 and re-apply the transition functions to adjust
their solutions.

Figure 12. The result shows performance of the identified clusters are
close to 1 and modularity almost identical to the maximal modularity [5].
This verifies the validity of our approach.

See the video http://youtu.be/43cW9CSbg10
that demonstrates changes to communities in a dynamic
network. The experiment was carried out on a laptop with
Intel Core i7-3630QM CPU 2.4GHz 8.0GB RAM, 128MB
JVM Runtime memory. We applied our algorithm on a
synthesized 60-node network, which is divided into four
clusters with 15 nodes each under the planted 4-model [6].
Firstly we iteratively add random edges with probability
0.9 between nodes in each cluster, and 0.1 between nodes
in different clusters. In this phase, a community gradually
emerged to enclose all nodes before disintegrate into four
clusters. We then add more edges so that all communities
merge to one. Then we iteratively remove random edges
until an edge appears between nodes from different clusters
with probability 0.1. During this phase the community once
again disintegrate into four. This experiment demonstrates
PSA would serve as a viable framework for detecting
community evolution in networks.

VI. RELATED WORKS

Conventional methods for community detections include
the clique-based agglomerative algorithm in [18], divisive
algorithm based on betweenness [8] and the modularity-
optimizing algorithm in [9]. All the classical approaches
mentioned above are centralised algorithms, which requires
a central controller accessing complete information of the
network. This means that the algorithms would be difficult
to scale to very large, decentralised networks.

Our work differs from these classical works in that our
formalism leads to a fully distributed, asynchronous algo-
rithm for community detection. Distributed approaches for
community detection have only recently emerged. Rossi et
al. proposed an algorithm for clique detection using branch
and bound, which distributes multiple copies of a graph
among processes [20]. This only finds maximal cliques
which do not correspond to communities. Yildiz and Kruege
targeted privacy control using communities in Facebook-
like online platforms, while we provides a general solution
in many different domains [24]. Staudt and Meyerhenke
introduced a parallel synchronous computation model by

combining machine learning with a synchronous refinement
algorithm [21]. Our distributed framework is asynchronous,
which means easier to implement and apply to dynamic
networks. Lastly we mention Bagnolli et al’s recent work
using a cellular automata approach for community detection
in a similar spirit of our work [4]. The difference is that
they use stochastic state transitions which result in a very
different mechanism.

VII. CONCLUSION

We propose a method for community detection that is
based on graph dynamical systems that treats each node as
a cell. We argue that this formal model offers the following
novelties and advantages:

1) Using asynchronous distributed computation enhances
efficiency of computation.

2) The algorithm produces results that are adaptable to
dynamical updates to the network in run time.

The experimental results demonstrate that this is a viable so-
lution to the community detection problem for decentralised
and dynamic networks. As future work we would explore the
use of PSA-system in obtaining overlapping communities or
detecting social influences in graphs.

REFERENCES

[1] S. Adachi and J. Lee, Computation by asynchrnously updating
cellular automata. Journal of Statistical Physics vol 114, 2004,
pp. 261–289.

[2] G. Adomavicius and A. Tuzhilin, Toward the next generation
of recommender systems: a survey of the state-of-the-art and
possible extensions. IEEE Trans. Knowl. Data Eng. 17:6,
2005, pp. 734–749.

[3] S. Asur, S. Parthasarathy and D. Ucar, An event-based
framework for characterizing the evolutionary behavior of
interaction graphs. ACM Trans. Knowl. Disc. from Data vol
3, 2009, pp. 913–921.

[4] F., Bagnoli, E. Massaro and A. Guazzini, Community-
Detection Cellular Automata with Local and Long-Range
Connectivity, Proc. of ACRI 2012, pp. 204–213, Springer.

[5] V. Blondel, J. Guillaume, R. Lambiotte and E. Lefebvre, Fast
unfolding of communities in large networks J. Stat. Mech,
P10008, 2008.

[6] A. Condon and R. Karp, Algorithms for Graph Partitioning
on the Planted Partition Model, Random Struct. Algor. vol 18
, 2001, pp. 116–140.

[7] S. Fortunato, Community detection in graphs. CoRR
abs/0906.0612. 2010.

[8] M. Girvan, and M. Newman, Community structure in so-
cial and biological networks. Proceedings of the National
Academy of Sciences of the USA, 99:12, 2002, pp. 7821–
7826.

[9] M. Girvan, and M. Newman, Finding and evaluating commu-
nity structure in networks. Phys. Rev. E 69, 026113, 2003.

[10] J. Håstad, Clique is hard to approximate within n1−ε, Acta
Mathematica vol 182 (1): 1999, pp. 105–142.

[11] P. Jonsson, T. Cavanna, D. Zicha and P. Bates, Cluster
analysis of networks generated through homology: automatic
identification of important protein communities involved in
cancer metastasis. BMC Bioinformatics, 7:2, 2006.

[12] D. Lusseau, and M. Newman, Identifying the role that indi-
vidual animals play in their social network, Proceedings of
the Royal Society of London. Series B: Biological Sciences,
271(6), 2004, pp. 477–481.

[13] L. Meyers, M. Newman, M. Martin and S. Schrag, Applying
network theory to epidemics: Control measures for outbreaks
of mycoplasma pneumoniae. Emerging Infectious Diseases
vol 9(2), 2003, pp.204–210.

[14] H. Mortveit and C. Reidys, An Introduction to Sequential
Dynamical Systems, Springer (Universitext), 2007.

[15] C. Nehaniv, Asynchronous automata networks can emulate
any synchronous automata network. International Journal of
Algebra and Computation, vol 14(5-6), 2004, pp. 719–739.

[16] M. Newman, Coauthorship networks and patterns of scientific
collaboration. Proc. Natl. Acad. Sci. USA vol 101, 2004, pp.
5200–5205.

[17] G. Palla, A. Barabási and T. Vicsek, Quantifying social group
evolution, Nature, vol 446, 2007, pp. 664–667.

[18] G. Palla, I. Der’enyi, I. Farkas and T. Vicsek, Uncovering
the overlapping community structure of complex networks in
nature and society. Nature, vol 435, 2005, pp. 814–818.

[19] K. Reddy, M. Kitsuregawa, P. Sreekanth and S. Rao, A
graph based approach to extract a neighborhood customer
community for collaborative filtering, Proc of DNIS 2002.
Springer, LNCS 2544, 2002, pp. 188–200.

[20] R. Rossi, D. Gleich and M. Patwary, Parallel maximum clique
algorithms with applications to network analysis and storage.
CoRR abs/1302.6256, 2013.

[21] C. Staudt and H. Meyerhenke, Engineering High-Performance
Community Detection Heuristics for Massive Graphs, Pro-
ceedings of ICPP 2013, pp. 180–189. IEEE.

[22] D. Watts, Small Worlds, The Dynamics of Networks between
Order and Randomness, Princeton University Press, 2003.

[23] C. Weinstein, W. Campbell, B. Delaney and G. O’Leary,
Modeling and Detection Techniques for Counter-Terror Social
Network Analysis and Intent Recognition, Proc. of IEEE
Aerospace conference, 2009, pp.1–16.

[24] H. Yildiz and C. Kruege, Detecting social cliques for au-
tomated privacy control in online social networks. Proc. of
Pervasive Computing and Communications Workshops, 2012,
pp. 353–359. IEEE.

[25] W. Zachary, An information flow model for conflict and
fission in small groups, Journal of Anthropoloical Research,
vol 33, 1977, pp.452–473.

