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Tossing Algebraic Flowers down

the Great Divide

Introduction

Computer science today is extraordinarily successful; chips are reproducing and
evolving far faster than humans, and millions of humans are exchanging email,
visiting websites, and discussing html, Java, and high speed modems in cyber-
cafes across the world. Computers are the only signi�cant commodity to ever
get progressively cheaper as they get better, throughout their entire history.
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But computer science is in deep crisis, expanding, fragmenting and special-
izing faster than any other discipline, faster than anyone can understand, let
alone predict. Moreover, computer science is increasingly seen as marginal to its
applications, and this is particularly true of theoretical computer science.

Information is the life blood of modern society, and much of it is managed
and distributed by computer systems; they control cash machines, factories,
nuclear reactors, telecommunication networks, and ballistic missiles, as well as
arcade games, the family car brakes, and an almost unimaginable variety of
databases, e.g. for health records, country music hits, vehicle registrations, stock
transactions, and DNA sequences.

Nobody knows where all this is going or what it will mean for people's lives;
those in government who are responsible for overseeing technology and its im-
pact are often remarkably ignorant. This is due not only to the unprecedented
growth of information technology, but also to the unprecedented nature of its
relationship to society: Information only has value insofar as it has meaning,
i.e., is about something, whether money, braking distances, transaction costs, or
genetics. Otherwise, it is just data, patterns of bits, strings of characters, etc.
Data can only become information when people care about it for some reason
and are able to interpret it. This means that information technology, and thus
computer science, is bound up with the social at a very basic level having to do
with the nature of information itself.

Most work in theoretical computer science ignores all this. I would never
suggest that theory has no value, but I do suggest that this \great divide"
between theory and practice helps explain the ever declining interest shown in
theory. The rest of this paper explores this theme in various ways, beginning
with a classi�cation of the fragments { we might say cultures { of computing,
and then moving to more detailed consideration of the interplay between theory
and practice in certain areas.

This paper can also be considered a survey of some attempts to bridge the
great divide between theory and practice in computing, mainly using various
kinds of algebra, as well as to bridge the \even greater divide" between technical
and social aspects of computing, which in turn is but a small part of the huge
rift between science and technology on one side, and society on the other (see
[6] for more on this).

From another perspective, this paper can be considered a diary from a very
personal journey1, moving from a mathematical view of computing, through a
process of questioning why it wasn't working as hoped, to a wider view that
tries to integrate the technical and social dimensions of computing. This journey
has required a struggle to acquire and apply a range of skills that I could never
have imagined would be relevant to computer science. Always I have sought to

1 I hope the large number of citations that signpost stages along this journey won't
be thought too egomaniacal; the truth is that this essay evolved out of one of those
dreadful documents that (many) professors have to write to get a salary increase,
so that it was easier to leave all these citations in than to take them out. And who
knows, someone might �nd some of them useful.
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discover things of beauty { \owers" { and present them in a way that could
bene�t all beings, though of course I don't expect that very many people will
share my aesthetics or my ethics. I also hope that this piece may help younger
researchers to see more of the process and the human context of research; for
that reason I have tried to bring out attitudes as well as facts. Although this
paper is by no means intended as a general survey, I have still tried to be as
fair as possible to everyone; but through the years, I have discovered that sins
of omission and misattribution are inevitable, especially in such a very personal
path through such a broad landscape, and so I apologize and invite readers to
send me corrections and additions that they consider important.

Five Cultures of Computing

For present purposes, we may identify �ve cultural fragments of computing,
each involving a di�erent group of people, characterized by di�erent goals and
di�erent activities:

1. Computer hardware Hardware engineers have been phenomenally suc-
cessful. As this is written, an ordinary high-end PC runs at 333 MHz, has
128 Megabytes of RAM, and 8 gigabits of hard disc (which is probably more
computing power than all the computers in the world of twenty-�ve years
ago combined), along with peripherals that would once have been astonish-
ing, including fax, CD quality digital stereo, and real time audio and video
over the internet; by the time you read this, there will most likely have been
further advances. Twenty-�ve years ago, the arpanet had only a few hundred
users, and for the most part we all knew each other; now the internet has
millions of users, including many we would probably not care to know.

2. Computer software Software engineers have been less fortunate than
hardware engineers in their choice of profession. The fantastic improvements
in hardware have fueled escalating expectations for software that are not
being met. Huge \legacy" systems, often written in obsolete and/or ob-
scure languages, with little documentation and generations of superimposed
\patches," are exceedingly di�cult to maintain, but are surprisingly com-
mon. And numerous expensive software failures have been reported, at the
Federal Aviation Agency, the Internal Revenue Service, the European Space
Agency, and more, as discussed in Section \State of the Software Arts".

3. Shrinkwrap computing Consumers are bene�ciaries of the great success
of hardware as well as victims of the doubtful state of software. There is
an immense popular culture of computing, with dozens of magazines on the
racks of supermarkets, record stores, and drug stores; many newspapers have
weekly features on computing, often a special pullout section; there are also
very many popular books, and even TV and radio shows. But shrinkwrap
software is typically badly documented, full of bugs, hard to understand, and
hard to use. It is also notoriously quickly replaced by a \new and improved"
version, or even an entirely new system, often requiring more powerful hard-
ware, and of course providing new bugs.
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4. Sociology of computing The study of computing by psychologists, so-
ciologists and anthropologists is a fairly new and still relatively small phe-
nomenon. The relevance of such work to user interface design and team
management is clear, but I will argue in Section \Some Social Aspects of
Computing". that it also has a much broader relevance to computing.

5. Theoretical computer science Unfortunately, the explosive growth of
computing practice has had little e�ect on theoretical computer science,
which continues to decline in relative importance within industrial and even
academic circles, despite many impressive advances in its own terms.

It seems that these �ve cultures2 are rather isolated from each other, having
quite distinct conferences, journals, methods, and goals. Of course the bound-
aries are somewhat vague and overlapping, but it does seem to me that they are
moving away from each other at an increasing rate, and that each one itself is
becoming increasingly fragmented. As a result, there is a great need for commu-
nication and even uni�cation between these cultures as well as within them. My
major theses are (1) that computer science has not paid su�cient attention to
social issues, and (2) that theoretical computer science could play a key role in a
reuni�cation that would yield signi�cant bene�ts to both society and education.

Software Engineering

Beginning with a closer look at the state of software engineering, the subsec-
tions below sketch some ways to apply algebra to problems related to software
engineering. These include: general system and sheaf theories; abstract data
types; speci�cation languages; logical programming and institutions; parameter-
ized programming; order sorted algebra; hidden algebra; speci�cation libraries
and reuse; and distributed cooperative engineering. In each case I try to indicate
the original motivation, and how I now see this in terms of larger concerns about
relations between technology and society.

State of the Software Arts

Large complex software systems fail much more often than seems to be gen-
erally recognized. Perhaps the most common case is that a project is simply
cancelled before completion. This may be due to time and/or cost overruns or
other management di�culties that seem insurmountable; it may be due to pol-
itics; it might even be due to purely technical di�culties. One highly visible
example is the cancellation by the US Federal Aviation Agency of an $8 billion
contract from IBM to build the next generation air tra�c control system for the
entire country [158]. This is perhaps the largest default in history, but there are
many more examples, including cancellation by the US Department of Defense
of a $2 billion contract with IBM to provide modern information systems to

2 A wag might want to call them hardware, software, shrinkware, wetware and airware,
respectively.
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replace myriads of obsolete, incompatible systems. Other highly publicized fail-
ures include IBM software to deliver real time sports data to the media at the
1996 Olympic Games in Atlanta, the $2 billion loss of the European Ariane 5
satellite, and the failure of theUnited Airlines baggage delivery system at Denver
International Airport, delaying its opening by one and a half years [30].

What these examples have in common is that they were hard to hide. Any-
one who has worked in the software industry has seen numerous examples of
projects that were over time, over cost, or failed to meet crucial requirements,
and hence were cancelled, curtailed, diverted, replaced, or released anyway, some-
times with dire consequences, and sometimes with a loud declaration of success,
even though the system was never used, and may well have been unusable.
For obvious reasons, the organizations involved usually try to hide their fail-
ures, but experience suggests that half or more of large complex systems fail in
some signi�cant way, and that the frightening list in the previous paragraph is
just the tip of an enormous iceberg. Much more information about computer
system failures can be found in the Risks Forum run by Peter Neumann (see
http://www.csl.sri.com/neumann.html and [154]).

Experience shows that many failures are due to a mismatch between the
social and technical aspects of a supposed solution. It is understandable that
software engineering has been biased towards a formal view of information, be-
cause computer programs consist of precise instructions that manipulate formally
de�ned structured representations of data, and this is what software engineers
are trained to deal with, as opposed to relatively more messy social situations.
But we now know that ignoring the situated, social aspect of information can
be fatal in designing and building software systems.

Category and General System Theories

In the late 1960s, I greatly admired the smooth way that category theory cap-
tured many important general concepts in mathematics (e.g., see [128, 129]), and
I greatly regretted the lack of a similar apparatus for engineering. My �rst at-
tempt to use categories was in my thesis, which gave axioms for fuzzy set theory
(see Section \Fuzzy Logic and Information Theory"). Because of this enthusi-
asm, I wrote several introductions to category theory for computer scientists,
beginning in the early 1970s with the \ADJ"3 report series [107{109], illustrat-
ing basic categorical concepts mainly with examples from automata and formal
languages, which were the focus of theoretical computer science at that time.
I've been told that many East Europeans of that generation learned both basic
category theory and theoretical computer science from these reports. Our orig-
inal goal was to write one or more comprehensive books, something like what

3 The ADJ group, fGoguen, Thatcher, Wagner, Wrightg, was formed during my
tenure as Research Fellow in the Mathematical Sciences at IBM Research, Yorktown
Heights, initially to study the relationship between category theory and computer
science; see [51] for many historical details; for some reason, I wrote all of the initial
reports, but in compensation, had very little role in some of the �nal reports.
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Bourbaki did for mathematics, but ADJ fell apart before we got any further
than these reports. Later I wrote \A Categorical Manifesto" [56] to provide for
each basic concept of category theory a \doctrine" of how to use it in practice,
and still later, [53] developed category theory from scratch while proposing a
general theory of uni�cation.

Following clues from the systems engineering, general systems theory (here-
after GST) and cybernetics of the late 1960s, I decided that the most general
concepts of engineering might be system, behavior, and interconnection, formal-
ized in such a way as to include hierarchical whole/part relationships. Systems
were taken to be diagrams in a category, behaviors were given by their limits,
and interconnections were given by colimits of diagrams; some very general laws
about interconnection and behavior hold in this setting [35, 37, 78]. The most
complete exposition is in [62], which has full proofs of all results.

One especially nice feature of this approach is that it does not build in any
notion of causality, and therefore can capture the sort of mutual interdependence
that occurs, for example, in electrical circuits. This contrasts with models like
automata in which a causal dependence of the next state on the current state
and current input is built into the model. It is also consistent with philosophical
ideas like mutual causation and interdependent origination4, which go beyond
naive reductionist causality. But it was (and still is) disappointing to me that
so few people felt any need for concepts and theories of such generality; they
seem happy to have (more or less) precise ideas about speci�c systems or small
classes of systems, with little concern for what concepts like system, behavior
and interconnection might actually mean. Still, this categorical GST has had
a signi�cant indirect impact on computer science: its application to the Clear
and OBJ module systems inuenced some important programming languages,
including Ada, ML and C++ (see Section \Parameterized Programming and
Generic Modules").

A general theory of objects based on sheaf theory [40] arose from this work,
and has been applied (for example) to the semantics of concurrent systems,
including concurrent object based languages [62], hardware description lan-
guages [166], and semantics for object based concurrent information systems
[23]. Sheaves can express the kind of local causality combined with global non-
determinism that characterizes many di�erent kinds of model, from partial dif-
ferential equations to automata. They can capture not only variation over time,
but also over space and over space-time [62]; and they can embrace the incom-
pleteness of observation that is characteristic of all real empirical work. This can
be helpful at the philosophical level in dispelling the illusion that models fully
capture reality (see the discussion in Section \Realism and Idealism"). It can

4 The concept of interdependent origination goes back over 2,500 years to the Buddha;
in the Pali language, it is called pat.icca-samupp�ada [12]. This kind of thinking can
also be found in much contemporary AI, e.g., the robotics of Rodney Brooks, which
is intended to be fast and cheap, because it doesn't require any central control (cf.
the wonderful documentary movie Fast, Cheap and out of Control, directed by Errol
Morris).
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also be useful technically, for example in capturing the way that the behavior
of distributed concurrent systems depends only on local interactions. There is
now a slow but steady stream of research on sheaf theory in computer science,
though there is not as yet a coherent community.

In the early 1970s, I formulated the minimal realization of automata as an
adjoint functor [38]; this soon evolved into much more general results about the
minimal realization of machines in categories, which gave a neat uni�cation of
system theory (in the sense of electrical engineering) with automaton theory
[36]. I consider this a major vindication of the categorical approach to systems.

Abstract Data Types and Algebraic Semantics

The history of programming languages, and to a large extent of software engi-
neering as a whole, can be seen as a succession of ever more powerful abstraction
mechanisms. The �rst stored program computers were programmed in binary,
which soon gave way to assembly languages that allowed symbolic codes for
operations and addresses. fortran began the spread of \high level" program-
ming languages, though at the time it was strongly opposed by many assembly
programmers; important features that developed later include blocks, recursive
procedures, exible types, classes, inheritance, modules, and genericity. Without
going into the philosophical problems raised by abstraction (which in view of
the discussion of realism in Section \Philosophy of Computing" may be con-
siderable), it seems clear that the mathematics used to describe programming
concepts should in general get more abstract as the programming concepts get
more abstract. Nevertheless, there has been great resistance to using even ab-
stract algebra, let alone category theory.

One of the most important features of modern programming is abstract data
types (hereafter, ADTs), which encapsulate some data within a module, pro-
viding access to it only through operations that are associated with the module.
This idea seems to have been �rst suggested by David Parnas [155, 156] as a way
to make large programs more manageable, because changes will be con�ned to
the inside of the module, instead of being scattered throughout the code. For
example, if dates had been encapsulated as an ADT, the so-called \year two
thousand problem" would not exist. Not all increases in abstraction make pro-
gramming easier; an abstraction must match the way programmers think, or it
won't help. This may explain why ADTs have been more successful than higher
order functions.

In the early 1970s, there was no precise semantics for ADTs, so it was im-
possible to verify the correctness of an implementation for a module, or even to
formulate what correctness means. Initial algebra semantics provided the �rst
rigorous formulation of these problems, with solutions that were useful, although
they have been improved (see Section \Hidden Algebra"). Initial algebra se-
mantics was born in [41], which (among other things) formulated (Knuthian)
attribute semantics as a homomorphism from an initial many sorted syntactic
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algebra generated by a context free grammar, to a semantic algebra5. The step
to ADTs was facilitated by my realization that Lawvere's characterization of
the natural numbers as an initial algebra [132] could be extended to other data
structures [105, 106]. As a young researcher at this time, I was really shocked by
the attempts of certain senior colleagues to recon�gure the history of this period
to their own advantage; this is why I wrote the paper [51].

What really pleased me was the neat parallel established between Emmy
Noether's insight that algebra is the study of sets with structure given by oper-
ations, and David Parnas's insight that modules should encapsulate data with
operations; more than that, the algebraic approach established an equivalence
between abstractness in ADTs and abstractness in algebra6; furthermore, equa-
tions among operations came into speci�cations of ADTs the same way as in
abstract algebra.

It also seemed splendid that computability properties worked out so well: an
algebraic version of the Turing-Church thesis says that an algebra is computable
i� it is a reduct of a �nitely presented initial algebra with an equationally de-
�nable equality; these are also the algebras for which so-called \inductionless
induction" proofs are valid [47]. Moreover, an algebra is: semicomputable i� it is
a reduct of a �nitely presented initial algebra; cosemicomputable i� it is a reduct
of a �nitely presented �nal algebra; and computable i� a reduct of a �nitely pre-
sented algebra that is both initial and �nal. The reason that the computability
notion associated with Scott-style denotational semantics doesn't work for alge-
bras is explained in [46]. This �eld was pioneered in a series of papers by Jan
Bergstra and John Tucker, surveyed in [150], which also explains basic many
sorted algebra and abstract machines. Some conjectures from [150] were solved
with Meseguer and Moss in [153]. The computational side of ADTs includes term
rewriting, which featured in early drafts of [106]. Initial algebra semantics has
also been used in linguistics, to explicate to the notion of compositionality [122].

Meseguer and I studied the rules of deduction for many sorted algebra in
[94]. This paper surprised the community by showing that the naive general-
ization of the usual unsorted rules (as previously used in the ADT literature)
is unsound. We gave a sound and complete set of rules, and showed that the
unsorted rules did work for certain signatures; the di�culties involve implicit
universal quanti�cation over empty sorts. Complete rules of deduction for many
sorted conditional equational logic are given in [92]. The �rst rigorous proof of
correctness for the inductionless induction proof technique that was originally
suggested by David Musser, is given in [47]. The formulation of inductionless

5 This built on an approach to many sorted algebra developed for my course Informa-
tion Science 329, Algebraic Foundations of Computer Science, �rst taught in 1969 at
the University of Chicago, including the now familiar use of indexed sets, the word
`signature' with symbol �, and its formal de�nition.

6 This is because any two initial objects in a category are isomorphic; hence we speak
of \the" abstract data type of a speci�cation in exactly the same way that we speak
of \the" initial algebra of a variety. Each is determined up to isomorphism, and the
fact that each an \abstract algebra" and an \abstract data type" are isomorphism
classes of algebras expresses their independence of representation.
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induction in [47] is more general than in some later work, which was restricted
to just constructors; [47] also pointed out that the essence of inductionless induc-
tion is \proof by consistency," and gave the simple but fundamental result that
for an equational speci�cation that is canonical (i.e., terminating and Church-
Rosser) as a set of rewrite rules, the normal forms of ground terms form an
initial algebra. This result justi�es term rewriting as an operational semantics
for initial algebra semantics.

ADJ later extended initial algebra semantics to continuous algebras (at about
the same time as Maurice Nivat) and continuous algebraic theories [110], and
then to rational algebraic theories [173]. This inspired Meseguer and me to gen-
eralize to an arbitrary category, getting initial model semantics (see Section
\Logical and Multi-Paradigm Programming").

Speci�cation

In the early seventies, most theoretical research concerned the semantics of pro-
grams and programming languages, and the veri�cation of programs. There was
little or no work on speci�cation, modules, or veri�cation at these levels. But we
now know, and even then many suspected, that this is not where the leverage
lies for real applications; in fact, most debugging e�ort goes into �xing errors
in requirements, speci�cations and designs, and very little into �xing errors in
coding (around 5%) [5]. Moreover, the problems that arise for large programs
are qualitatively very di�erent from those that arise for small programs. It is not
just as easy to �nd speci�cations and invariants for the ight control software of
a real airplane as it is for a sorting algorithm; in fact, �nding speci�cations and
invariants is not an important activity in real industrial work. On the contrary,
it turns out that �nding requirements (i.e., determining what kind of system
to build), structuring the system (modular design), understanding what has al-
ready been done (reading documentation and talking to others), and organizing
the e�orts of a large team, are all much more important for a large system de-
velopment e�ort. As Tony Hoare said about his research (largely on program
correctness), \It has turned out that the world just does not su�er signi�cantly
from the kind of problem that our research was originally intended to solve"
[120].

I thought that since we knew how to do ADTs as theories, the next step
(according to categorical GST) should be to interconnect these theories using
colimits; then a description of such an interconnection would be a design for a
system. Of course, things weren't entirely straightforward { it seems they never
are! { but Rod Burstall and I succeeded in designing the Clear speci�cation lan-
guage [8{10], which integrated initial and loose semantics with generic modules
using \data constraints"7 by extending an idea of Horst Reichel [161]. Clear
seems to have been the �rst speci�cation language with a rigorous semantic
de�nition, and its modules seemed promising as a way to handle large systems.

7 It is interesting to notice that these must be morphisms, rather than just theory
inclusions.
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I badly wanted to execute speci�cations, because I had noticed that it is all
too easy to write them incorrectly, and I also thought it could be very helpful
in teaching. Around 1974, I conceived the OBJ language for this purpose, using
order sorted algebra8 with mix�x syntax, and with term rewriting as operational
semantics [42]; the goal was to make speci�cations as readable and testable as
possible. The �nal OBJ39 [114] version of OBJ was implemented by a team
led by Jos�e Meseguer, including contributions by Kokichi Futatsugi, Jean-Pierre
Jouannaud, Claude and H�el�ene Kirchner, David Plaisted, Joseph Tardo, and
others [104, 100, 27, 114]; this system provided both loose and initial semantics,
rewriting modulo equations, generic modules, order sorted algebra with retracts,
and user de�nable builtins10; OBJ2 was heavily used in designing OBJ3 [125],
and I think greatly speeded up this e�ort, by facilitating team communication
and documenting interfaces. Many other languages have followed OBJ's lead,
including act one [24], which was used in the well known lotos hardware
description language.

Although I never thought program veri�cation had much practical value, I
do think it has educational value, and in 1996, Grant Malcolm and I published
a book on verifying imperative programs using OBJ3, based on a course we
taught at Oxford [88]. Unlike other books on this topic, every program proof in
the book is executable, and students can do all their homework on a computer;
this produced a large improvement in both motivation and understanding, pre-
sumably in part due to the addictive quality of programming [141]. The use of
algebra avoids the awkwardness and/or lack of rigor of techniques like predicate
transformers and three valued logic that are found in some other books on this
subject.

It is unhealthy to confuse a formal notation with a formal method. A method

should say how to do something, whereas a notation allows one to say something
[141]; thus OBJ is a notation, but using it as described in [88] gives a method
for proving properties of imperative programs. Methods are rarely completely
mechanical, because some of the problems that must be faced are usually un-
computable (e.g., �nding loop invariants). Nevertheless, the method of [88] is
surprisingly e�ective, in part because OBJ does all the routine work mechani-
cally, and even provides hints to help with doing much of the non-routine work.
For me, the frontier of research in this area is the use of systems like OBJ3
for theorem proving, e.g., in �rst order logic with equalities as atoms [71], or
for verifying distributed concurrent systems (see [89] and see Section \Hidden
Algebra").

OBJ later developed a whole family of extensions, some of which are discussed
in Section \Parameterized Programming and Generic Modules"), and then it

8 Actually, a precursor called error algebra, motivated by the importance of error
handling in real systems.

9 \OBJ" refers to the general design, while \OBJ3" refers to a speci�c implementation.
10 These were originally intended for providing builtin data structures like numbers,

but were later used in implementing complex systems on top of OBJ, since they
allow access to the underlying Lisp system [114].
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spawned a next generation, which is even now under construction. Some of the
most important members of this next generation are the following:

1. SpecWare is a product from Kestrel Institute that has been very successful
in synthesizing a wide range of scheduling algorithms, some of which are
in daily practical use. SpecWare has a top level command colimit which
computes the colimit of a collection of theories and theory morphisms [165].

2. Maude [148] is an extension of OBJ to rewriting logic [147], which is par-
ticularly suited to specifying concurrency. This project is led by Dr. Jos�e
Meseguer at SRI International, where most of the original OBJ3 develop-
ment was done, with support from the O�ce of Naval Research. Maude also
has an e�cient implementation and a number of interesting new features, in-
cluding a logical and operational foundation in membership equational logic
[149].

3. The CafeOBJ project [29] aims to make algebraic formal methods acces-
sible to practicing software engineers. The CafeOBJ language is similar to
OBJ, but enriched with features for both rewriting logic (as in Maude) and
hidden algebra (see Section \Hidden Algebra"), to help specify and verify
distributed concurrent systems. The CafeOBJ consortium includes several
large Japanese companies, and is supported by MITI (the Japanese Min-
istry of Industry and Technology); more information on this project can be
obtained from http://ldl-www.jaist.ac.jp:8080/cafeobj and from [20].

4. CoFI is another large e�ort to design and build an algebraic speci�ca-
tion language. It is a highly collaborative multinational project with a
distinctively European avor, much inuenced by the success of OBJ; see
http://www.brics.dk/Projects/CoFI.

The most recent information on the OBJ family of sys-
tems and its relatives can be obtained from the website
http://www.cs.ucsd.edu/goguen/sys/obj.html.

The motivation for all this work is of course to provide tools to formalize and
verify the meaning of software and hence improve programming practice. From
a purely theoretical point of view, there has been, and still is, a great deal of
progress; but this has only made it more painfully clear that social issues play a
dominant role in the transition to practical applications. There is an old saying
that if you invent a better mouse trap, the world will beat a path to your door.
But it's not true. You need to do �eld testing, �le an environmental impact
statement, get a designer label, mount a large advertising campaign { and then
you need to train the mice!

Institutions

Because Clear is based on colimits of theories, Burstall and I were able to give it
a very general semantics independent of the underlying logic in which theories
are expressed, provided that logic has certain simple and very usual proper-
ties, which constitute the notion of institution [73, 75]. The basic feature of
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institutions is a duality between models and the (logical) sentences used in spec-
i�cations arising through a relation of satisfaction that is parameterized by the
signature involved. In the traditional cases of equational and �rst order logic,
models are algebras and �rst order structures, respectively, but for lileanna
(see Section \Parameterized Programming and Generic Modules"), models are
given by Ada programs. So institutions give a way to deal with issues in pro-
gramming and speci�cation languages (as well as databases and other kinds of
system) independently of their underlying logic; I really love this kind of gener-
ality.

The theory of institutions was developed further in [74], showing how to gen-
erate institutions from the simpler structures of charters and parchments, how
to put institutions together, and how to greatly generalize them; in particular,
morphisms of sentences are introduced to support proof theory. The notion of
inclusion system was introduced in [21] to axiomatize the notion of inclusionmor-
phism in categorical terms, and then used to study some mathematical proper-
ties of speci�cation modules, including the relation between pushouts preserving
(various kinds of) conservative extension, Craig style interpolation properties,
and some distributive laws for information hiding. There is now a rather large
literature on institutions, with applications to many di�erent areas, e.g., [17]
concerns multi-institutional speci�cation. However, it did take nine years (!) for
the basic paper on institutions to be published in journal form [75]; this is the
longest refereeing and editorial delay of which I ever heard.

Parameterized Programming and Generic Modules

Parameterized programming [48, 52, 27, 28] makes the advantages of the Clear
module system available for real programming languages, as well as for more
practical speci�cation languages. In addition to semantic interfaces for generic
modules (where axioms describe when the module will behave as advertised),
parameterized programming provides module expressions to describe systems
as interconnections, and views both to describe module bindings for instanting
generics, and to serve as global assertions about semantic properties of subsys-
tems; default views greatly simplify module expressions, and multiple inheritance
for modules arises in a natural way. These ideas were �rst implemented in OBJ3.
Although I'm happy that some of this inuenced the languages Ada, ML, and
C++, it can still be distressing to see the compromises involved.

LIL [50] extends parameterized programming to handle programs and specs
together, by giving each module a speci�cation \header" as well as implementa-
tions. LIL provides \two dimensional" module composition following the \CAT"
ideas [72], where vertical structure refers to the layering of software to use ca-
pabilities from lower layers, while horizontal structure refers to a single layer.
LIL has been implemented as lileanna [168, 169], which uses Ada for code and
anna [135] for specs; it has been used to build helicopter navigation software.
New features of lileanna include operations to add, delete and modify module
functionality, at both the code and spec levels. A formal semantics is given for
all this in [111], using a concrete set theoretic exposition of institutions; some
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general \laws of software engineering" are given showing how various module
operations relate. Hyperprogramming [55] extends the idea of organizing infor-
mation around a speci�cation header to support requirements as well as specs
and code, with traceability, controlled evolution, and management of con�gura-
tions, versions, families, documentation, etc., as well as system generation and
software reuse. All this is of course intended to ease the development of large
systems, and in particular, to make reuse more e�ective in practice.

An approach to software architecture based on these ideas is given in [67],
where module expressions provide a module connection (also called an architec-
ture description) language. Any mixture of architectural styles can be supported,
and modules can involve information hiding. Detailed design and coding are un-
necessary if a suitable database of speci�cations and relationships among them
is available, because executing a module expression yields an executable system,
constructed by manipulating and linking implementation modules. The under-
lying ADT of the database is called a module graph; it includes specs, source
code, compiled code, and many kinds of relationship, mostly among specs. So far
there has been little interest in these ideas and even some antagonism; perhaps
the community is too fragmented to accept a combination of formal semantics,
mixed architectural styles, and generating systems from designs.

Order Sorted Algebra

Real software has many features that are di�cult or impossible to treat with
ordinary many sorted algebra. These include the raising and handling of ex-
ceptions, overloaded operators, subtypes, inheritance, coercions, and multiple
representations. Error algebra [42] was a �rst crack at some of these problems,
although it didn't work out. The second try was order sorted algebra (hereafter,
OSA) [44], which reached fruition in joint work with Meseguer [99, 151]. This
approach provides a partial ordering relation on sorts, interpreted semantically
as subset inclusion among model carriers. Meseguer and I proved [151] that many
simple ADTs have no adequate many sorted equational speci�cation, because
(what we call) the constructor-selector problem can't be solved in this setting.
OSA is only slightly more di�cult than many sorted algebra, and essentially all
results generalize without much fuss; in particular, there are initial models and
an e�cient operational semantics. Because OSA is strongly typed, many terms
that intuitively should be well formed because they evaluate to well formed
terms, are actually ill formed; [99] introduced retracts to handle this problem.
Sort constraints [99] extend OSA to support equational de�nitions of bounded
data structures and partial operations. There are now many di�erent variants
and extensions of OSA, too numerous to mention here, although Meseguer's
membership equational logic [149] should not be omitted. Although successful
in this sense within the algebraic speci�cation community, OSA seems to have
had little inuence elsewhere, and retracts have not been taken up anywhere.
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Semantics of Logic Programming

Eqlog [95, 15] combines (equality based) functional programming with (predicate
based) logic programming, by combining their logics, which are equational and
Horn clause logic respectively, to get Horn clause logic with equality (actually
the order sorted version). Eqlog's operational semantics also combines those of
functional and logic programming, using both term rewriting and uni�cation
with backtracking; moreover, the design permits e�cient special purpose algo-
rithms for builtin types like numbers and lists, as well as narrowing to solve
equations over user de�ned ADTs. Eqlog introduced several features that were
new for logic programming, including user de�nable ADTs, strong typing with
subsorts and overloading, generic modules, and a \wide spectrum" integration
of coding with speci�cation, design and prototyping. A good deal of theory was
done to support Eqlog, including: complete rules of deduction, and Herbrand
and initiality theorems, both for order sorted Horn clause logic with equality
[79, 96]; order sorted uni�cation [152]; order sorted narrowing and resolution
[79, 152]; correctness criteria for builtin algorithms; and an initial model seman-
tics generalizing and subsuming the traditional Herbrand universe construction.
I still can't understand why the logic programming community prefers �xpoint
semantics to this elegant algebraic approach.

Logical and Multi-Paradigm Programming

Major programming styles or \paradigms" that have emerged in addition to
traditional imperative programming include functional programming, logic pro-
gramming, and object oriented programming. Each can be considered a kind of
logical programming [49], where a logical programming language is characterized
as follows:

� its statements are sentences in some logic;
� its computation is deduction in that logic; and
� its denotational semantics is given by models in the logic.

For example, higher order functional programming is (or can be) based on
higher order equational logic, and OBJ is based on order sorted �rst-order con-
ditional equational logic. Similarly, logic programming is based on Horn clause
logic. This approach can be made precise using institutions [96, 74, 49], and it
has been enriched and extended by Meseguer with his theory of \general logics"
[146].

In this setting, it is natural to generalize initial algebra semantics to initial

model semantics [95, 96], using initiality in an arbitrary category; this often
yields simpler proofs of general results by avoiding details of construction and
representation. The initial model idea appears in a new guise in [96], to handle
the semantics of logic programming over builtin types and algorithms as free

extensions of the given builtin model. This idea also features in the elegant
semantics for so called constraint based programming developed by Diaconescu
[15, 16]. However initiality is not the right semantics for every logical language.
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Programming paradigms can be combined by viewing them as logical pro-
gramming languages and then combining their logics [49, 74, 96]. Thus Eqlog
combines functional and logic programming [95, 96], and FOOPS combines ob-
ject oriented and functional programming, by using reective order sorted con-
ditional equational logic [97, 115], since features of the object paradigm can be
obtained by reectivizing other logics; FOOPlog combines all three paradigms
[97] by reectivizing Horn clause logic with equality. All implementations of
these systems were built on top of OBJ3. This research direction went so far as
designing and prototyping special purpose hardware, the Rewrite Rule Machine,
for executing declarative languages e�ciently, based on term rewriting chips [98,
133, 57]. Despite all the interest once shown in declarative programming, the
Fifth Generation, etc., there seems to be little interest in precise explications for
declarative and logical programming and reection, or in general purpose declar-
ative architectures. See [11] for the latest on reective logic and its applications.

Hidden Algebra

While (order sorted) equational logic works well for unchanging (immutable
or \Platonic") data types like the numbers, it can be awkward for software
modules having an internal state that changes over time. In 1982, Meseguer
and I developed a theory of abstract machines [92] for this purpose, and proved
minimal (�nal) and initial realization theorems for them; this theory naturally
generalizes algebraicADTs as well as classical automata. The minimal realization
adjunction for automata [38] helped inspire this work, and it was also pleasant to
realize that many intuitions from John Guttag's early work could be vindicated
[116, 117].

In collaboration with R�azvan Diaconescu, Rod Burstall, and most recently
especially Grant Malcolm, this work has developed into a new hidden algebra

approach [54, 58, 77, 7, 87, 140, 89], intended to facilitate proving properties of
designs, as opposed to code, and in particular, to facilitate re�nement proofs,
that one level of design is correctly realized by another. The main contribution
is hidden coinduction techniques for (relatively) easy proofs of behavioral prop-
erties ; this is important for software engineering because many practical imple-
mentation techniques provide the desired behavior, without realizing it as in the
speci�cation; hidden theories capture what have elsewhere been called behavioral
types. This constitutes a method for using notations like OBJ3 and CafeOBJ to
verify software designs; it is especially suitable for the object paradigm. The
distinction between hidden and visible sorts allows the latter to be used for im-
mutable data types (typically given by initial semantics). Hidden algebra has
also opened intriguing new perspectives on nondeterminism and concurrency:
nondeterminism arises naturally simply by not specifying some behaviors [89];
and concurrency is described by an elegant universal11 construction on hidden
theories [77]. A hidden Herbrand theorem which uni�es the object and logic

11 In the sense of category theory; i.e., it is a construction de�ned purely in terms of
morphisms.
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paradigms at the logical level is proved in [90]. There is now an excellent hid-
den group at Oxford, including Grant Malcolm, Corina Ĉ�rstea, James Worrell,
and Simone Veglioni [139, 13, 14, 172]; the recent proof that categories of hidden
algebras are topoi [142] is especially exciting. There is also an exciting urry of
hidden activity around the CafeOBJ project at the Japan Institute of Science
and Technology, which includes R�azvan Diaconescu, Kokichi Futatsugi, Shusaku
Iida, Dorel Lucanu and Michihiro Matsumoto [18{20,121].

Distributed Cooperative Engineering with tatami

Typical software engineering projects have multiple workers with multiple tasks
that interleave in complex ways, often working at multiple sites with di�er-
ent schedules, so that it is di�cult to share information and coordinate tasks;
documentation is often hard to �nd, out of date, incomplete, or non-existent;
requirements change; speci�cations change; personnel change; and it is hard to
determine which parts of the system most need attention (e.g., see [137], espe-
cially its hypergraph model of evolution). Despite all this, most formal methods
and tools to support them take a single user with a single unchanging task as
their (usually implicit) model of interaction.

Recent work at the UCSD Meaning and Computation Lab seeks to address
the distributed cooperative aspect of software engineering with an environment
called tatami [80, 102] for CafeOBJ, having the capability (but not the neces-
sity) for complete formal veri�cation. Formality provides a discipline for both
designing tatami and using it; however, the most practical use exploits the task
structure of formality without requiring logical completeness, to ensure that all
relevant dependencies are known, and that documentation, test cases, etc. are in
predictable locations. Con�dence values in the unit interval are associated with
project tasks instead of Boolean truth values; this fuzzy logic (following [33])
allows critical path analysis to aid task allocation, taking account of di�erent
levels of formality and criticality.

tatami is supported by a truth maintenance protocol that resolves in-
consistencies while updating local databases, allowing multiple versions at
multiple sites, including incomplete and even incorrect proofs. The Kumo12

tool generates websites for project documentation and assists with veri�ca-
tion; it is now being used to populate a library with tutorial examples; see
http://www.cs.ucsd.edu/groups/tatami. The output of Kumo can be read
by any web browser, and in addition to the proof itself, provides for proof exe-
cution on remote servers, as well as animation and informal explanations. User
interface design for this system uses algebraic semiotics (see Section \Algebraic
Semiotics"), and its requirements were driven by my own participant observa-
tion as a software engineer. We are also using ideas from narratology (the study
of stories) and even cinema to organize project websites to facilitate navigation
and comprehension; since tatami supports multiple development lines, it also
supports multiple narrative lines [101]. This group includes Kai Lin, Akira Mori,

12 This is a Japanese word for spider.
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Grigore Ro�su, and Akiyoshi Sato. Lin is the heroic implementer of the Kumo
system, and Ro�su has given a hidden algebraic correctness proof for the tatami
protocol.

Preliminary experiments using Kumo and tatami have been encouraging.
This project is struggling to make earlier theoretical work more relevant to
practice; however it is well beyond the capability of one small research group
to build a truly industrial strength environment. So far this research has been
greeted largely with incomprehension.

Discussion

Although my early work may have an austere kind of beauty from its abstrac-
tion and generality, it seems di�cult for engineers to integrate such results into
practice. Much of my later research has tried to understand what is required to
bridge this divide, and in particular, my excursions into the social, described in
the next section, have this motivation.

Looking back over Section \Software Engineering" above, the extent to which
I have failed to rise above the rather partisan divisions that are so much part
of the present research scene is embarrassing, and has compromised my goal of
evaluating ideas from a broad social perspective. I can only say that I have done
my best at this time, and hope to have more perspective in the future.

Some Social Aspects of Computing

As already noted several times, social issues can dominate computer technology,
e.g., in the construction of real systems that must be used in some social context,
and in the propagation of new ideas into practice. This section reviews some ap-
proaches to reconciling computer technology with its social context. Sometimes
algebraic methods are applied to the social, and sometimes social aspects of
computation theory are considered.

Discourse Analysis

My earliest adventures into the social sciences were in discourse analysis, an area
of sociolinguistics concerned with the large grain structure of language. Several
types of discourse have a de�nite regular structure, including planning [134],
explanation [113] and command and control discourse [82, 85]. The latter was
developed in studies supported by NASA, on statistical properties of aviation
discourse in emergency situations, for application to aviation safety. Later work
on multi-media instruction supported by the O�ce of Naval Research involved
naturalistic experiments and ideas from semiotics, for application to human-
computer interface design [84]; this later led to the work discussed in Section
\Algebraic Semiotics. Two other discourse types are stories [126] and jokes [162],
which are interesting because they embed values of the speaker and audience,
and can therefore be used to study those values [69, 86]. This was applied in



110 Goguen

[81] as part of a study to determine requirements for a system to computerize
a small headhunting �rm, by collecting stories and jokes told during breaks and
at lunch, and then collating them into a \value system tree" for the �rm, as de-
scribed in [60, 86]; this work also showed how to extract dataow diagrams from
task oriented discourse. For some reason, linguistics seems stuck on the syntax
of sentences, despite the fact that there are important applications at higher
levels. On the other hand, it must be admitted that there are a great variety
of approaches to discourse analysis, the procedures tend to be time consuming,
and at least the techniques used in my own work to describe discourse structure
involve an unfamiliar formalism. So this work remains largely unknown. A crit-
ical overview of techniques for gathering information about social situations is
given in [83]; in general, the greater the accuracy, the greater the di�culty.

Requirements Engineering

Case studies and experience suggest that awed requirements may be the most
signi�cant source of errors in system development; moreover, it has been shown
that requirements errors are the most expensive to correct at later stages [5]. Case
studies and experience also suggest that social, political and cultural factors are
very often responsible for the aws in requirements; however, this area has been
little studied. It follows that studying social aspects of requirements engineering
has great leverage. But (using our ongoing metaphor) requirements engineering
involves problems deep down inside the great divide.

The Centre for Requirements and Foundations was founded in 1991 at Ox-
ford University to work towards a scienti�c basis for requirements engineering
taking adequate account of social issues, as well as advanced technology; an-
other goal was to develop appropriate new methods and tools for capturing and
analyzing requirements, to help build systems that are better for users, as well
as less stressful for those involved in the building process. When I left Oxford,
the Centre had completed two main projects, supported by a large grant from
BT. The �rst was a case study in requirements elicitation using techniques from
sociology and linguistics, particularly interaction (video) analysis, but also dis-
course and conversation analyses [118, 136]. The second was a classi�cation of
methods and tools used for requirements [4]. The �rst project built on early
work with Linde on requirements elicitation [81], which was followed by a criti-
cal survey of elicitation methods [83]. The second project was in part inspired by
work of Lyotard [138] on post-modernism. Other work from the Centre included
a book [124] consisting of (revised) papers from a workshop organized by the
Centre, some more papers [64, 123], and the toor object oriented tool for trac-
ing requirements [160]. The view that the essence of requirements engineering is
to reconcile social and technical aspects of system design was proposed in [65]
and elaborated in later work [66, 69]; it amounts to saying that requirements
engineering consists of building bridges across the divide. Hence there is no dis-
ciplinary home for this area, and thus despite its great economic importance,
there is little academic e�ort devoted to it; in particular, I don't know of any
degree programs in this area.
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Algebraic Semiotics

Semiotics is de�ned as the theory of signs and their meanings, a very di�cult area
deep inside the social side of the great divide. Unfortunately there seem to be at
least as many approaches to semiotics as there are authors who have considered
it, and many other �elds with di�erent names also cover the same or closely
related ground, e.g., cognitive linguistics [127, 26, 170]. Algebraic semiotics [70,
68] is one more: it tries to combine insights from both sides of the divide, to
obtain a precise formulation of certain problems about meaning and to allow
the construction of supporting technology. Among the main insights are: (1)
signs mediate meaning (emphasized by Charles Saunders Peirce [157]); (2) signs
come in structured systems (made clear and studied in detail for language by
Ferdinand de Saussure [164]); (3) structure preserving maps (\morphisms") are
often at least as important as structures13; and (4) discrete abstract structures
can be described by algebraic theories (see Section \Abstract Data Types and
Algebraic Semantics). In algebraic semiotics, sign systems are algebraic theories
with extra structure, and semiotic morphisms are used to study representations,
metaphors, translations, meanings, etc.; because these map signs in one system
to signs in another, rather than mapping individual signs, Saussure's insight
is raised from sign systems to their morphisms. In [70, 68], techniques are also
given for comparing the quality of semiotic morphisms, and a new version of
categorical colimits, developed in collaboration with Grigore Ro�su, is used for
combining meanings and for studying the e�ect of context on meaning; this
includes \blends" in the sense of [26]. The potential to connect diverse areas on
both sides of the great divide and to enter new application areas, such as user
interface design, seems very exciting.

When applied to user interface design, algebraic semiotics can model the con-
tent and structure of information through its representation [68, 80, 101, 102];
it is now being used to design interfaces for the tatami system (see Section
\Distributed Cooperative Engineering with tatami"). Although traditional er-
gonomics, HCI (human computer interface), and cognitive science are very good
for issues like keyboard layout, color choice, font size, and window layout, they
are less useful for more semantic problems. Examples using algebraic semiotics
are accessible over the web at http://www.cs.ucsd.edu/groups/tatami, and a
\semiotic zoo" of ordinary design choices that are bad for interesting reasons is
available at http://www.cs.ucsd.edu/users/goguen/zoo, with algebraic ex-
planations. The zoo illustrates how algebraic semiotics can be applied to syntax,
understanding stories, and much more.

13 This is an insight from mathematics. The journey through this paper has already
encountered several cases where morphisms are important: initial extensions for
constraint programming (in Section ); data constraints (in Section ); and inclu-
sion systems (Section \Logical and Multi-Paradigm Programming"). Eilenberg and
Mac Lane [25] gave this insight a more de�nite and systematic form with the inven-
tion of category theory.
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Fuzzy Logic and Information Theory

Many people have had the intuition that mathematical logic fails to capture the
imprecision and robustness of practical reasoning. Fuzzy sets and logic [174] are a
successful move in this direction, though it is far from capturing the richness and
complexity of ordinary human reasoning. In the late 1960s, it was fashionable
to give axioms on the category of things having some structure (with structure
preserving morphisms) to characterize that category up to natural equivalence.
This is what I did for fuzzy sets in my thesis [32, 34, 39]; earlier papers concerned
other aspects of fuzzy sets, e.g., extending them to more general values than the
unit interval [31, 33]. This was the �rst foundational work on fuzzy sets and fuzzy
logic. Later I set up the Fuzzy Robot Users Group at UCLA, and did some early
empirical work on fuzzy algorithms, though it was never properly published
(but see [103] for an abstract). Some applications to philosophy and the social
sciences, and some limitations of fuzzy set theory were discussed in [45]. Today
fuzzy sets and fuzzy logic are very popular areas. But in the late 1960s, work in
this area was bitterly opposed by more traditional parts of engineering, such as
classical control theory, to the extent that I found it impossible to get funding
to continue my research in this area, and had to abandon it.

It is (or should be) a scandal that in the middle of a period called the \in-
formation age" and characterized by an astonishing expansion of information
technology, there is no adequate theory of information, nor even any adequate
de�nition of information. In the late 1960s, I taught a course at the University of
Chicago on traditional Shannon-style information theory [76], and encountered
great di�culty trying to extend it to human situations; in fact this theory does
not apply to meaning, but rather to data compression and transmission { after
all, it was developed for the (then) Bell Telephone Company { because it ignores
the crucial human aspects that underlie meaning. This motivated using categor-
ical GST for a complexity based information theory, which was then applied to
music [43]; here the information content of a behavior is the minimum value of
the sum of weights of (hierarchical) interconnected components whose behavior
is the given one. It was startling that the classical equalities and inequalities of
information theory still hold in this exceedingly general setting; moreover it did
capture some insights about the structure of music. Several Oxford students did
experiments in this area for their MSc theses, but again it became clear that no
purely formal approach, however abstract and general, could deal with human
meaning in any deep sense [63] (see also [45]).

Recently I returned to this area, but from the opposite side of the great
divide, de�ning information in social terms [69]: An item of information is an

interpretation of a con�guration of signs for which members of some social group

are accountable. The goal is to get a theory of information adequate for under-
standing and designing systems that process information. This research draws
on ideas from ethnomethodology [163], semiotics, logic, and the sociology of sci-
ence. The paper [69] also presents some case studies and makes the perhaps
surprising argument that because of its social situatedness, information has an
intrinsic ethical dimension.
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Philosophy of Computing

It is usually thought that philosophy has little to do with the practical engi-
neering concerns that dominate computer science today. But philosophies are
just coherent expositions of particular approaches to de�ning, approaching and
(maybe) solving problems14. Nothing is more practical than a good philosophy:
our approach to a situation has an e�ect, often decisive, on what happens. As
Wesley Phoa [159] puts it,

All practical work is based on philosophical presuppositions: they may
be conscious or unconscious, innocuous or fatal. ... In any case, we might
as well be aware of them, and aware of the alternatives. There is a
more positive reason to be interested in philosophy though: philosophical
reection can be a potential source of practical ideas.

This section discusses some philosophies that seem especially relevant to today's
computer science.

Realism and Idealism

Realism is the view that certain things (e.g., numbers) really exist; one can
be \realistic" in this sense about many di�erent things. For pure mathematics,
realism is called Platonism. Here it seems harmless, perhaps even charming;
but it can become dangerous when extended further into applied mathematics.
Within computer science, systems analysis, systems engineering, requirements
engineering, etc., realism can be the view that there really is such a \thing" as
\the system," and (going beyond realism into confusion) that some particular
model built for some particular purpose completely \captures" the system. This
easily can (and often does) lead to incorrect decisions based on some weak area
of the model, that should have been reevaluated and strengthened, but was not
because of the erroneous belief that the model really is the system. I encountered
some examples of this in the area of computer security, in connection with the
so-called Bell-LaPadula security model [3, 91, 93].

It is easier to understand the attraction of realism when it is considered
in the context of its opposition to idealism, the view that things (either some
particular class of things, or in a more extreme form, all things) only exist in
our minds; the most extreme form of this view is solipsism, that nothing exists
outside oneself. The problem with idealism is that it seems to negate science (as
well as religion and all metaphysics); so realists can be seen as trying to save
\reality" for science (and/or religion).

My own view is that this is a false duality, based on an unexamined presuppo-
sition, namely dualism. Simplifying quite a bit, dualism asserts a rigid separation
between a material realm and a spiritual realm; such a view was advocated by
Descartes in order to gain a ground for science that was free from interference

14 Actually, even the notion that \problems" exist and should be \solved" is a philo-
sophical presupposition that is open to question!
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by religion. Today dualism is largely considered untenable, for example because
there is no empirical evidence for a separate realm of the spiritual. So within
this historical context, idealism can be seen as the attempt to reduce everything
to the spiritual (though not usually in the religious sense) and realism as the
attempt to reduce everything to the material { which is what most science is
about anyway. In my view, both are crude attempts to eliminate Cartesian du-
ality, which after all does reect some aspects of everyone's experience. Instead
of trying to collapse the duality to one of its poles, it seems preferable to tran-

scend duality in a way that denies the actual existence of two realms, and still
adequately explains our experience. My preference is for phenomenology, which
starts with experience, disallowing any external distinctions; it then proceeds
with a careful analysis of experience and its ground; however, this paper isn't
the place to consider such issues; some further discussion and references may be
found in [63].

Modernism

Modernism can be de�ned as belief in the adequacy of hierarchy, formalization
and control to achieve desired ends without error. The success of computer sci-
ence, along with technology as a whole, has long been seen as establishing the
correctness of such a philosophy, so much so that it is usually not even explicitly
formulated. But increasing experience with ever more ambitious projects has led
to more awareness of the limitations of modernism. A classic example in soft-
ware engineering is the so-called waterfall model of software development, which
requires a rigid top-down hierarchical control of the development process, by
dividing it into strictly sequential stages, typically something like requirements,
design, speci�cation, build and test. But such an organization of the work process
makes it very di�cult to correct errors in earlier stages, to learn from errors, and
to respond to the plethora of changes in the surrounding context of technology,
organization, law, etc. that are inevitable and unending in today's fast paced
environment. Of course, now there are many process models that improve upon
the waterfall model, but I think there is still insu�cient appreciation of the im-
portance of alternative techniques like rapid prototyping and user participation
in design.

Theoretical computer scientists need not look so far a�eld for examples of
excessive modernism. What might be called the \error free" school of formal
methods aims for programs that have no bugs at all. For example, [22] claims

we have ... \a calculus" for a formal discipline { a set of rules { such
that, if applied successfully: (1) it will have derived a correct program;
and (2) it will tell us that we have reached such a goal.

From a narrow point of view, this e�ort succeeded, modulo certain technical
di�culties which can however be corrected15. However, there is a fundamental

15 These include the following: (1) there is a gap in the logical foundations, in that the
�rst order logic used for expressing conditions is not actually su�ciently expressive
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di�culty, namely that it attempts to control the programming process by im-
posing a rigid top-down derivation sequence, working backwards from the initial
top level speci�cation (the \postcondition") to the �nal code, in which each step
is derived by applying a \weakest precondition" (hereafter, \wp") formula.

It is not coincidental that the \wp calculus" requires signi�cant human in-
vention at exactly the most di�cult points, namely the loops. And for most
programs that go much beyond the trivial, the insights needed to write the loop
invariants are tantamount to already knowing how to write the program; more-
over, these insights are more di�cult to achieve when using wp than they would
be in a more conventional setting. When I was at Oxford, I saw several very
good students who had been taught that the wp calculus was the right way to
program, become so discouraged over the di�culties they experienced, that they
came to believe they could never learn how to program and should therefore seek
a di�erent profession. This is a great pity! In general, rigid top-down ideologies
inhibit experimentation and make it hard to explore tradeo�s. Moreover, they
can be harmful to students, wasteful of time, reinforcing of an inexible view of
life, and inhibiting to intuition, learning and creativity. Finally, as noted in the
�rst paragraph of Section \Speci�cation", correctness of code is the wrong prob-
lem to solve. (An overview of some recent debates on philosophical foundations
of formal methods may be found in [1].)

A further di�culty with formal methods is that they tend to be very brittle,
in the sense that slight changes in a speci�cation can lead to drastic changes
in what must be done to achieve that spec. We can see the importance of this
di�culty by noting that the very rapid rate of change of requirements, which
is so typical of large projects, implies an even more rapid rate of change for
speci�cations. This makes many formal methods very di�cult, perhaps even
impossible, to apply in practice [137]. Let me be clear that I am not criticizing
formal methods as such { in fact, I believe they can be very useful in practice,
especially for large programs, by focusing on the large grain structure of software
(see Section \Parameterized Programming and Generic Modules" and [137]).

Jean-Fran�cois Lyotard [138] de�nes modernism more broadly than at the be-
ginning of this section, as any approach that justi�es its claims to universality
through a \grand unifying" story, which he calls a meta-narrative. For exam-
ple, the realist approach to systems theory discussed in Section \Realism and
Idealism" tells the story of unique pre-existing systems really out there to be
captured. By contrast, Lyotard says postmodernism is characterized by multi-
ple \local language games" that cannot necessarily be uni�ed, or even neatly
classi�ed (this notion of language game comes from late work of Wittgenstein).
A great deal has been written about postmodernism, and though much of it is

{ something like the in�nitary logic proposed by Erwin Engeler in the 1960s for this
purpose is necessary; (2) many important programming features are not treated, in-
cluding procedures, blocks, modules, and objects { in general, all large grain features
are omitted; and (3) data structures and types are treated loosely, and variables that
range over di�erent kinds of item are not carefully distinguished.
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trash, there is a general agreement that we may now be entering a postmodern
period.

We have already seen the issue of whether there are many or just one language
game in the discussion of requirements engineering in Section \Requirements
Engineering"; my view is that requirements engineers must deal with multiple
\stakeholders" who may have not just di�erent viewpoints on the \same sys-
tem," but may actually have completely di�erent ways to conceptualize their
experience. A related philosophical approach is the deconstructionism16 of Der-
rida, which can be seen as a strategy for undermining meta-narratives. Phoa
[159] applies deconstruction to aspects of theorem proving, software engineering
and arti�cial intelligence; in particular, Phoa's view of requirements is remark-
ably similar to that presented here. It can also be argued that the approach to
distributed cooperative theorem proving and software engineering taken in the
tatami system (Section \Distributed Cooperative Engineering with tatami")
is postmodern, or even Derridean, because it supports multiple points of view,
including views that are mutually inconsistent, or even self inconsistent, and
because it uses multiple narratives as an organizational principle.

Autopoiesis

Maturana and Varela [144] de�ne an autopoietic system to be

... a network of processes of production of components that produces
the components that: (i) through their interactions and transformations
continuously regenerate the network of processes that produced them;
and (ii) constitute it as a concrete unity in the space in which they exist
by specifying the topological domain of its realization as such a network.

(See [2, 167, 143, 145] for more on this area, and see [171, 112] for some possibly
ill-advised attempts to formalize this notion; also cf. footnote 4. Sorry for the
confusing prose in this quote.)

The relevance of this to software engineering is discussed in [42]: Anyone
familiar with large software projects knows that there is a sense in which they
\have a life of their own," in that some projects seem healthy and vibrant from
the start, and overcome even unexpected obstacles with enthusiasm and intelli-
gence, while others always seem disorganized and depressed, su�ering from such
symptoms as unrealistic goals, inadequate equipment, poor planning, (seem-
ingly) insu�cient funding, faulty communication, indecisive leadership, frequent
reorganizations, and/or deep rifts between internal factions.

A software development project is not a formal mathematical entity. Per-
haps it is usefully seen as an autopoietic process, an evolving organization of in-
formational structures, continually recreating itself by building, modifying, and
reusing its structures; in the language of Maturana, this is \development through
mutually recursive interactions among structurally plastic systems" [143]. For

16 See also the hilarious Woody Allen �lm Deconstructing Harry.
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example, an unhealthy project may struggle for survival by reassigning respon-
sibilities, rede�ning subprojects, and even trying to reconstrue the conditions
that de�ne its success. On the other hand, a healthy project may develop new
tools to enhance its productivity.

In this view, computers, printouts, compilers, editors, design tools, and even
programmers, can be seen as supporting substrates, just as body parts are sup-
porting substrates for a person17. Autopoietic systems are about as far as we
know how to get from rigid top-down hierarchical goal-driven control systems;
autopoietic systems thrive on error, and reconstruct themselves on the basis of
what they learn from their mistakes. Autopoiesis can be considered an imple-
mentation technique for postmodernism. See [59] for more on attitudes towards
errors in computer science.

Ethics

One aspect of the great divide that seems especially troubling in the late twen-
tieth century is the separation of technology and science from ethics. A positive
sign is the increasing availability of courses on professional ethics in engineering
schools; on the other hand, ethical behavior seems to be on the decrease. Of
course, there is a huge philosophical literature on ethics, but little of it directly
addresses technology. My own concern is to bridge the gap between technology
and ethics on intellectual grounds. In [69], I argue for an inherent ethical di-
mension to information (but not mere data), through its being embedded in a
context of concern by some social group (see the de�nition of information in Sec-
tion \Fuzzy Logic and Information Theory"). This is not an appropriate place
for details, but we should recall that understanding values can be crucial for
getting requirements that match user needs. Other perspectives on the \great
divide" can be found in the book [6] in which the paper [69] appears. A more
radical view appears in [119], where Heidegger considers Western civilization to
be fundamentally entangled with a separation of technology from ethics, based
on an untenable instrumental conception of technology; see also the discussions
in [61] and [63]. Heidegger [119] further claims that by questioning deeply enough
into the essence of technology, perhaps in desperation, we may �nd what we need
to go beyond the current impasse.

But no one should think that postmodernism, deconstructionism or phe-
nomenology is going to answer every question concerning technology, the mod-
ern world, or the philosophy of computation. The issues that must be faced are
extremely complex and diverse, and it appears to me that we are only at the
beginning of some new ways of thinking. If our civilization survives, there will
doubtless be many profound changes ahead in how we think about technology
and its relation to society.

17 Of course, this does not mean that groups have moral or spiritual priority over
individuals, or that people should be viewed as components of systems in anything
like the same way that Ada packages can be.
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Some Concluding Remarks

I'm afraid that the reader may have found this paper rather a long strange trip18,
starting from the practice of software engineering, then going to category theory,
and eventually ethics, passing through topics like equational deduction, various
programming and speci�cation paradigms, semiotics, theorem proving, require-
ments engineering and philosophy. Nevertheless, theoretical computer science
has been a constant theme, for example appearing in the application of ADTs
and theory morphisms to semiotics and user interface design, and in the philo-
sophical exploration of di�culties that arise in computing practice. I believe
that the kind of concept developed in theoretical computer science, especially
its algebraic and categorical branches, is very well suited to combating the frag-
mentation of computer science as a whole, and hope to have given some salient
examples; this seems especially important for education.

It seems valuable to use algebraic theories to model the kind of situated ab-
stract data types that appear in semiotics, and it also seems valuable to study
the trajectories of projects that involve theory. Both kinds of research straddle
the great divide, and both are risky. It is much safer to stay within the con�nes of
a single discipline, and if possible work on a single well de�ned problem of recog-
nized practical importance. Few people want to read a paper like [68] in a serious
way, because it requires familiarity with diverse areas of philosophy, mathemat-
ics, linguistics, literature and computer science; so the author isn't likely to get
much recognition, and it will be hard to publish. But the safe way can also be
a painful way. Working on a narrow well de�ned problem of recognized impor-
tance will almost guarantee intense competition. Of course this is what academic
departments like, because it makes comparison and measurement easier. In this
way, departmental boundaries are inimical to interdisciplinary work, as well as
to innovative and/or very abstract work. On the other hand, a community is
necessary to develop tools and methods and get them actually used; transfering
either theory or technology is by de�nition a social process [130], so that no
lone researcher or small group can hope to get very far. But this is not to say
that fame and fortune are the only measures of success; on the contrary, quite
di�erent measures like aesthetics and coherence seem to be at least as important
for theoretical computer science.

In this paper, I've tried to share some of the hopes and disappointments I've
felt for various ideas and projects; these remarks are not intended as bragging or
complaining; at this stage in my life, I don't take any of them seriously (though
I must admit that some did seem very serious at the time). The goal of these
remarks is to help younger researchers. Most work of most researchers never
has very much inuence, every career has di�culties, and innovative and/or
interdisciplinary work is especially likely to be di�cult. Moreover, although the
conventions of scienti�c writing hide it, every researcher has some emotional
involvement with his/her work, and this is something that should be dealt with,
not just ignored. Those interested in the sociology of technology may also �nd

18 With a nod of the head to the Grateful Dead song Truckin'.
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it interesting to see how ideas have sometimes owed from one area to another.
Our civilization needs to heal the wound between the social and the technical-
scienti�c world views, and I hope to have given some hints about how this
might occur; see also the charming documentary novel Aramis, or the Love of

Technology, by Bruno Latour [131].
After discussing this paper with a student, he asked if I felt \melancholy"

looking back over a whole career of tossing algebraic owers down the great
divide. Not really, I replied; to be sure, this is a sad metaphor, but is not all
life similar? Of course there are di�culties, and perhaps there are successes. But
commitment to our art and craft, to our profession, to our own integrity, and to
other people, are far more important; life occurs as it is lived, and to live it fully
is to appreciate joys and pains as they are, rather than in the light of ambitions
that can only intensify pain and confusion.
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