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ABSTRACT. In this article, we estimate the parameters of a simple random network and a stochas-
tic epidemic on that network using data consisting of recovery times of infected hosts. The SEIR
epidemic model we fit has exponentially distributed transmission times with Gamma distributed
exposed and infectious periods on a network where every edge exists with the same probability,
independent of other edges. We employ a Bayesian framework and Markov chain Monte Carlo
(MCMC) integration to make estimates of the joint posterior distribution of the model parameters.
We discuss the accuracy of the parameter estimates under various prior assumptions and show that
it is possible in many scientifically interesting cases to accurately recover the parameters. We dem-
onstrate our approach by studying a measles outbreak in Hagelloch, Germany, in 1861 consisting
of 188 affected individuals. We provide an R package to carry out these analyses, which is available
publicly on the Comprehensive R Archive Network.
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1. Introduction

In studying the dynamics of epidemics, the dominant model has long been the ‘mean field’
or ‘random mixing’ model that assumes that an infectious individual may spread the
disease to any susceptible member of the population (Kermack & McKendrick, 1927; Bailey,
1950). An alternate assumption under which the epidemic spreads only across the edges
of a contact network within a population may result in much different epidemic dynamics
(Keeling & Eames, 2005; Meyers et al., 2005; Ferrari, 2006). Much of the work based on
this alternate assumption relies heavily on simulations. Some network is taken as given or
simulated to have certain properties, then a disease outbreak is simulated on the network
and the properties of the epidemic studied; see, for example, Volz (2008) and Barthelemy
et al. (2005).

This article takes a different approach, extending work of Britton & O’Neill (2002) to con-
sider the central question of statistical inference: Given epidemic data assumed to have arisen
from the spread of some disease across a network, what can we say about the properties of
the disease spread and the network on which it spread? Ascertaining these properties will
allow us to learn about the contact networks associated with certain diseases, thereby enabling
researchers to test competing theories about transmission of disease and to devise better
containment strategies. In particular, we address some of the practical issues of implementing
the framework described by Britton & O’Neill (2002) such as determining the areas of the
parameter space in which parameter estimation might be expected to be fruitful and
implementing the software necessary to perform the type of inference described; we also suggest
generalizations of the network model used in Britton & O’Neill (2002). The primary purpose
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for presenting these extensions is to move towards the goal of developing an inferential
methodology of practical use.

The remainder of this article is organized as follows: in section 2 we review the models
used in this study, including the model of the population network structure and the model
governing the dynamics of the spread of an epidemic through the population. In section 3
we discuss Bayesian inference for the model parameters. In section 4 we discuss the MCMC
algorithm used to obtain samples from the desired posterior distributions. Section 5 tests our
methodology on multiple simulated datasets, and goes on to apply it to data from a measles
outbreak in Hagelloch, Germany, in 1861. We then offer some conclusions and a discussion
of possible extensions and future work in section 6.

2. Network and epidemic models

2.1. Network structure

We consider a finite population of fixed size N in which the contact structure between indivi-
duals is modelled as an Erdős-Rényi random graph, which we denote by G. That is, we define
the vertex set V ={1, . . ., N} corresponding to the N individuals in the population, and for
two distinct vertices i, j ∈ V , we let {i, j} denote the undirected edge between them; we will
write {i, j}∈G if there exists a contact between vertices i and j and presume that any such
contact exists with probability p, independently of the existence of any other contact. Here,
a ‘contact’ is interpreted as the occurrence of a physical association of two individuals that
could be sufficient for disease transmission, though not all contacts between infectious and
susceptible individuals are guaranteed to result in transmission. In particular, ‘contact’ will
have different interpretations in different disease contexts. The Erdős-Rényi model used here
is one particular type of a more general class of exponential-family random graph models
(ERGMs). We discuss the possibility of extending this type of analysis to more general
ERGMs in section 6.1.

2.2. SEIR epidemic model

We describe the spread of a disease through the population by an SEIR model that divides
the population into four groups: susceptible, exposed, infectious and removed; see Keeling
& Rohani (2008) for details of this model. Individuals are in the exposed state for a period
of time modelled by a Gamma random variable with mean kE!E and variance kE!2

E , after
which time they move to the infectious state; the length of time spent in this state is given
by a Gamma random variable with mean kI !I and variance kI !

2
I . The disease spreads across

the edges in the network from infectious individuals to susceptible ones, where the time until
transmission across a given edge is modelled by an exponential random variable with mean
1/". Using Gamma random variables to model the lengths of time spent in the exposed and
infectious states (as opposed to Britton & O’Neill, 2002, who used an exponential distribution
for the length of time spent in the infectious state of their SIR model) increases the flexiblity
of the model, but also increases the number of parameters that we must estimate. Indeed,
Ray & Marzouk (2008), who also used Gamma random variables to model these periods,
note that they were unable to perform meaningful inference on their full set of parameters,
though this may be due at least in part to the paucity of their data (the dataset they consider
had a total of only 32 infected individuals).

Finally, when an infectious individual can no longer transmit the disease (e.g. because of
recovery or death), he or she belongs to the removed group and plays no further part in the
spread of the epidemic. The epidemic continues until there are no remaining exposed or
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infectious individuals in the population. Clearly, the dynamics of the epidemic and the
proportion of the population that becomes infected depend heavily on the parameters in the
network model (p) and in the epidemic model (", kE , !E , kI , !I ). While we are not aware of
any statistical or probabilistic analyses of this model in the literature, there have been several
studies that simulate SEIR outbreaks on Erdős-Rényi networks (Rahmandad & Sterman,
2008; Kenah, 2009).

3. Inference

3.1. Data and notation

The data we consider are the removal times for each infected node. The data may also include
the exposure and/or infectious times for each node, but in general, these will be unknown.
The exposure, infectious and removal times for node j are denoted by Ej , Ij and Rj , respec-
tively. The sets of all exposure, infectious and removal times are E = (E1, E2, . . ., EN ),
I = (I1, I2, . . ., IN ), and R = (R1, R2, . . ., RN ); we will denote the entire set of times (E, I, R) by
T. We assign a value of ∞ to Eb, Ib and Rb for any node b that was not infected during the
course of the epidemic. Denote the identity of the initial exposed by #; since the identity of
this individual will not in general be known, # may be considered a parameter to estimate.
Because we will sometimes need to treat the exposure time of the initial exposed separately
from that of the other infecteds, we denote by E−# the set of the exposure times except for
the initial exposed, that is, E\E#. For convenience, we label the nodes so that the ones who
were infected during the epidemic are 1, . . ., m, where m is the number of nodes that were
ultimately infected, and 1≤m≤N .

For this analysis, we perform inference on the model parameters using a Bayesian
approach. We will denote the prior distribution for a generic parameter (say, $) by %$(·),
the likelihood function by L(T |$, . . .), and the posterior distribution of $ by %$(· |T).

Denote the fixed but unknown contact network in the population by G and the associated
transmission tree (pathway along which the epidemic spreads) by P . P , whose root node is
#, is a directed subgraph of the undirected graph G. We will say that the edge (a, b)∈P iff a
infects b. Note that if (a, b)∈P , we must have

Ia < Eb < Ra. (1)

We also have the following relationships: m − 1= |P| ≤|G| ≤
(N

2

)
, where |P| and |G| denote

the number of (directed) edges in P and the number of (undirected) edges in G, respectively.
This notation borrows from and extends that used in Britton & O’Neill (2002).

Figure 1A shows an example of a contact network G within a population of N =25 indivi-
duals. This network was simulated using an Erdős-Rényi model with p=0.15. Superimposed
on this contact network in Fig. 1B is the transmission tree P generated from a simulated
SEIR stochastic epidemic, with "=0.15 and kI =kE =!I =!E =3. Figure 2 illustrates the
spread of this epidemic over time.

3.2. Likelihood calculation

To calculate the likelihood function for this model, it would be necessary to sum over all
possible values of G and P :

L(T |", kE , !E , kI , !I , p)=
∑

G,P

L(T |", kE , !E , kI , !I , p, G, P) f (G, P |p)

=
∑

G

∑

P

L(T |", kE , !E , kI , !I , p, G, P) f (P |G) f (G |p).
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κ

A Contact network Contact network and transmission treeB

Fig. 1. (A) A realization of an Erdős-Rényi contact network (G), representing the contacts between the
individuals in the population. (B) A realization of a simulated SEIR epidemic across the network. The
large green node represents the initial exposed individual (#). Red nodes represent individuals who were
infected during the course of the epidemic, while the black nodes remained susceptible throughout. The
blue arrows show the path of the epidemic across the network (i.e. the transmission tree P). The black
lines indicate edges in the contact network across which the epidemic did not travel (i.e. G\P).
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Fig. 2. Progression of the SEIR epidemic through time, as produced by function plotepitree() in R pack-
age epinet. Vertical dashed line segments show the infection pathway. Horizontal solid line segments
show the time periods that the individuals were in the exposed (black) and infectious (red) stages of
the epidemic. The identities (node numbers) of the individuals are given to the right of their respective
epidemic periods.

For all but the smallest problems, this summation contains too many terms to practically
compute, so we treat G and P as extra parameters; given the values of G and P , the likelihood
is relatively simple to compute. We therefore estimate G and P along with the other parameters
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of interest in the model. For similar reasons, we also condition on the initial exposure time,
E#. The likelihood only depends on p through G, allowing us to write

L(E−#, I, R |", kE , !E , kI , !I , G, P , E#).

We can calculate the likelihood as L1L2L3L4, where L1 is the contribution to the likeli-
hood from the edges over which the epidemic was transmitted (i.e. P), L2 is the contribution
to the likelihood from the edges over which the epidemic did not pass (G\P) and L3 and
L4 are the contributions because of the transition (from exposed to infectious) and removal
processes, respectively. The likelihood function is defined to be 0 for any values of T that
violate inequality (1).

L1 and L2 are given by

L1 ="m−1 exp
[

−"
∑

(a,b)∈P

(Eb − Ia)
]

and

L2 = exp
[

−"
∑

(a,b)∈G\P

[{(Eb ∧Ra)− Ia}∨0]
]
,

so that

L1L2 ="m−1 exp[−"A],

where

A=
∑

(a,b)∈P

(Eb − Ia)+
∑

(a,b)∈G\P

[{(Eb ∧Ra)− Ia}∨0]

=
m∑

a =1

m∑

b=1

1({a, b}∈G) ·1(Ia < Eb) · [{(Eb ∧Ra)− Ia}∨0]

+
m∑

a =1

S(a) · (Ra − Ia). (2)

Here, 1(·) is the indicator function and S(a) denotes the number of susceptible (never infected)
nodes that node a shares an edge with. A is therefore the total amount of ‘infectious pressure’
applied over the course of the epidemic. The expression (2), which is analagous to that derived
in Neal & Roberts (2005), is the form we use in our algorithm.

L3 and L4 are given by

L3 =
[∏m

i =1(Ii −Ei)
]kE −1

!−mkE
E e−B/!E

[!(kE )]m

and

L4 =
[∏m

i =1(Ri − Ii)
]kI −1

!−mkI
I e−C/!I

[!(kI )]m ,
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where B =∑m
i =1(Ii − Ei) and C =∑m

i =1(Ri − Ii) are the total amounts of time spent by all
individuals in the exposed and infectious states, respectively.

3.3. Prior distributions

For some model parameters, we typically use conjugate prior distributions; these distributions
are often preferable when they are available, as they can simplify and/or accelerate the process
of updating these parameters. In particular, the beta distribution is conjugate for the network
parameter p; the inverse Gamma distribution is conjugate for the epidemic parameters !E

and !I ; and the Gamma distribution is conjugate for the parameter ". When it is necessary
to infer the exposure and/or infectious times, we assign them uninformative (flat) prior distri-
butions; when necessary, we assign a prior for # that is uniform on 1, . . ., m. For the kE and
kI parameters, we use Gamma or uniform prior distributions.

In choosing parameters for the prior distributions, we can obtain guidance from indepen-
dent information known about the disease and/or population, as well as from the scientific
literature in some cases. For example, much work has been performed to study the lengths
of times that individuals infected with the measles virus spend in the exposed and infectious
states; we can use this information to constuct prior distributions for the parameters govern-
ing these periods. Regarding the parameter p, if we have reason to believe that the network
under consideration is likely to be sparse, we might then choose a beta distribution that places
greater mass on the smaller values of p.

4. MCMC algorithm

Here, we describe the MCMC algorithm used to produce samples from the posterior distri-
butions of the parameters. At each iteration, we update each parameter in turn: {P , G, p,
", kE , !E , kI , !I , I, E, #}, using the methods described next. Experimentation indicates that
updating the parameters in a fixed order results in better mixing of the Markov chain than
choosing a random update order for each cycle. Note that in the case where the exposure
times are assumed to be known, we do not update E; similarly, when the infectious times
are known, we need not update I. Only in the case in which both E and I are unknown do
we need to infer #. This algorithm is based in part on the algorithm described in Britton &
O’Neill (2002). However, we did not find that the ‘mixing step’ described by those authors
significantly improved the performance of the algorithm, and hence did not include it in our
algorithm. Neal & Roberts (2005) give an algorithm based on a different representation of
the network model; we discuss the relative merits of the two parameterizations in section 4.6.

4.1. Updating kE , kI , p, ", !E , !I

These parameters can be updated via a standard Hastings step. We propose updated val-
ues from a uniform distribution centred at the current value of the parameter. Alternatively,
the p, ", !E and !I parameters can be updated using Gibbs samplers from their conditional
distributions, if appropriate prior distributions are used. Let X ∼Gamma(a, b) indicate that X
has a Gamma distribution with density xa−1b−a e−x/b/!(a) for x > 0; let W ∼ IG(c, d) indicate
that W has an inverse Gamma distribution, that is, 1/W ∼Gamma(c, 1/d); let Y ∼beta(q, z)
indicate that Y has a beta distribution with parameters q and z on (0, 1); and let U ∼U(a, b)
indicate that U has a uniform distribution on (a, b).

If we assign the following prior distributions as described in section 3.3: %"(") ∼
Gamma(a", b"), %!I (!I ) ∼ IG(aI , bI ), %!E (!E ) ∼ IG(aE , bE ) and %p(p) ∼ beta(c, d), then the
corresponding full conditional distributions of these parameters are:
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%"(" |T)∼Gamma
(

m+a" −1,
1

A+1/b"

)
,

%!E (!E |T)∼ IG
(

mkE +aE ,
1

B +1/bE

)
,

%!I (!I |T)∼ IG
(

mkI +aI ,
1

C +1/bI

)
and

%p(p |T)∼beta
(

|G|+ c,
(

N
2

)
−|G|+d

)
,

where A, B and C are as defined in section 3.2.

4.2. Updating G

Since we are assuming that the existence of each edge is independent of all other edges, we
can generate each edge individually to sample from the full conditional distribution of G.
We calculate the full conditional probability of the event {i, j}∈G, which we denote by Dij ,
assuming without loss of generality that Ei < Ej :

P(Dij |T, P , ", p)= P(T |Dij , P , ", p)P(Dij |P , ", p)
P(T |Dij , P , ", p)P(Dij |P , ", p)+P(T |Dc

ij , P , ", p)P(Dc
ij |P , ", p)

,

where P(Dij |P , ", p)=p, unless the edge (i, j) is in P , in which case P(Dij |P , ", p)=1. The
values of P(T |Dij , P , ", p) and P(T |Dc

ij , P , ", p) vary depending on the status (ultimately
infected or never infected) of nodes i and j. Note that we only need to consider the data asso-
ciated with these two nodes, rather than the entirety of T. If (i, j) ∈P then P(Dij |T, P , ", p)=1,
since (i, j)∈P ⇒{i, j}∈G. Otherwise, if (i, j) )∈P , then

P(Dij |T, P , ", p)= exp(−"[{(Ri ∧Ej)− Ii}∨0]) ·p
1−p+ exp(−"[{(Ri ∧Ej)− Ii}∨0]) ·p

.

Recall that Ek = Ik =Rk =∞ for k > m; we also use the convention that ∞ − ∞=0 for the
purpose of evaluating the aforesaid probabilities.

4.3. Updating P

Updating the transmission tree consists of determining, for each infected node except the
initial exposed, which node infected it. Let Pj denote the parent of node j and %Pj (r) denote
the prior probability that node r is the parent of j. The candidate nodes for the parent of node
j (i.e. the node that infected j) are exactly those nodes i for which {i, j}∈G and Ii ≤Ej ≤Ri .

Denote these candidate nodes by i1, . . ., ik . Then the probability that it is the parent of j,
given that one of the candidates is known to have infected j, is

" exp(−"
∑

i∈{i1, ..., ik}[Ej − Ii ]) ·%Pj (it)
∑k

a =1" exp(−"
∑

i∈{i1, ..., ik}[Ej − Ii ]) ·%Pj (ia)
=

%Pj (it)
∑k

a =1%Pj (ia)

a function of only the prior assumptions. If we assume that %Pj (r) is the same for all j and r
(we will often make this uniform assumption in the absence of other information, though we
consider other possibilities in section 5.2.2), then each of the candidates is equally likely to
be the parent. To find the parent of node j, we simply find the parent candidates and sample
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from among them according to their respective probabilities. We repeat this for each infected
node (except the initial exposed) to produce a sample from the full conditional distribution
of P .

4.4. Updating #

Note that we only need to update # in the cases in which both E and I are not fully known.
To perform this update, we use a method similar to that described by Britton & O’Neill
(2002). The typical prior assumption is that each of the m infected nodes is equally likely to
be the initial infected, that is, %#(i)=1/m for all i. Given the current value of #, we choose
a proposed value for #∗ by sampling uniformly from the set {j : (#, j)∈P}. We propose new
values for P , E and I that are consistent with #∗ in the following manner. First, we swap the
values of E# and I# with those of E#∗ and I#∗ , respectively. Then, we replace the edge (#, #∗)
in P with (#∗, #). We determine whether or not to accept the proposed values according to
the appropriate Hastings ratio.

4.5. Updating E, I

We update each element of E−# in a uniformly random order, and finally update E#. We use a
Hastings step to update each element of E. For each j /=#, we first identify the parent of j in
P , that is, the node that infected j. Since i must have been infectious (and not yet recovered)
when j became exposed, and since j enters the exposed phase before the infectious phase,
we must have Ii < Ej < min{Ij , Ri}. The proposed updated value for Ej is generated from a
uniform distribution on the interval of its possible values.

Our method for updating I is similar to that for E, updating each Ij in a uniformly random
order. We find a proposed value for each Ij by sampling uniformly from the interval of its
possible values and accept each proposal according to the appropriate Hastings ratio.

4.6. Implementation

We have built a package for R (R Development Core Team, 2010), named epinet, containing
software which implements the algorithm described before. This software is publicly available
on the Comprehensive R Archive Network (CRAN; cran.r-project.org), and will in the future
be maintained to reflect future extensions and/or generalizations made to the model, such as
the ERGM extensions discussed in section 6.1.

The internal representation of the graph structure, which is based on the binary tree
representation used in the ergm package (Handcock et al., 2010), allows for efficient
storage of the graph, especially for sparse graphs. There are several reasons that we chose to
extend the MCMC algorithm described in Britton & O’Neill (2002), rather than the algorithm
detailed in Neal & Roberts (2005). The first reason is scalability. As noted by Neal & Roberts
(2005), it is not necessary to know the entirety of the graph G to calculate the likelihood for
our model. Neal & Roberts (2005) propose using a subgraph F that does not consider the
edges between never-infected individuals; this subgraph consists of N · m dyads. Our algo-
rithm, using the expression for the likelihood given in (2), only explicitly considers the edges
between two infected individuals. We also must keep track of the number of never-infected
individuals that each of the m infecteds is connected to. Thus, the algorithm we describe
requires storage and updating of m2 +m rather than N ·m elements. In cases where N +m,
that is, when only a small portion of a population is infected, this savings in computing
resources may be significant.

 2010 Board of the Foundation of the Scandinavian Journal of Statistics.
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In our experience, the algorithm described by Neal & Roberts (2005) ran significantly more
slowly than did the algorithm described in section 4. When the parameter p is updated in the
Neal and Roberts algorithm, each edge in F is also updated, causing this update to be very
slow. This situation will only worsen as we move to more complicated ERGM models (see
section 6.1) which have more parameters, as F would need to be updated with each of them.
The two methods gave roughly similar results in terms of mixing, as measured by number
of effective samples produced, though the relative performances of the algorithms varied by
parameter and dataset.

5. Applications

5.1. Simulated epidemics

We simulate epidemics over Erdős-Rényi networks with varying values of p and " and attempt
to recover these parameters using the algorithm described before. Our primary interest here
is the parameter describing the network model, p.

One difficulty in performing inference for this model lies in distinguishing the effects of
the network parameter p from the epidemic parameter "; as discussed in Britton & O’Neill
(2002), the rapid spread of an epidemic throughout a population could be owing to either a
fast transmission rate (high value of ") or a more fully connected network (large value of p).
This ambiguity can lead to difficulties in estimating (or distinguishing the effects of) these
two parameters. Hence, there is often a significant negative correlation between the samples
produced for these two parameters – as the values of p increase, the values of " decrease,
and vice versa, leading in some cases to a narrow estimated posterior distribution for the
quantity p ·", but much more dispersed posteriors for these two parameters individually.

To explore this issue, we consider 10 different simulated Erdős-Rényi networks of N =40
individuals with p=0.1, 0.2, . . ., 1. Over each of these 10 networks, we simulate epidemics with
five different values of ": 0.01, 0.05, 0.1, 0.5 and 1. The values of the other epidemic
parameters are set in each case at kI =kE =!I =!E =5. We ran the MCMC algorithm
described before with full data, assuming that the exposure, infectious and removal times
were all known. We chose uniform priors for each parameter, specifically %" ∼U(0, 1.5), %p ∼
beta(1, 1), %kI ∼U (3, 7), %!I ∼U (3, 7), %kE ∼U (3, 7) and %!E ∼U(3, 7). In each case, we ran the
algorithm for 100 million iterations, thinning every 100 iterations to obtain at least 50,000
approximately independent samples from each of the parameters.

Figure 3 gives 50 and 90 per cent posterior credible intervals for the parameter p for
"=0.01, 0.1 and 1, and for each of the 10 values of p. We can see from this that some areas
of the p and " parameter space lend themselves to meaningful inference for the network
parameter p, while in other regions, the resulting posterior distributions for p are not very
informative. In particular, when "=0.01, the posterior credible intervals for p are relatively
wide and tend not to be able to distinguish the different values of p, whereas for "=1, the
data allow us to better recover the parameter p.

Figure 4 shows scatterplots of the posterior distribution of log(p) and log(") for the SEIR
epidemic simulations where "=0.01, 0.1 and 1; p was set to 0.2 in each case. (We chose a
relatively low value of p as a basis for comparison because we are more likely to encounter
smaller values of this parameter in the actual networks of interest.) While the correlations
between these two parameters are negative in each case as expected, the lower values of "
show a much more substantial negative correlation.

These results indicate that, while distinguishing the effects of p and " is indeed difficult
for some combinations of these parameters, it is nonetheless possible to perform meaningful
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Fig. 3. Fifty per cent (black, solid) and 90 per cent (blue, dashed) posterior credible regions for p, for
10 different simulated Erdős-Rényi networks with p=0.1, 0.2, . . ., 1, and simulated SEIR epidemics with
"=0.01 (left), "=0.1 (centre), and "=1 (right).
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different simulated SEIR epidemics with "=0.01, 0.1 and 1. Each plot shows 1000 points sampled from
the respective posterior samples for these parameters. Posterior correlations between log(p) and log(")
were estimated at −0.97, −0.90 and −0.05 for "=0.01, 0.1 and 1, respectively.

inference for p elsewhere in large, qualitatively meaningful portions of the parameter space,
particularly for the smaller values of p and the relatively large values of ". In real populations,
networks tend to be fairly sparse, especially as the number of nodes increases, which means
that we would expect small values of p. Therefore, our simulation results are encouraging
from the standpoint of fitting these models to real data.

5.2. Hagelloch measles data

We consider data arising from a measles epidemic that spread through the small town of
Hagelloch, Germany, in 1861. This dataset, which contains data on 188 infected individuals,
is notable for its completeness and depth of data (Pfeilsticker, 1863; Oesterle, 1992; Neal
& Roberts, 2004). It contains for each individual the timing of the onset of various disease
symptoms, and also identifies several other demographic variables for each individual, such
as their school class, most likely source of infection and household information (including
the identities of siblings and spatial location of the house). We do not attempt to include all
these data in the present analysis, though in section 6.1 we consider extensions of the network
model that would allow us to incorporate these types of nodal and dyadic covariates. Neal
& Roberts (2004) and Britton et al., (2010) analyse these data using more of the covariate
information, but they do so in a non-network setting. We assume that the initial size of the
susceptible population is the same as the number of individuals who were ultimately infected.
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This is based on the fact that all of the infected were children born after the previous out-
break in Hagelloch and nearly all such children were infected. Detailed justification of this
assumption is given in Neal & Roberts (2004). We assume that each individual’s infectious
period begins 1 day prior to the onset of prodromes and ends 3 days after the appearance of
rash (or at death, if sooner). As the data do not contain any information about the exposure
times of the individuals (E), we will treat these times as unknown and infer them.

We initially performed inference on this dataset under two different sets of prior assumptions
for the parameters. In the first case, we used uniform priors for all parameters, so %" ∼U(0, 2),
%p ∼ U (0, 1), %kI ∼ U (15, 25), %!I ∼ U (0.25, 0.75), %kE ∼ U(8, 20) and %!E ∼ U(0.25, 1). In the
second case, we used the conjugate prior distributions described in section 4.1, so that %" ∼
Gamma(2, 0.5), %p ∼ beta(1, 1), %kI ∼ Gamma(20, 1), %!I ∼ IG(3.5, 1), %kE ∼ Gamma(20, 1) and
%!E ∼ IG(3.5, 1). In both cases, we used uniform priors for the transmission tree. There is one
individual in the dataset who is recorded as showing symptoms of the disease approximately
1 month after the epidemic had otherwise subsided, making inclusion of this individual in
the epidemic questionable. We ran our analyses both including and excluding this individual.
In each case, we ran the algorithm for 20 million iterations, thinning every 200 iterations to
obtain at least 5000 approximately independent samples from each of the parameters.

Figure 5 gives histograms of the samples from the posterior distributions of p and " for
the case with the conjugate prior distributions and excluding the outlier. We can see that the
data indicate a strong signal for p, with an estimated posterior mean of 0.046 and median of
0.042. This would correspond to an average degree (where ‘degree’ refers to the number of
contacts for an individual in a network) within the susceptible population of approximately
8. " has an estimated posterior mean of 0.96 and median of 0.81. The estimates for these
parameters remained largely unchanged over the various sets of assumptions used. We also
note that the correlation between log(p) and log(") is roughly −0.5, which is far enough from
−1 to allow us to extract separate information concerning p and ".

The basic reproduction number, R0, is defined as the expected number of infectious con-
tacts that a single infectious individual has in a totally susceptible population (Keeling &
Rohani, 2008). Analogous to the expression derived by Britton & O’Neill (2002), we can
express this quantity as R0 =N ·p ·P(X < Y ), where X is the time that it takes an individual
to cause an infection along a given edge after entering the infectious state and Y is the time
to the individual’s removal after becoming infectious. For the SEIR model we consider here,
X is exponentially distributed with mean 1/" and Y ∼Gamma(kI , !I ), so that
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Fig. 5. Histogram of values sampled from the posterior density for parameters p and ", excluding the
outlying data point and using conjugate prior distributions.
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R0 =N ·p ·
(

1−
(

1
1+"!I

)kI
)

. (3)

Note that this expression reduces to the formula given by Britton & O’Neill (2002) in the case
that the length of the infectious periods are modelled by an exponential random variable,
that is, kI =1. For the values of the ", !I and kI that we consider in this example, (3) will
typically be slightly less than N ·p, an individual’s mean number of contacts.

Figure 6 gives a histogram of the posterior samples for R0, as calculated by (3) using the
posterior parameter samples for ", !I and kI produced by the Hagelloch data analysis. The
posterior mean and median are 7.7 and 7.6, respectively, and a 95 per cent posterior credible
interval for R0 is (6.4, 9.2). This is comparable with figures reported in the literature on
measles. For instance, Huang (2008) gives a range of 5.8–14.3; and Edmunds et al. (2001)
give a range of 6.1–10.2 for different outbreaks, using data that while much later than the
Hagelloch data are still from prevaccination Europe. We caution that our results should not
be extrapolated to measles outbreaks in general, since they come from only a single outbreak,
but nonetheless our R0 values are consistent with existing results.

The two sets of priors did not result in dramatically different posterior distributions for any
of the parameters (note that the prior assumption for p was actually the same in both cases).
We did, however, notice a 10–20 per cent decrease in runtimes for the cases where the conju-
gate prior distributions were used; this was because of the ability to sample directly from the
conditional distributions of many of the parameters rather than relying on computationally
expensive Metropolis–Hastings steps.

Because we were required to infer the exposure times in this epidemic, it is also interesting
to examine the posterior estimates for the parameters governing the exposed periods of the
individuals. As we are using a Gamma(kE , !E ) random variable to model the lengths of these
periods, their estimated mean and variance are given by kE!E and kE!2

E , respectively. Figure 7
shows plots of the estimated posterior distributions of these quantities, both including and
excluding the outlying data point.

We can see that removing the outlier from this dataset caused a modest decrease in the
the estimate of the mean exposed period. Much more noticeable, though, is the effect that re-
moving this outlier had on the corresponding estimated variance – a decrease of over
40 per cent. These results indicate that this outlier was indeed having a large effect on the
estimates of the exposed length parameters. None of the other parameters in the model, how-
ever, was significantly affected by the inclusion of this outlier. Our posterior mean estimate of
10.3 days for the mean length of the exposed period seems quite reasonable; other authors
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Fig. 6. Posterior samples of the basic reproduction number R0 for the Hagelloch measles data, calculated
using (3) using conjugate prior distributions and excluding the outlier.
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Fig. 7. Estimated posterior densities for the mean (kE!E , left panel) and variance (kE!2
E , right panel) of

the length of the inferred exposed periods. The solid lines represent estimates based on all data points,
while the dashed lines indicate estimates excluding the outlier. The estimated mean (standard deviation)
is also given for each density. The prior assumption for kE!E had a mean of 8 and a standard deviation
of 6.9; the prior assumption for kE!2

E had a mean of 5.3 and infinite variance.

have estimated the length of this period to be between 6 and 10.3 days for measles (Gough,
1977; Anderson & May, 1982; Schenzle, 1984).

Posterior predictive modelling

We assess the quality of fit of the models used for this analysis by simulating SEIR epidemics
over Erdős-Rényi networks, using epidemic and network parameter values sampled from the
joint posterior distribution produced by the Hagelloch data analysis. We then compared these
simulated epidemics with the original Hagelloch measles epidemic data. One statistic of inter-
est is the number of individuals in the infectious stage of the disease, as a function of time.
Figure 8 gives a comparison of these epidemic curves for the simulations as compared with
the actual data. We see that the epidemic increases more rapidly, and dies out earlier, than
the model predicts. However, this is unsurprising given the simplistic contact network model
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Fig. 8. Comparison of the number of individuals in the infectious stage of the epidemic, as a function
of time. The individual epidemics simulated from samples taken from the joint posterior distribution of
the parameters are traced in grey, while the original Hagelloch measles data is plotted in red. Summa-
ries (in the form of boxplots) of the number of infectious individuals from across the 1000 simulations
are given at intervals of 5 days.
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used here: an Erdős-Rényi model may capture the correct mean degree of a network, but the
degree distribution itself is fully determined once this mean degree is specified. A more realis-
tic network model might more accurately capture the tendency for some nodes to have large
degrees, for instance, it should be possible to modify the model to capture effects because
of household and classroom, as Neal & Roberts (2004) and Britton et al., (2010) identify as
important factors. Despite the simplicity of the Erdős-Rényi model used here, however, the
model appears to be a useful first approximation to reality.

Incorporating additional information

We next consider a situation in which the data provide additional information beyond the
infectious and removal times considered before. In particular, the Hagelloch dataset contains
information about the actual transmission tree for this epidemic. For each individual, a ‘puta-
tive parent’ is given, that is, the data contain an indication of who is the most likely to have
infected each individual (Oesterle, 1992). We use this information to construct a more infor-
mative prior distribution for the transmission tree P . Rather than assuming a uniform prior
for each node j, that is, %Pj (r) the same for all r, we will incorporate the additional informa-
tion by placing more prior weight on the putative parent than on the other individuals.

To study the effect of this additional information, we used the previous algorithm to perform
inference under different sets of prior assumptions for the transmission tree, holding all other
prior assumptions constant. (The same conjugate distributions and hyperparameters used in
the previous analysis were used in both cases here.) Figure 9 shows the posterior distribution
of the parent for a representative node under the uniform transmission tree prior as well as a
prior assumption that puts eight times as much weight on the putative parent node for each
individual. As expected, using a more informative prior assumption for the transmission tree
leads to a more concentrated posterior distribution for this parameter. Note, however, that in
some cases even this prior did not result in a large posterior probability assigned to the puta-
tive parent. (In fact, for some nodes, zero posterior probability was assigned to the putative
parent.) In other words, we did not, in all cases, find evidence to support each individual’s
assignment of putative parent.
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Fig. 9. Barplots of the samples for the posterior distribution of the parent of node 1 under a uniform
prior assumption (left panel) and an assumption that places eight times as much prior mass on the
putative parent node (right panel) as the other nodes. In the Hagelloch dataset, node 177 (highlighted
in red) is identified as the putative parent for node 1. Only nodes with positive posterior probabilities
are shown in the charts.
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We also consider the impact that this additional information will have on the inference for
the others parameters in the model. Incorporating this additional information has almost
no impact on the inferential results for the network parameter p, but does have an effect
on some of the other parameters. Most notably, increasing the prior weight placed on the
putative parent node caused a slight change in the estimated exposure lengths; in particular
the estimated mean exposure length decreased, whereas the estimated variance of the ex-
posure periods increased. This is not surprising, given the data. As mentioned before, many
of the assignments of the putative parent node are questionable on the grounds that they
would necessitate unreasonably short exposure periods, some as short as 1 or 2 days. As we
give more prior weight to these assignments, the estimates’ exposure lengths must necessarily
decrease in mean and increase in variance to accomodate.

6. Discussion

Performing inference for the parameters of a network model, given only data about the infec-
tious and removal times of individuals, can be very difficult. The examples in the previous
section, however, show that it is indeed possible in many cases to use this type of data to
extract meaningful information about the structure of the underlying population. Since this
structure is known to play an important role in the dynamics of epidemics, developing novel
methods of inferring this structure – a subject which until recently has received relatively little
attention – is potentially very valuable.

In this article, we have extended the framework established by Britton & O’Neill (2002) by
using a more flexible epidemic model and providing efficient computer code to run experi-
ments. We ran experiments on simulated datasets to determine which areas of the parameter
space are most likely to provide meaningful results and found that we were able to make
good parameter estimates for a range of biologically plausible values. We have also performed
inference for the network and epidemic parameters for an actual dataset under various sets
of prior assumptions; the results obtained were shown to be in concordance with the relevant
known scientific information. These developments, demonstrated using efficient new software
we have implemented, show that the original framework of Britton & O’Neill (2002) is viable
for datasets much larger than those considered previously in the literature (Britton & O’Neill,
2002; Ray & Marzouk, 2008). It suggests that extensions of the model should be explored (see
section 6.1); after all, the Erdős-Rényi network model used here is certainly overly simplistic.
In particular, it will be important to consider how to incorporate more data in the network
models used. For example, for certain viral diseases we may have genetic data about viruses
sampled from infected individuals, and because of the relatively rapid rate of mutations that
occur in the viral genomes, these data can inform the structure of the transmission tree P .
We can in turn use this additional information to help improve the quality of the inference
for the parameters of interest; in fact, for some applications, the samples of the posterior
distributions of P (and perhaps also G) that are produced by the MCMC algorithm may
themselves be of interest. Or we may have information about the physical locations of vari-
ous nodes at various times, which could be employed in a more realistic model for the contact
network G.

6.1. Extensions of the network model

One of the extensions of the aforegiven model that we might consider consists of using a
more general ERGM to model the interactions in population, as opposed to the Erdős-Rényi
model. The ERGM model is very flexible; by specifying various types of graph statistics,
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we can achieve a wide variety of possible models, and hence provide a more general frame-
work for performing the type of inference described before. This broader class of models
would allow for the inclusion of additional types of information that might be present in the
data, as is the case for the Hagelloch dataset described in section 5.2, which includes several
individual- and dyadic-level covariates.

A more complicated ERGM network structure will of course necessitate some modifi-
cations to our inference and MCMC algorithm. The likelihood function would need to be
modified to include the entire vector of ERGM parameters (!), rather than just p, so that we
would have

L(E, I, R |", kE , !E , kI , !I , !)=
∑

G,P

L(E, I, R |", kE , !E , kI , !I , !, G, P) f (G, P |!)

=
∑

G

∑

P

L(E, I, R |", kE , !E , kI , !I , !, G, P) f (P |G) f (G |!).

We will have to modify the MCMC algorithm described in section 4 to reflect the more
general ERGM case. For instance, updating the ! parameter via a Metropolis–Hastings algo-
rithm would be more difficult, since the Hastings ratio involves the ratio of ERGM normal-
izing constants for the current parameter value !(0) and the new proposal !∗. While this ratio
of normalizing constants is trivially easy to calculate in the simplistic case of the Erdős-Rényi
model, it is computationally intractable for some other ERGMs (Snijders, 2002; Hunter et al.,
2008a). Hence, more complicated updating and estimation schemes such as those described
by Snijders (2002) or Hunter et al. (2008b) may be necessary. Nonetheless, certain types of
ERGMs, called dyadic independence models (Hunter et al., 2008a), avoid the difficulties of
estimating the ratio of normalizing constants while still incorporating useful statistics, such
as geographic data on the individual nodes.
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