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Abstract—Network integration refers to a process of building
links between two networks so that they dissolve into a single
unified network. Togetherness measures the proximity of these
two networks as they integrate; this notion is fundamental to
social networks as it is relevant to important concepts such
as trust, coherence and solidarity. In this paper, we study
the algorithmic nature of network integration and formally
introduce three notions of togetherness. We analyze the corre-
sponding computational problems of network integration: Given
two networks and a desired level of togetherness, build links
between members of these networks so that the overall network
meets the togetherness criterion. We analyze optimal solutions
to this problem, describe several heuristics and compare their
performance through experimental analysis.

Keywords—Network integration, togetherness, distance, collab-
oration networks

I. INTRODUCTION

The establishment of links has been a fundamental question
in the study of complex networks. While links often emerge
due to natural network evolution, there are many scenarios
where links are created “by design”, i.e. connections are set
up in order to meet certain targets. Take, as an example, the
design of flight routes of airlines to ensure effective service,
or, the intermarriages between the Medicis with other XV
century noble European families for the purpose of gaining
power in Florence [20]. Forging new links between two disjoint
networks brings these networks together. Several questions
naturally arise concerning such processes: How do two de-
partments in an organization merge into a single unit? How do
two research teams socialize and collaborate? How to bridge
existing bus routes to create a unified public transport map?
How to create hyperlinks connecting two web domains to allow
convenient browsing?

Motivated by the questions above, we address the algo-
rithmic nature of network integration. The problem asks to
build links between members of two networks so that the
combined network becomes a unified whole. It is then a major
question how “together” the unified networks should be as an
outcome of this process. Naturally, the more links there are that
connect the two networks, the closer they become. On the other
hand, there is normally a cost associated with establishing and
maintaining links. Therefore, it is important to strike a balance
between the amount of togetherness and the number of new

links created between the networks. We now describe the three
main goals of the paper:

The first goal concerns over the notion of togetherness. In
recent years there has been a surge of the use of “togetherness”
in sociology [14], communication studies [3], politics [22]
and biology [6]. In its most original form, togetherness is a
concept rooted in Kantian philosophy, meaning the confluence
of intuition and concepts [9]. In mathematics, togetherness is
regarded as a “mark of being integrated into a single unity”
and influences the creations of notions such as continuity and
connectedness [13]. The notion is first discussed in information
science by cybernetic pioneer Gordon Pask in his 1980 essay
[21]; Pask refers togetherness as an “index of human prox-
imity” that is “determined by a communication/computation
medium”. He goes on to discuss how togetherness can be
“engineered” through a process of “conversation”, which is
abstractly represented as the integration of two concept net-
works. In this paper, we rediscover and follow this seminal
work, and provide a formal interpretation of togetherness in
the context of network science.

The second goal of the paper deals with different levels of
togetherness. Already in the work of Pask, it is mentioned that
an appropriate measure of togetherness comes from the notion
of distance. In a network, the distance between two nodes is
the smallest number of “hops” needed to move from one node
to the other. It is natural to adopt distance as an indication
of togetherness. In particular, diameter refers to the largest
distance between nodes in the network. It is well-known that
most real-world networks enjoy small diameters – this is the
so-called small world property. We hold the view that all nodes
of a network have certain resources; and when a network has a
small diameter, the resource on each node can be reached out
from everyone else within a few steps, and each member is
able to influence others. Hence, the diameter of the integrated
network forms the strongest form of togetherness.

When expressing togetherness between two networks in
their integration, diameter may be too strong. We define
further two weaker notions of togetherness. Firstly, existential
togetherness considers distances between every node in one
network to some node in the other network. Secondly, univer-
sal togetherness considers distances between every node in one
network to all nodes in the other network. The former measure
of togetherness may be reasonable if we assume all nodes in
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any network hold the same resource, and it is enough to reach
any node in a network. The latter measure of togetherness may
be reasonable if the distances to all nodes in the other network
are important. In this paper, we relate and compare these three
notions of togetherness.

The third goal of the paper concerns with the algorithmic
problem of network integration: Given two networks G1, G2

and a desired value for a specific type of togetherness, we
would like to compute a small set of links to be set up
between G1, G2 so that the integrated network meets the
togetherness requirement. We study computational complexity
of this problem and propose methods that generate solutions.
The first type of methods are heuristics that are based on the
equi-privilege properties of the networks. The second type are
simulations based on certain priorities given to nodes of the
network. To compare these methods,we perform experimental
analysis on both synthesized and real-world data.

Related Works: This work can be regarded as a con-
tinuation of our previous study [15] that explores algorithms
for socializing a newcomer into an established social network.
It also extends results presented in [16], where we studied
how new links could be established between two social groups
assuming that all persons have the same privilege.

The work is relevant to the following interrelated research
areas: Firstly, strategic network formation considers how new
links emerge due to rational and self-centred decisions of
members of the network [10]. This field puts focus on stability
and equilibrium that arise out of game-theoretical situations,
but does not emphasis network integration, nor does it concern
with togetherness of the resulting network. Secondly, inter-
dependent networks discusses the complex structures formed
through an integration of networks of different types (e.g. a
transportation network with an electrical network) [7]; the
focus here is mainly on interdependence among the nodes
and robustness of network, i.e. whether node failures leads
to a cascading failure throughout the overall infrastructure.
Lastly, we mention management studies on collaborative team
building. When two companies merge, the success of the new
entity largely hinges on whether the firms can effectively
socialize employees from both sides to a unified direction
[1]. The challenge lies in how venues could be set up (e.g.
meetings, group assignments, etc.) that nurture collaboration
and allow efficient communication [23], [24]. The framework
proposed in this paper addresses this challenge through an
algorithmic perspective.

Paper organization.: Section II presents the main
definitions which include three togetherness notions for net-
work integration. Section III discusses the network integration
problems, and analyze their optimal solutions. Section IV
proposes algorithmic mechanisms for solving the network
integration problems. Section V presents experimental results.
Finally, Section VI concludes with remarks on future works.

II. MAIN DEFINITIONS

A. Preliminaries

We define a network as a connected undirected unweighted
graph G = (V,E) where V is a set of nodes and E is a set of
(undirected) edges on V . Let G = (V,E) be a network. We

write an edge {u, v} ∈ E as uv and say that u, v are adjacent.
A path (of length k) is a sequence of nodes u0, u1, . . . , uk
where uiui+1 ∈ E for any 0 ≤ i < k. The distance between u
and v, denoted by d(u, v), is the length of a shortest path from
u to v. The eccentricity of u is ecc(u) := maxv∈V d(u, v). The
diameter of the network G is diam(G) := maxu∈V ecc(u).
The radius of G is r(G) := minv∈V ecc(v). A node u ∈ V is
called a center of G if ecc(u) = r(G).

A set D ⊆ V is a dominating set for G if every node not
in D is adjacent to at least one member of D. The dominating
number γ(G) is the number of nodes in a smallest dominating
set for G. More generally, for ` ∈ N, a set D` ⊆ V is a
distance-` dominating set if every node not in D is at distance
at most ` from u ∈ D. The `-dominating number is the number
of nodes in a smallest distance-` dominating set for G.

For two disjoint sets of nodes V1, V2, we use V1 ⊗ V2 to
denote the set of all edges {uv | u ∈ V1, v ∈ V2}; these
edges will be our instruments for integration two networks
with nodes V1 and V2, respectively.

Definition 1: Let G1 = (V1, E1) and G2 = (V2, E2) be
two networks. Fix a non-empty set of edges E ⊆ V1 ⊗ V2.
The integrated network of G1 and G2 by E is G1⊕EG2 :=
(V1 ∪ V2, E1 ∪ E2 ∪ E).

B. Togetherness

Consider the integration G1⊕EG2. Any edge uv ∈ E rep-
resents a channel for the flow of certain resources (information,
traffic, knowledge, etc.) between G1 and G2. Hence, the set
E should provide nodes in each network with appropriate
access to resources in the other network. Togetherness is
an index for proximity of G1 and G2, and thus measures
the effectiveness of E. As argued above, distances between
nodes play a significant role. Further we introduce three levels
of togetherness and motivate each notion with an example
scenario in organizational management:

(a): Imagine two groups of specialists who provide
information and advices to each other (e.g. the accounting
and the procurement teams in a company). A member of one
group needs to access some but not necessarily all members
of the other group. In this case, it is sufficient to measure
togetherness based on the distance from a node in a network
to any node in the other network. In particular, the ∃-span
σ∃E(u) of u ∈ Vi refers to min{d(u, v) | v ∈ V3−i} where
i ∈ {1, 2}; let σ∃E(G1, G2) := max{σ∃(u) | u ∈ V1 ∪ V2}.

(b): Imagine two groups of people with varying skills
who collaborate on a joint project. To fully utilize skills and
incorporate knowledge, a person in one group should access
everyone in the other group. Hence we measure togetherness
based on the distance from a node in a network to all members
of the other network. In particular, the ∀-span σ∀E(u) of u ∈
Vi refers to max{d(u, v) | v ∈ V3−i} where i ∈ {1, 2}; let
σ∀E(G1, G2) := max{σ∀(u) | u ∈ V1 ∪ V2}.

(c): Imagine two groups of people who merge into
a single group. To ensure the resulting group is a cohesive,
tightly-knit unit, we measure togetherness based on the diam-
eter of the combined group.
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Definition 2: Let G1⊕EG2 be an integration of two net-
works G1 = (V1, E1) and G2 = (V2, E2). We define three
notions of togetherness of G1 and G2 as follows:

1) The ∃-togetherness (or existential togetherness) is defined
as τ∃E(G1, G2) :=

(
σ∃E(G1, G2)

)−1
.

2) The ∀-togetherness (or universal togetherness) is defined
as τ∀E(G1, G2) :=

(
σ∀E(G1, G2)

)−1
.

3) The ∆-togetherness (or diametric togetherness) is defined
as τ∆

E (G1, G2) := (diam (G1⊕EG2))
−1.

When G1, G2 and E are clear from context, we abuse the
notation writing χ\ for χ\E(G1, G2) for all χ ∈ {σ, τ} and
\ ∈ {∃,∀,∆}. In the following we use d and d̃ to denote
max{diam(G1), diam(G2)} and min{diam(G1), diam(G2)},
respectively.

Proposition 3: The following properties hold for all net-
works G1 = (V1, E1), G2 = (V2, E2) and E ⊆ V1 ⊗ V2:

(a)
(
σ∃ + d̃

)−1

≤ τ∀ ≤ τ∃

(b) τ∆ ≤ τ∀; and τ∀ = τ∆ whenever σ∀ ≥ d

Proof: For (a), it is clear that τ∀ ≤ τ∃ as σ∃(u) ≤
σ∀(u) for every node u. Without loss of generality assume
diam(G2) ≤ diam(G1). From any node u ∈ V1, there is
v ∈ V2 where d(u, v) ≤ σ∃, and for all w ∈ V2, d(v, w) ≤ d̃.
Thus d(u,w) ≤ τ∃ + d̃. This means that σ∀ ≤ σ∃ + d̃ and

hence τ∀ ≥
(
σ∃ + d̃

)−1

.

For (b), it is clear that τ∆ ≤ τ∀ as diam (G1⊕EG2) ≤
σ∀(u) for any node u. When σ∀ ≥ d, d(u, v) ≥
max{diam(G1), diam(G2)} for any u ∈ V1 and v ∈ V2. Thus
diam(G1⊕EG2) = σ∀, which means τ∀ = τ∆.

As an example, we integrate two networks in three ways in
Fig. 1.
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Fig. 1: Integrating two line networks: E1 = {v2u4} with τ∃ = 1/4,
τ∀ = 1/5, and τ∆ = 1/6 (on the left); E2 = {v2u3, v2u5} with
τ∃ = 1/3,τ∀ = 1/4, and τ∆ = 1/6 (in the middle); and E3 =
{v2u2, v2u6} with τ∃ = 1/3, τ∀ = τ∆ = 1/4 (on the right).

III. THE NETWORK INTEGRATION PROBLEMS

When integrating two networks G1 and G2, we have two
constraints: The first constraint is the togetherness of G1 and
G2 in the integrated network. The second constraint is the

number of new edges established during the process. To ensure
high togetherness, one needs to create sufficiently many edges
between G1 and G2. As each edge requires certain resources
to set up and maintain, the challenge is to allow maximal
togetherness while creating minimal number of new edges.
Formally, fix \∈{∃,∀,∆}. We define the following problems:

1) Network Integration under Togetherness constraint
NIT\t(G1, G2) (where t ∈ (0, 1]): This problem asks for,
given G1 = (V1, E1) and G2 = (V2, E2), a set of edges
E ⊆ V1 ⊗ V2 such that the togetherness τ \E(G1, G2) ≥ t.
An optimal solution E of this problem is one that has
the smallest cardinality.

2) Network Integration under Edge constraint NIE\e(G1, G2)
(where e ≥ 1 is an integer): This problem asks for, given
G1 = (V2, E1) and G2 = (V2, E2), a set E ⊆ V1⊗V2 that
has cardinality e. An optimal solution E of this problem
is one that leads to the largest togetherness τ \E(G1, G2).

These two problems are closely related.

Theorem 4 (Duality): For any \ ∈ {∃,∀,∆}, there is a
solution of NIT\t(G1, G2) containing at most e edges iff there
is a solution E of NIE\e(G1, G2) that leads to τ \ ≥ t.

The next result discusses the size of any optimal solution E
of NIT\1(G1, G2) (i.e., when we desire maximal togetherness).

Lemma 5: For any networks G1, G2 and E ⊆ V1 ⊗ V2:

(a) τ∃=1 iff ∀u ∈ Vi∃v ∈ V3−i : uv ∈ E where i ∈ {1, 2}.
(b) τ∀=1 iff E = V1 ⊗ V2.

(c) τ∆=1 iff both G1, G2 are complete and E = V1⊗V2.

Proof: For (a), let E ⊆ V1 ⊗ V2 be a set of edges with
cardinality |E| = max{|V1|, |V2|}. If E connects every node
in V1 with some node in V2 and vice versa, then the ∃-span
σ∃(u) = 1 for every u ∈ V1 ∪ V2. On the other hand, if
∃u ∈ V1∀v ∈ V2 : uv /∈ E, then σ∀(u) ≥ 2.

For (b), it is sufficient to note that if there is some
u ∈ V1, v ∈ V2 with uv /∈ E, then d(u, v) ≥ 2; (c) is
straightforward as τ∆ = 1 iff G1⊕EG2 is a complete graph.

The next result discusses togetherness achieved by optimal
solutions of NIE\1(G1, G2) (i.e., adding one new edge {u, v}).

Lemma 6: For any networks G1, G2 and uv ∈ V1 ⊗ V2,
the maximum value of τ \{uv}(G1, G2) is

(a) (max{r(G1), r(G2)}+1)−1 if \ = ∃.
(b) (r(G1)+r(G2) + 1)−1 if \ = ∀.

(c) (max{r(G1)+r(G2)+1, d})−1 if \ = ∆.

Proof: The optimal solution {uv} connects a center u in
G1 with a center v in G2. The properties (a)(b)(c) can then be
easily checked.

The problem of finding optimal solutions for network
integration is in general computationally hard.

Theorem 7: For any \ ∈ {∃,∀,∆}, the following problems
are hard for W[2], the second level of the W-hierarchy:
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1) Fix t ∈ (0, 1/2]. Decide if NIT\t(G1, G2) has a solution
with ≤ e edges for given G1, G2 and integer e > 0

2) Fix e > 1. Decide if NIE\e(G1, G2) has a solution E that
leads to τ \ ≥ t for given G1, G2 and t ∈ (0, 1].

Proof: Due to the duality (Thm. 4) between the two
problems NIT\t(G1, G2) and NIE\e(G1, G2), it is sufficient to
prove one of (1) and (2). As shown in [12], finding the smallest
distance-r dominating set in G with diameter r+1 is complete
for W[2] (for any fixed r). We now show a reduction from this
problem to NIT\t(G1, G2) for t ∈ (0, 1/2].

Suppose, without loss of generality, that t = k−1 for some
integer k ≥ 2. Now let G1 = (V1, E1) be a graph with
diameter k and let G2 be a graph that contains only a single
node {u}. For any distance-(k−1) dominating set S ⊆ V1, the
set of edges S⊗{u} is a solution of NIT\t(G1, G2). Conversely,
suppose S ⊆ V1 is not distance-(k−1) dominating. Then there
is a node w ∈ V1 that is at distance at least k away from any
node v ∈ S. This means that d(w, u) in the integrated network
is at least k+1 and S is not a solution of NIT\t(G1, G2). Thus
NIT\t(G1, G2) has a size-` solution if and only if G1 has a
size-` distance-(k−1) dominating set.

In subsequent sections we focus on heuristics for solving
the NIT\t(G1, G2) and NIE\e(G1, G2) problems. We first focus
on ∃-togetherness and characterize the optimal solutions of
NIT∃t (G1, G2).

Theorem 8 (∃-Togetherness Theorem): Suppose E is an
optimal solution of NIT∃t (G1, G2). Then

(1) If t = 1, then |E| = max{|V1|, |V2|}

(2) If t < (max{r(G1), r(G2)})−1, then |E| = 1

(3) If 1>t≥ (max{r(G1), r(G2)})−1, |E| = max{γ1, γ2},
where γi is the (t−1−1)-dominating number of the net-
work Gi for each i ∈ {1, 2}.

Proof: (1) and (2) directly follow from Lem. 5(a) and
Lem. 6(a), resp. We now prove (3).

Let k = t−1 and D1 ⊆ V1 and D2 ⊆ V2 be minimum
distance-(k−1) dominating sets for G1 and G2, resp. In other
words, |D1| = γ1 and |D2| = γ2. Without loss of generality,
assume γ1 ≥ γ2. Then there is a set E ⊆ V1⊗V2 that contains
for every u ∈ Di, some edge uv where v ∈ D3−i where
i ∈ {1, 2}, and |E| = γ1. Our goal is to show that E is an
optimal solution of NIT∃t (G1, G2).

Note that any node w in Vi is at most k−1 steps away from
some node u ∈ Di, which means that the ∃-span σ∃(w) ≤ k.
Thus E is a solution of NIT∃t (G1, G2). Now take a set E′ ⊆
V1⊗V2 has |E′| < Γ1. Let S = {u ∈ V1 | ∃v ∈ V2 : uv ∈ E′}.
Then there is some node w ∈ V1 that is at least k steps away
from any node in S. Thus the ∃-span σ∃(w) > k and E′ is
not a solution. This means that E is an optimal solution.

For ∀- and ∆-togetherness, the next theorem bounds the size
of optimal solutions of NIT\t(G1, G2) for large t (i.e., t≥1/3).
Recall that γ(G) denotes the dominating number of G.

Theorem 9: Suppose E be an optimal solution of
NIT\t(G1, G2) where \∈{∀,∆}.

(1) If t = 1, then |E| = |V1| · |V2|
(2) If t = 1/2, then |E| ≤ min{γ(G1)·|V2|, γ(G2)·|V1|}
(3) If t = 1/3, then |E| ≤ |V1|+ |V2| − 1

Proof: (1) directly follows from Lem. 5 (b)(c). For (2),
let D1, D2 be a dominating set in G1 and G2, respectively.
Let E1 = {uv | u ∈ D1, v ∈ V2} (so |E1| = γ(G1)·|V2|)
and E2 = {uv | u ∈ V1, v ∈ D2} (so |E2| = γ(G2)·|V1|).
Then both G1⊕E1G2 and G1⊕E2G2 have diameter 2, and
thus τ∀ = τ∆ = 1/2.

For (3), pick any node u ∈ V1 and v ∈ V2 and let E′ =
{uy | y ∈ V2} ∪ {xv | x ∈ V1}. Then |E′| = |V1| + |V2| − 1.
The diameter of the integrated network G1⊕E′G2 is 3, and
thus τ∀ = τ∆ = 1/3.

IV. METHODS FOR NETWORK INTEGRATION

We present several algorithms for integrating two networks.
The mechanisms are broadly divided into two categories: 1)
We propose two heuristics that search for small sets E that
integrate two networks G1, G2. We assume that the networks
enjoy equi-privilege property, i.e., any pair of nodes between
networks can be freely connected. The goal of these heuristics
is to gain maximal togetherness in the integrated networks.
2) We propose four scenarios where nodes in one network
preferentially establish links with nodes in the other network.
Here every node is given a priority which is determined by
the network structure. The difference between these priority-
based methods and the heuristics in the first category is that
their aim is to simulate the preferential attachments of links
during integration, rather than explicitly searching for good
solutions.

A. Integrating Networks with Equi-privilege Property

Discussions on equi-privilege property originates from or-
ganizational behavioral studies of social networks. In [4], Mila
Baker describes peer-to-peer organizations as social structures
where members have equal privileges regardless of their roles
(such as volunteer groups, research teams, etc.); these orga-
nizational structures are said to have equi-privilege property.
The main challenge of merging two such organizations is to
establish channels that allow exchanges of intellectual ideas
and trusted transactions.

The mechanism for network integration depends on the
level of togetherness one desires to achieve. If the goal is to
optimize ∃-togetherness, by Theorem 8, the key is to identify
dominating sets in the networks G1 and G2. If the goal is to
optimize ∀- or ∆- togetherness, then it is desirable to establish
links that minimize diameter.

Optimizing ∃-togetherness (MinLeaf): Man and
Duckworth in [8] propose a heuristic to produce small dis-
tance `-dominating sets for a given ` in regular graphs, i.e.,
graphs where all nodes have the same degree. We modify this
heuristic to an algorithm MinLeaf(G1, G2, t) that integrates
networks with ∃-togetherness constraint. Our algorithm takes
two networks G1 = (V1, E1) and G2 = (V2, E2) and t ∈ (0, 1]
as input and outputs a set E = D1⊕D2, where D1 and D2 are
distance-(t−1−1) dominating sets in G1 and G2, respectively.
By Theorem 8, the set E is a solution of NIT∃t (G1, G2).
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For i ∈ {1, 2}, the algorithm iteratively builds Di ⊆ Vi by
maintaining a set Ui ⊆ Vi of “uncovered” nodes, i.e., nodes
that have distance ≥ k from any current node in Di. The
initial configuration is when Ui = Vi. It repeatedly performs
the following operations until U = ∅:

1) Select a node u ∈ U and add u to Di (see below).
2) Compute all nodes at distance at most (k−1) from v and

remove these nodes from U .

We now describe the heuristic for finding a node u in each
iteration. A node is called a leaf if it has minimum degree
in the graph; leaves correspond to least connected members
in the network, and may become outliers once nodes with
higher degrees are removed from the network. Therefore, the
heuristic first picks a leaf v in Ui, then applies a sub-procedure
to find the next node u to be added to Ui. The sub-procedure
determines a path v = w1, w2, . . . iteratively as follows:

1) Suppose wi is picked. If i = r or wi has no adjacent node
in Ui, set wi as u and terminate the process.

2) Otherwise select a wi+1 (which is different from wi−1)
among adjacent nodes of wi with maximum degree.

When this process terminates, the algorithm adds u to Di.
Note that the distance between u and v is at most k − 1.

Optimizing ∀-togetherness (CtrPer): We now propose
another heuristic to solve the NITβt (G1, G2) problem for β ∈
{∀,∆}. When integrating G1 and G2, it makes sense first to
establish a link between centres of the networks, as they have
the closest proximity to other nodes. Then, if x, y are nodes
that are furthest apart in the integrated network, they share the
“weakest channel”, represents a form of structural hole. Hence,
it makes sense to connect x, y by an edge. Formally, the center
C(G) of a graph G = (V,E) is the set of all nodes that have
the least eccentricity, i.e., C(G)={v ∈ V |ecc(v) = r(G)}. A
pair of nodes (x, y) in G forms a peripheral pair, denoted by
(x, y)∈P(G), if d(x, y)=diam(G).

The CtrPer(G1, G2, t) algorithm takes as input networks
G1, G2 and t ∈ (0, 1], and iteratively builds a sequence of
edges E = {e0, e1, . . .} such that (1) e0 ∈ C(G1) ⊗ C(G2);
and (2) for all i ≥ 1, ei ∈ P

(
G1 ⊕{e0,e1,...,ei−1} G2

)
. The

process stops whenever the ∀-span σ∀(u) of every node u ∈
V1 ∪ V2 is no more than t−1.

Theorem 10: For any networks G1, G2 and t ∈ (0, 1], the
MinLeaf algorithm outputs a solution of the NIT∃t (G1, G2)
problem, the CtrPer algorithm outputs outputs a solution of
the NIT∀t (G1, G2) problem.

B. Integrating Networks with Priority-based Approaches

In real-world networks nodes differ in various ways which
may affect their integration. For example, in an organization,
people sometimes connect to each other according to their
abilities or roles. We therefore consider the network integration
problem under the assumption that all nodes have certain
priorities. We investigate cases when higher priorities are
assigned to nodes with different structural properties:

1) MaxDegree: A high degree indicates the possession of
certain advantage such as capability or resources. Hence, we
give higher priorities to nodes with higher degrees.

2) MinDegree: A low degree indicates a certain disad-
vantage such as isolation and lack of resources. To ensure
togetherness, it also may be reasonable to give higher priorities
to nodes with lower degree.

3) MaxBtw: Betweenness indicates the centrality of a node,
i.e., how much the node serve as a “gatekeeper” and connects
diverse parts of the network [5]. Hence in this scenario, we
give higher priorities to nodes with higher betweenness.

4) Random: Lastly, we consider the case when the priorities
are assigned randomly. This corresponds to a case when the
priorities are assigned according to some extraneous factors.

For each of the four scenarios above, we implement a
mechanism that integrates networks G1 and G2 to achieve
\-togetherness t ∈ (0, 1]. The procedure iteratively builds a
set E ⊆ V1 ⊗ V2 that is a solution to NIT\t(G1, G2). If uv is
created, the nodes u, v become bridging nodes that link G1

with G2. We have the following intuition:

1) To allow smooth flow of resources between the two
networks and avoid information gate keepers, we should
have many different bridging nodes.

2) Nodes with higher priorities should serve more as bridg-
ing nodes and be linked.

Suppose a set of edges E′ has already been created. We adopt
the following mechanism to find two nodes u∈V1 and v∈V2:
For any node w∈Vi, let b(w) = |{v∈V3−i | wv∈E′}|. Choose
the node u from B1 = {w∈V1 | b(w) ≤ b(w′) for all w′∈V1}
that has the highest priority; Choose the node v from B2 =
{w∈V2 | b(w) ≤ b(w′) for all w′∈V2}.

To illustrate the ideas above, Fig. 2 shows the result of
integrating two Newman-Watt-Strogatz random networks (see
Sec V) with 50 nodes each using various approaches, and
arrive at an integrated network with diameter 9. The result
shows that, while MaxBtw requires the smallest number of
edges, there is a big variation in terms of the number of edges
created using different priorities. It is therefore interesting to
compare the results of the different heuristics in more detail.

(a) MaxDegree: 9 edges (b) MaxBTW: 4 edges

(c) MinDegree: 14 edges (d) Random: 10 edges

Fig. 2: Integrating two Newman-Watts-Strogatts networks with
50 nodes to achieve diameter of 9 in the integrated network.
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V. EXPERIMENTAL ANALYSIS

We implement all heuristics mentioned above and compare
their results. For our experiments, we generate two types of
random graphs. The first (NWS) is Newman-Watts-Strogatz’s
small-world network model [19], which produces graphs with
small average path lengths and high clustering coefficient.
The second (BA) is Barabasi-Albert’s preferential attachment
model, which generates scale-free graphs whose degree dis-
tribution of nodes follows a power law; this is an essential
property of numerous real-world networks [2].

A. Experiment 1. Solving NIT\t(G1, G2)

We generated 10 pairs of NWS and BA networks with
50, 100 and 200 nodes each. For each pair we compute a
solution for the NIT\t(G1, G2) problem (where \ ∈ {∃,∀})
using MaxDegree, MinDegree, MaxBtw, Random as well as
MinLeaf (when \ = ∃) and CtrPer (when \ = ∀). Fig. 3 and
Fig. 4 display the average number of new edges in the solution
sets for the NWS and BA networks, resp. The number of edges
increases with increasing τ∃ and τ∀. Furthermore, for small
togetherness (τ∃ ≤ 0.17 for NWS and τ∃ ≤ 0.25 for BA, and
τ∀ > max{d(G1), d(G2)}−1), different types priorities do not
significantly affect the size of the resulting sets. However, the
difference increases as togetherness increases; in general, the
MinLeaf and CtrPer algorithms output much smaller edge sets.

(a) Networks with 50 nodes

(b) Networks with 100 nodes

(c) Networks with 200 nodes

Fig. 3: Comparing heuristics: average numbers of edges re-
quired to integrate two NWS networks with fixed τ∃ (on the
left) and fixed τ∀ (on the right)

(a) Networks with 50 nodes

(b) Networks with 100 nodes

(c) Networks with 200 nodes

Fig. 4: Comparing heuristics: average numbers of edges re-
quired to integrate two BA networks with fixed τ∃ (on the
left) and fixed τ∀ (on the right)

Fig. 5: Integrating NWS networks by establishing 1, 10, 20
and 50 edges

B. Experiment 2. Solving NIE\e(G1, G2)

We generate networks with 50 nodes and set the numbers
of edges e to values 1, 10, 20, 50. We compute the average
togetherness in the integrated networks by applying different
heuristics. Fig. 5 and Fig.6 plot the results for NWS and BA
networks, resp. The best performance is given by MaxBtw.
In general, MinDegree gives the worst performance when
e is small. However, its performance catches up with other
heuristics when e becomes larger. On the contrary, Random
has an opposite behavior: togetherness grows slower as more
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Fig. 6: Integrating BA networks by establishing 1, 10, 20 and
50 edges

(a) Average values of τ∃ for NWS networks

(b) Average values of τ∀ for NWS networks

Fig. 7: Integrating NWS networks with 50 nodes (on the left)
and 100 nodes (on the right)

edges are randomly added.

C. Experiment 3. Priority-based methods

As the MinLeaf and CtrPer algorithm in general give small
solution sets for the integration problems, we first apply them
and use the resulting solution size as benchmarks to test the
performance of the priority-based methods. For each value of
∃- and ∀-togetherness, we calculate the average number e of
edges in the output solution sets. Then, we apply the priority-
based heuristics to compare the result of these methods against
the benchmarks. The resulting togetherness (as well as the
benchmarks) are plotted in Fig. 7 and Fig. 8.

The results show that, when we add a small number of
edges, the priority-based heuristics perform well: the MaxBtw
method results in the same togetherness as the benchmark. The
MinDegree method, as in the previous experiment, proves to be
the worst for small number of edges, however performs better
when more edges are added. Rather surprisingly, integrating
networks with the random strategy often produce solutions that
are comparable with the other strategy.

(a) Average values of τ∃ for BA networks

(b) Average values of τ∀ for BA networks

Fig. 8: Integrating BA networks with 50 nodes (on the left)
and 100 nodes (on the right)

Collaboration1 Collaboration 2
total number of nodes 5,242 9,877
total number of edges 14,496 25,998
number of nodes in the subgraph 4,158 8,638
number of edges in the subgraph 13,422 24,806
diameter 17 18
radius 9 10

TABLE I: Collaboration 1 and Collaboration 2 datasets

D. Real World Datasets

We use two real datasets to reconfirm the results obtained
for the synthesized datasets. Col1 and Col2 are networks
that represent scientific collaborations in General Relativity,
Quantum Cosmology (Col1), and in High Energy Physics
Theory (Col2) [11]. Table I lists details of these networks.
As both networks are initially unconnected, we considered the
giant component in each graph.

We first apply the MinLeaf and CtrPer algorithms. Struc-
turally Col1 and Col2 resembles the small-world networks of
NWS models. Thus, we expect that when integrating these
two networks, despite the large number of nodes and edges,
the number of new edges would be relatively small. In Fig. 9,
we show how the togetherness measures τ∃ and τ∀ change
with the number of added edges. The weaker togetherness
notion, τ∃, grows faster than τ∀: decreasing the ∀-togetherness
is harder. Consistent with our expectation, we notice that
very few edges are required when integrating these large
collaboration networks.

We then apply the priority-based methods to the networks
Col1 and Col2. Similarly to Exp. 3, we fix the number of added
edges according the benchmarks provided by MinLeaf and
CtrPer and then apply the different priority-based methods.
The results are plotted in Figure 10, which shows that, in



2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

Fig. 9: Integrating two collaboration networks with τ∃ and τ∀
constraints

Fig. 10: Integrating two collaboration networks: comparing
different strategies

general, the Random method gives comparable performance
against other priority-based strategies.

VI. CONCLUSION AND FUTURE WORKS

Network integration amounts to the fundamental question
that arises in numerous social, political and physical domains.
Our earlier work in [15] focuses on how an individual algo-
rithmically establishes links to socialize into a network. Here,
we extend this effort to explore the integration of two arbitrary
networks. The novelty lies in that we apply a formal framework
and employ various heuristics to tackle the problem. The
key conceptual contribution is in proposing three measures of
togetherness, which are useful indication of proximity between
sub-networks. We believe that togetherness will be helpful
not only in this context, but in any problem domains where
solidarity and distances are of concern.

Contrary to intuition, our experiments demonstrate that the
random strategy for building links performs comparable to
other heuristics in a few situations; It would be an interesting
future work to explore the mathematical reason behind this
phenomenon, e.g., what is the expected togetherness if we
connect two random graphs using k random edges.

It would also be interesting to incorporate node charac-
teristics in surrounding contexts and apply other principles,
e.g., homophily, to guide the establishment of links. Another
future work is to incorporate directed or weighted edges in
the networks. A potential application is to develop technology
that advise potential links or collaborations (say, in an online
social platform) to members of two social groups.

Another direction of future work is to investigate network
building in the context of organizational networks by incor-

porating both formal and information relations, the model we
presented in [17].
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