
Freeform Digital Ink Annotations in Electronic

Documents: A Systematic Mapping Study

Craig J. Sutherlanda,∗, Andrew Luxton-Reillya, Beryl Plimmera,

aDepartment of Computer Science, University of Auckland, Private Bag 92019, Auckland
1142,New Zealand

Abstract

A variety of different approaches have been used to add digital ink annota-
tions to text-based documents. While the majority of research in this field
has focused on annotation support for static documents, a small number of
studies have investigated support for documents in which the underlying con-
tent is changed. Although the approaches used to annotate static documents
have been relatively successful, the annotation of dynamic text documents
poses significant challenges which remain largely unsolved. However, it is
difficult to clearly identify the successful techniques and the remaining chal-
lenges since there has not yet been a comprehensive review of digital ink
annotation research. This paper reports the results of a systematic map-
ping study of existing work, and presents a taxonomy categorizing digital
ink annotation research.

Keywords: Freeform Ink Annotation, Dynamic Digital Documents

1. Introduction1

Handwritten annotations are an easy and effective way to actively en-2

gage with a document [2, 53] that is shown to improve comprehension and3

retention [7, 73]. Early research to support annotation of digital documents4

focused on implementing text-based annotations in which annotations were5

added using a mouse and keyboard [53]. Modern pen and touch input devices6

∗Corresponding author
Email addresses: cj.sutherland@auckland.ac.nz (Craig J. Sutherland),

andrew@cs.auckland.ac.nz (Andrew Luxton-Reilly), beryl@cs.auckland.ac.nz
(Beryl Plimmer)

Preprint submitted to Computers & Graphics November 10, 2015



allow for freeform digital ink annotations similar to pen on paper [52]. There7

are numerous approaches that support digital ink annotations on static doc-8

uments but annotating dynamic documents poses significant technical chal-9

lenges that remain unsolved. Yet a core advantage of most digital document10

formats is their inherent support for change. It is difficult to clearly identify11

the successful techniques for dynamic annotation support and distinguish12

them from the remaining challenges since there has not yet been a compre-13

hensive review of digital ink annotation research. In this literature review14

we develop and apply a taxonomy to categorize current research, and report15

on the solutions and remaining challenges.16

The impetus for ink annotation support in digital tools is that freeform17

annotations offer two benefits over text annotations. First, annotating with18

a pen is less cognitively demanding than with a mouse and keyboard [53].19

Second, ink annotations stand out from the underlying text and are easier20

to find [53].21

Adding annotations using a keyboard and mouse requires a higher mental22

workload than using a pen. The user has to switch from thinking about what23

they are reading to how they are going to annotate [53]. This mental switch24

is increased by software implementations that require the reader to anno-25

tate in a different location from where they are reading. As a consequence26

people annotate less on a computer screen than on paper [43]. Also the in-27

creased mental workload of text annotation reduces how much the reader can28

comprehend and learn [34].29

As well as being more cognitively demanding, it is harder to find text an-30

notations than freeform annotations [53]. One important role of annotations31

is to act as signposts to important information [23]. Consider Figures 1 and32

2 , the ink annotations stand out from the page making it easy to see them33

when scanning through a document. In contrast, even with colour coding,34

the text annotations blend with the text forcing the reader to spend more35

time looking for them and less time on comprehension.36

While the benefits of freeform ink annotations are widely recognised37

[34, 52, 67] there are a number of technical challenges involved in adding38

ink annotations to digital text documents. Computers can process the data39

in text documents due to the structure of the documents. A document consist40

of a string of characters which is grouped into words, sentences, paragraphs41

and so on. In contrast freeform annotations lack intrinsic structure. While42

it is possible to treat annotations as images on a document this limits func-43

tionality available. Instead, an application needs some way to unlock the44

2



Figure 1: Examples of text annotations: text-based annotations in Microsoft Word.

3



Figure 2: Examples of text annotations (cont.): digital ink annotations.

4



implicit data within an annotation.45

Converting a document into a static image, and positioning the annota-46

tion using standard Cartesian coordinates [55, 67] simplifies the process of47

adding annotations. However it prevents the document from being edited,48

eliminating one of the major advantages of digital documents over paper.49

Substantive documents (e.g. academic papers, legal contracts) often go50

through multiple drafts. While reviewing a draft, annotations are used to add51

questions and suggestions, correct errors, and so forth [1, 69]. Then the draft52

is updated resulting in changes to the content and structure. The challenge53

is to adapt the ink annotations as the underlying document changes.54

While several projects have explored ink annotation support for dynamic55

text documents there is not yet a complete solution. The challenges for sup-56

porting dynamic ink annotations fall into three broad categories: solving the57

technical challenges; understanding how people interact with their annota-58

tions; and exploring how computers can extend what is possible on paper.59

In this paper we are interested in how the technical challenges have been60

approached.61

There has not been a comprehensive review of digital ink annotation62

research. Therefore it is difficult to see what techniques are successful and63

what challenges are unsolved. We have performed a systematic mapping64

study and reviewed the published research. There is always a need to draw65

a boundary in a literature review. We have decided to focus on freeform66

digital ink annotations in text-based documents. This means there are some67

publications just outside the boundary line. We have included some examples68

of these in §2.4 to guide readers to other surrounding fields.69

We propose a taxonomy of annotation research characterised by: the70

types of annotations supported; the operations used to add freeform ink71

annotations; the operations to automatically adapt freeform annotations on72

dynamic documents; and the human perception of digital ink annotations.73

One of the challenges of this review is the plethora of terms inconsistently74

applied. We refer the reader to the set of terms we propose in §4.1 as these75

are used through-out the review.76

2. Research Method77

Systematic literature reviews originated in the field of medical studies.78

They are used to perform a systematic, comprehensive and reproducible79

analysis of the research about a given topic. They have been applied in80

5



other fields such as software engineering, social sciences, chemistry and edu-81

cation [35]. A systematic mapping study is a variation that provides a wider82

overview of a research area. They are useful for identifying what has and has83

not been researched [35, 54]. The attributes of this protocol make it ideally84

suited to our purposes of documenting and synthesising research on digital85

ink annotation.86

In the systematic mapping study reported in this paper, we use the pro-87

tocol described by Okoli and Schabram [54], which involves the following88

steps:89

1. Specify the research questions;90

2. Protocol development;91

3. Review protocol;92

4. Study search;93

5. Primary studies selection;94

6. Data extraction;95

7. Data synthesis;96

As this is a systematic mapping study, rather than a systematic literature97

review, we have not included any analysis of quality [36].98

Each step is fully documented to ensure that the study can be reproduced.99

2.1. Research Questions (Step 1)100

The research questions for this study represent the two main challenges101

in the field. These challenges, identified in earlier research, are adding digital102

ink to a document and supporting dynamic digital documents [8, 24]. This103

mapping study is framed by the following research questions:104

RQ1. What methods are described in existing literature for adding freeform105

annotations to digital documents?106

RQ1.1 How is digital ink collected?107

RQ2.2 What is the process for associating an annotation to a location108

in the document?109

RQ3.3 What types of annotations are recognised?110

RQ2. What support for automatic adaptations to annotations have been111

explored to handle changes in the underlying document?112

RQ2.1 What operations are required to automatic adapt annotations?113

RQ2.2 How can annotations be automatically adapted?114

RQ2.3 How have user expectations on automatic adaptations of an-115

notations been studied?116

6



2.2. Protocol Development and Review (Step 2 and 3)117

We analysed five publications used in a previous study [77] to identify118

potential key terms. These terms were used to define the primary search119

string and possible alternatives.120

A data extraction form was also developed. This form listed the data121

items to obtain from each publication. These items were chosen based on122

the research questions. Some of these items are selections with the initial123

values based on values from the initial five publications.124

During the development of the protocol the data extraction form was125

trialled in a small group. The trial evaluated the definitions of each item126

to ensure consistency. One of the publications from the previous study was127

used [24]. Each member extracted all the data items. Based on the feedback128

the data extraction form was modified to clarify the definitions of each item.129

The final form is shown in Table 1.130

2.3. Search Strategy (Step 4)131

The search string, Annotation AND “Digital Ink”, was trialled on the fol-132

lowing six databases:133

1. ACM Digital Library;134

2. IEEE Xplore;135

3. SpringerLink;136

4. Scopus;137

5. Inspec;138

6. ProQuest.139

The search string found all five of the initial publications. Some alternate140

search strings were also tried but these either did not add any additional141

results or were too broad.142

After the search string was finalised the search was run on all six databases143

on a single day (24th December, 2013). The databased were searched in the144

order listed above. Where possible a full text search was used, otherwise the145

fullest search options were used.146

During the search the results were extracted into a table. The information147

recorded in the table for each publication included:148

(i) Year of publication;149

(ii) Venue;150

(iii) Authors;151

7



(iv) Title;152

(v) Source.153

Duplicate results from multiple databases were added to the table. When154

there were duplicate results within a database (e.g. a conference proceeding155

and journal article for the same study) the most recent one was used.156

After the initial set of publications were selected (Step 5) we returned to157

this step and performed a forwards and backwards search using the references158

and citations of each selected publication. After this search we then re-159

applied step 5 to the new results. We only performed one iteration of forward160

and backwards searching.161

2.4. Selection Criteria (Step 5)162

We selected the final publications using multiple phases. In the first163

phase we checked the source details of each publication. Non-peer reviewed164

publications (e.g. magazine articles) and non-English publications were ex-165

cluded. We also identified duplicates based on the authors, date and title166

and excluded all duplicates but the most recent.167

In the second phase we excluded publications whose topic was out of168

scope. We are specifically interested in the annotation of text-based docu-169

ments. Therefore publications examining annotation of video and audio files170

were excluded as they are not text-based (e.g. [12]). Whiteboard applica-171

tions were excluded for the same reason (e.g. [10]). Drawing and sketching172

applications were excluded as they start with a blank canvas rather than173

a pre-existing document (e.g. [87]). Finally implementations with text-only174

annotations were excluded as we are specifically interested in freeform digital175

ink (e.g. [88]). The exclusion criteria were applied using the publication’s ti-176

tle and abstract. If there was any doubt about whether a publication should177

be excluded it was left in. When a publication was excluded the reason for178

exclusion was noted in the table.179

For the next phase the full-text of each remaining publication was re-180

trieved. If a publication could not be retrieved in this phase it was excluded.181

An example of a publication that could not be retrieved is one that is marked182

as a citation in the search engine without a link or DOI to retrieve it. With183

these publications we made all possible attempts to retrieve them including184

using mutliple libraries and other search engines.185

For the final phase, the abstract and conclusion of each publication was186

checked to ensure it met the following inclusion criteria:187

8



Table 1: Data extraction form

Name Type

General Data Year of Publication Numeric
Authors Free text
Title Free text
Publication venue (e.g. conference or journal name) Free text
Abstract Free text
Name of implementation Free text

System Data Overview Free text
Input mechanism Selection
Application Domain Free text
Document type Selection
Overview of adding annotations Free text
Annotation types recognized Selection
Overview of adapting annotations Free text
Change type supported Selection
Usability study results Free text
Additional functionality provided Free text

(i) The publication must include an implementation of a system;188

(ii) The implementation must allow users to add annotations;189

(iii) The implementation must use digital ink;190

(iv) The annotations must be for a document (e.g. not a blank notebook).191

If there was insufficient detail in the abstract and conclusion to determine192

whether to include the publication, the rest of the publication was scanned.193

Any publication that did not meet the inclusion criteria was excluded.194

2.5. Data Extraction (Step 6)195

The final list of publications was analysed using the data extraction form196

(see Table 1) to collect the details on each publication. This form has two197

main sections: general data and system data. The items in the general data198

section are based on the systematic mapping protocol [54]. The items in the199

system data section, described below, are based on the research questions.200

9



2.5.1. Overview201

This is a summary of the publication, it includes what the implementation202

was attempting to do, what was actually achieved and what was involved.203

2.5.2. Input mechanism204

Input mechanism is how the ink was physically collected. This started205

off as two options: tablet with stylus and Anoto pen on paper. As we found206

additional input mechanisms the list was expanded.207

2.5.3. Application domain208

Application domain is the target domain of the application. This is a free209

text field to allow for any options. During the data synthesis this list was210

consolidated (see §2.6).211

2.5.4. Document type212

The document type describes the format of the text-based document.213

Based on the initial protocol development the starting values for this were214

’text only’, ’Word’ and ’PDF’. As additional formats were found they were215

added to the list of values.216

2.5.5. Overview of adding annotations217

Adding annotations is the process of collecting digital ink strokes and218

associating them with the document. This overview lists the reported details219

on how an implementation handled adding annotations.220

2.5.6. Annotation types recognised221

An annotation type is a class of annotations that shares similar proper-222

ties. For example underlines are lines drawn underneath text. Marshall [46]223

proposed a number of annotation types and her types were used as the initial224

values. If a new type was found during the extraction phase it was added225

to the list of types. During the data synthesis this list was consolidated (see226

§2.6).227

2.5.7. Overview of adapting annotations228

Adapting annotations is the process of automatically modifying an an-229

notation in response to a change in the document. This overview lists the230

reported details on any adaptations performed by the implementation.231

10



2.5.8. Change type supported232

Change type supported defines how the underlying document could change.233

This selection is based on the spectrum proposed by Golovchinsky and De-234

noue [24]: none; layout-only; and layout-and-content.235

None means the implementation does not handle any changes to the236

document. This assumes that the document remains static through-out the237

lifetime of the annotations. The PDF format is an example of a format that238

does not allow changes1. Layout-only means the rendering of the document239

can change but not the content. Examples of layout changes include changing240

the font size, page margin, zoom factor, etc. The ePub format is a format that241

allows for layout changes. Layout-and-content means that both the layout242

and the content of the document can change. For example text can be added,243

modified or deleted, images and other objects can be inserted or removed.244

Plain text is an example format for this change type. We were unable to245

determine what types of changes are supported in some implementations.246

These implementations were recorded as unknown.247

2.5.9. Usability study results248

These are the details of any human studies reported in the publication.249

2.5.10. Additional functionality provided250

This lists any additional functionality provided in the implementation.251

This functionality extends what is available using just pen and paper. For252

example, XLibris explored how annotations could be used to search search253

queries [27].254

2.6. Data Synthesis (Step 7)255

After data extraction the publications were grouped by implementation.256

Details were merged together when there were multiple publications about a257

single implementation. For the annotation types recognised field we included258

the values from all publications. For the input mechanism and change type259

supported fields we used the values from the most recent publication. For260

the remaining fields we compared the publications. If there were details261

mentioned in one publication but not another they were combined. If there262

1There are now tools that allow changing a PDF document but the original intention
of the specification is for read-only documents.

11



were conflicting details the details from the most recent publication were263

used.264

The list of annotation types recognised was consolidated. Some publi-265

cations used different terms for the same type of annotation (e.g. circling,266

enclosure and box are all synonymous). Each term was checked to see if they267

referred to the same annotation type. If so they were combined together and268

the most common term used.269

Next, the addition and adaptation process overviews were analysed. From270

each overview all the operations that were mentioned were listed. For ex-271

ample, for addition a publication might mention “combining strokes” and272

“linking to underlying context”. This produced one list of operations for273

adding an annotation to the document and a second list of operations for274

adapting annotations.275

The lists were then reviewed to find operations that were similar. For276

example “combining strokes” and “grouping strokes” both refer to the same277

operation. Grouping similar operations together produced one set of opera-278

tions for adding annotations and another for adapting them. To check the279

completeness of each set all the implementations were reviewed to determine280

which operations where implemented.281

During this process we discovered the mode of anchoring an annotation282

to the underlying document is important in adding annotations. So the data283

synthesis step was repeated to capture the different anchor modes.284

Finally, the results from input mechanisms, application domains and ad-285

ditional functionality were consolidated. Each item was summarised in a286

few words that described the main feature (e.g. “Presenting and annotat-287

ing slides” was summarised as “Lecture Presentation”). These summaries288

were then grouped together where possible. If the summaries referred to the289

same feature then they were combined (e.g. “Writing documents” and “Edit-290

ing documents” were combined). Finally the summaries were grouped into291

relevant hierarchies for application domains and additional functionality.292

3. Results293

3.1. Search Results294

A total of 801 publications were found during the initial search phase.295

The selection process described in step 5 of the methodology was then ap-296

plied (see §2.4). Out of the 801 publications 48 met the inclusion criteria297

12



for the study. Using these publications we performed the backwards and for-298

wards search and found an additional 578 publications. Again, we checked299

these publications against the exclusion and inclusion criteria and identified300

a further 13 publications to include.301

A total of 61 publications were included in the mapping study. These302

publications describe 42 different implementations. Most implementations303

are described by a single publication. Six implementations have two pub-304

lications(CodeAnnotator, CoScribe, OneNote, Papiercraft, PenMarked and305

United slates), three implementations have three publications (Classroom306

Presenter, RCA and WriteOn) and XLibris has ten publications.307

Table 2: Publications that were included in the mapping study.

Year Authors Implementation
Input
Mechanism

Change
Allowed

Application
Domain

1991 Levine and Ehrlich FreeStyle Digitizer None Collaboration

1993
Hardock, Kurtenbach, and
Buxton

MATE Digitizer Content
Editing
documents

1998 Price, Golovchinsky, and Schilit Xlibris Tablet PC None Active reading
1998 Schilit, Golovchinsky, and Price Xlibris Tablet PC None Active reading
1998 Schilit, Price, and Golovchinsky Xlibris Tablet PC None Active reading
1999 Golovchinsky, Price, and Schilit Xlibris Tablet PC None Active reading

1999
Marshall, Price, Golovchinsky,
and Schilit

Xlibris Tablet PC None Active reading

1999 Truong, Abowd, and Brotherton Classroom 2000 Tablet PC None
Lecture
presentation

2000 Golovchinsky and Marshall Xlibris Tablet PC None Active reading
2000 Golovchinsky and Marshall Xlibris Tablet PC None Active reading

2001
Marshall, Price, Golovchinsky,
and Schilit

Xlibris Tablet PC None Active reading

2002 Golovchinsky and Denoue Xlibris Tablet PC Layout Active reading

2002
Götze, Schlechtweg, and
Strothotte

Intelligent pen Unknown None Active reading

2002
Mackay, Pothier, Letondal,
Bøegh, and Sørensen

A-book Multiple None Biology lab

2003 Bargeron and Moscovich Callisto Tablet PC Content Not specified
2003 Guimbretière PADD Anoto None Not specified

2003 Ramachandran and Kashi
Ramachandran
& Kashi (2003)

Unknown Content Web browsing

2003
Shipman, Price, Marshall, and
Golovchinsky

Xlibris Tablet PC None Active reading

13



Table 2: (continued).

Year Authors Implementation
Input
Mechanism

Change
Allowed

Application
Domain

2004
Anderson, Anderson, Simon,
Wolfman, VanDeGrift, and
Yasuhara

Classroom
Presenter

Tablet PC None
Lecture
presentation

2004
Anderson, Hoyer, Prince, Su,
Videon, and Wolfman

Classroom
Presenter

Tablet PC None
Lecture
presentation

2004
Conroy, Levin, and
Guimbretière

ProofRite Multiple Content
Editing
documents

2004 Olsen, Taufer, and Fails ScreenCrayons Tablet PC None Not specified

2004 Shilman and Wei
Shilman & Wei
(2004)

Tablet PC Unknown Not specified

2005 Agrawala and Shilman DIZI Tablet PC None Not specified

2005 Anderson, McDowell, and Simon
Classroom
Presenter

Tablet PC None
Lecture
presentation

2005 Dontcheva, Drucker, and Cohen v4v Tablet PC None
Lecture
presentation

2005
Kam, Wang, Iles, Tse, Chiu,
Glaser, Tarshish, and Canny

LiveNotes Tablet PC None
Lecture
presentation

2005
Liao, Guimbretière, and
Hinckley

Papiercraft Anoto None Active reading

2006
Chatti, Sodhi, Specht, Klamma,
and Klemke

u-Annotate Unknown Unknown Web browsing

2006 Plimmer and Mason PenMarked Tablet PC None Marking

2006
Plimmer, Grundy, Hosking, and
Priest

RCA Tablet PC Content Program code

2006 Priest and Plimmer RCA Tablet PC Content Program code

2006 Tront, Eligeti, and Prey WriteOn Tablet PC Unknown
Lecture
presentation

2006 Tront, Eligeti, and Prey WriteOn Tablet PC Unknown
Lecture
presentation

2006
Wang, Shilman, and
Raghupathy

OneNote Tablet PC Unknown Not specified

2007 Chen and Plimmer CodeAnnotator Tablet PC Content Program code

2007
Liao, Guimbretière, Anderson,
Linnell, Prince, and Razmov

PaperCP Multiple None
Lecture
presentation

2007 Plimmer and Apperley PenMarked Tablet PC None Marking

2007 Signer and Norrie PaperPoint Anoto None
Lecture
presentation

2007 Wang and Raghupathy OneNote Tablet PC Content Not specified

2008
Cattelan, Teixeira, Ribas,
Munson, and Pimentel

Inkteractors Tablet PC None
Lecture
presentation

14



Table 2: (continued).

Year Authors Implementation
Input
Mechanism

Change
Allowed

Application
Domain

2008
Chang, Chen, Priest, and
Plimmer

RCA &
CodeAnnotator

Tablet PC Content Program code

2008
Liao, Guimbretière, Hinckley,
and Hollan

Papiercraft Anoto None Active reading

2008
Weibel, Ispas, Signer, and
Norrie

PaperProof Anoto None
Editing
documents

2008 Wu, Yang, and Su
Wu, Yang & Su
(2008)

Unknown Unknown Collaboration

2009 Chandrasekar, Tront, and Prey WriteOn Tablet PC Unknown
Lecture
presentation

2009 Steimle CoScribe Anoto None Studying

2009
Steimle, Brdiczka, and
Muhlhauser

Steimle (2009) Anoto None Not specified

2010 Lichtschlag and Borchers CodeGraffiti
Capacitive
touch

Content Program code

2010 Pearson and Buchanan
Pearson &
Buchanan
(2010)

Capacitive
touch

Unknown Collaboration

2010
Plimmer, Chang, Doshi,
Laycock, and Seneviratne

iAnnotate Tablet PC Layout Web browsing

2012 Chen, Guimbretière, and Sellen United slates eInk Reader None Active reading

2012
Hinckley, Bi, Pahud, and
Buxton

GatherReader Tablet PC Unknown Active reading

2012 Matulic and Norrie
Matulic &
Norrie (2012)

Hybrid Unknown Active reading

2012 Steimle CoScribe Anoto None Collaboration

2013 Bhardwaj, Chaudhury, and Roy
Augmented
Paper System

Visual Unknown Not specified

2013 Chen, Guimbretière, and Sellen United slates eInk Reader None Active reading
2013 Marinai Marinai (2013) Unknown Layout Not specified

2013
Mazzei, Blom, Gomez, and
Dillenbourg

annOot Tablet PC Unknown Studying

2013 Sutherland and Plimmer vsInk Tablet PC Content Program code

2013 Yoon, Chen, and Guimbretière
Yoon, Chen &
Guimbretière
(2013)

Tablet PC None Not specified

Table 2 lists the publications that were included in the mapping study,308

together with their high-level details. Full bibliographic information for all309

publications is in the reference list.310

15



19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

0

1

2

3

4

5

6

7

Publication Year

N
u
m

b
er

of
P

u
b
li
ca

ti
on

s

Figure 3: Number of publications included in corpus on freeform digital annotations from
1991 to 2013.

3.2. General Information311

The earliest publication identified was published in 1991. Since then there312

have been between zero and five publications published a year (see Figure313

3).314

In this section we review the input mechanisms, change types supported,315

application domains and document formats.316

3.2.1. Input mechanism317

We were able to identify the input mechanism for 56 implementations318

(see Figure 4). We found the following input mechanisms: Tablet PC with319

stylus; Anoto pen; digitiser with stylus; PDA with stylus; customized eInk320

readers; capacitive touch and visual input.321

The most common input mechanism reported is a stylus on a tablet PC322

(38 implementations). In this mechanism the user directly draws on the323

screen of the tablet PC with a special stylus. The tablet PC directly cap-324

tures the digital ink which is then processed by the implementation. Eight325

16



Stylus on Tablet PC (50.0%)

Anoto Pen (14.3%)

Unknown (11.9%) Digitzer (4.8%)
Capacitive Touch (4.8%)

Stylus on Tablet PC or Anoto Pen (4.8%)

Other (9.5%)

Figure 4: Percentage of implementations for each input mechanism.

implementations used an Anoto pen on paper. The document is printed and326

an Anoto pen records inking on the paper. The ink is then converted to a327

digital form, loaded into the implementation and added to the original digi-328

tal document. A further two implementations allowed input from either the329

Anoto pen or a stylus on tablet PC. The remaining eight implementations330

used a variety of input mechanisms. Four used a stylus: two via a digitizer331

[37, 30], one with a PDA [44] and one used customised eInk readers [18, 19].332

Two used touch on a capacitive touch surface [42, 56]. One used an Anoto333

Pen combined with a tabletop PC [50] and the final implementation used334

visual input to track the tip of a pen [9].335

We identified three dimensions influenced by the input mechanism:336

(i) directness;337

(ii) accuracy;338

(iii) physical size.339

Directness describes the relationship between the input surface and the340

display. A direct mechanism (Tablet PCs and Anoto Pens) involves direct341

interaction with the display surface. In contrast, with an indirect mechanism342

17



(digitizer) there is a disconnect between the input surface and the document.343

The user has to map from the document to the input surface. With directness344

there are two possible interactions: input and output. Tablet PCs provide345

direct interaction for both input and output. The user can directly input346

ink onto the device and see it update. In contrast, Anoto Pens provide347

mixed directness: while the user can directly input on the display surface348

and see it update on the display surface, they do not directly see its digital349

representation. Digitizers also provide mixed directness: for input they are350

indirect but the user can directly see the digital representation. We did not351

identify any mechanisms that were indirect for both input and output.352

Accuracy describes the level of precision when using the input mecha-353

nism. The most accurate input mechanism mentioned were the Anoto Pens.354

These have a theoretical precision of 0.03mm [50]. The least accurate input355

mechanism is using touch on a capacitive surface. Stylus input devices have356

a range of accuracies but few publications record any details on the level of357

precision achieved. However the precision will be lower than an Anoto due358

to the decreased display resolution compared to paper [3].359

Physical size refers to the physical size of the input surface. The smallest360

device was the PDA for A-book [44]. The next larger devices are Tablet361

PC and eInk reader systems. Finally, the largest physical systems are the362

tabletop implementations. These systems require space for the table plus363

additional ancillary equipment (e.g. the camera in [9]). Anoto pen systems364

can potentially be anywhere on this dimension as the input surface depends365

on the size of the paper the document is printed on.366

3.2.2. Change type allowed367

Of the 61 implementations 3 supported layout-only changes, 11 supported368

layout-and-content changes and 35 did not support any type of change in the369

underlying document. For the remaining 12 we could not determine whether370

they supported any changes. The definitions of each change type are defined371

in §2.5.8.372

3.2.3. Application domains373

During the analysis we identified five main domains:374

(i) Collaboration375

(ii) General376

(1) Active reading377

18



(2) Document editing378

(3) Web browsing379

(iii) Education;380

(1) Lecturing381

(2) Marking382

(3) Studying383

(iv) Programming;384

(v) Research.385

Table 2 includes the application domain for each implementation.386

Collaboration systems are primarily intended for communications be-387

tween two or more people. In these systems annotations are a way of com-388

municating information. For example, Wang Freestyle allowed people to389

exchange notes and documents. Annotations enhanced document exchange390

by including a simple way to add additional information [37].391

General covers both reading and producing documents. The most com-392

mon category in this document is reading documents: specifically active393

reading2. During active reading the reader uses a pen to mark the text as394

they read. XLibris, the most implementation with the most publications, was395

original designed as an active reading device [67]. Web browsing is another396

form of reading but with some key differences: active reading applications397

replicate how paper works [67, 68, 63] while web browsing focuses on the398

dynamic nature of web pages [17, 61]. Finally, document editing refers to399

the process of producing and editing documents. The three implementa-400

tions in this category all focused on how an editor can annotate a document401

[30, 21, 84].402

The most common area in education is lecturing: presenting slides to a403

class with annotation support [81, 5, 4, 33]. Some implementations inves-404

tigated how annotations can help students when studying and taking notes405

[76, 51]. One implementation investigated how annotations improving mark-406

ing of student work [59, 58].407

The final two domains are subject specific and have a limited number of408

implementations. Some implementations looked at how annotations could409

be added to program code. These implementations mainly focused on the410

technical challenges of adding annotations within current IDEs and how they411

2As mentioned by Chen et al. active reading also implies similar terms such as work-
related reading and responsive reading [18].

19



H
TM

L
PD

F

Pow
er

Poi
nt

Pro
gr

am
Cod

e

Sc
an

ne
d

D
oc

um
en

t

R
ich

D
oc

um
en

t

Sc
re

en
Cap

tu
re

O
ne

N
ot

e
Tex

t
0

2

4

6

Document Format

N
u
m

b
er

of
Im

p
le

m
en

ta
ti

on
s

Figure 5: Number of implementations that handle each document format.

can assist with navigation [60, 64, 20]. However one also looked at how412

annotations could be useful for code in a collaborative environment [42].413

The other domain was research: the single implementation in this domain414

looked at how annotations provide a link between physical and electronic415

documents [44].416

3.2.4. Document formats417

Many implementations do not mention document formats used (17 out418

of 42). The formats that are mentioned can be grouped into nine formats419

(see Figure 5). The most common format mentioned is HTML [8, 65, 17,420

85, 74, 76, 61] (seven implementations) followed by PDF [29, 74, 76, 18,421

19, 45, 86] (six implementations) and then program code [60, 64, 20, 16,422

42, 77], PowerPoint [5, 72, 74, 76] and scanned documents [37, 62, 67, 68,423

27, 48, 25, 26, 49, 24, 44, 71, 74] (all with four implementations). Scanned424

documents refers to documents that have been scanned and loaded into the425

implementation. Rich Documents refers to documents produced by word426

processing software: two implementations use this format (AbiWord [21]427

20



Table 3: Taxonomy of Annotation Types

Type Catgeory Examples

Single line Underlines
Highlighting

Multiple line Enclosures
Margin bars
Braces

Connectors Callouts/arrows
Complex Text/symbols within text

Drawings
Marginalia

Commands Commands

Table 4: Taxonomy of Annotation Support Operations

Category Operation

Adding operations Grouping
Recognising
Anchoring
Storing

Adapting operations Repositioning
Refitting
Orphaning/Deleting

and OpenOffice [84]). Screen capture refers to a direct capture of the screen:428

two implementations use this format [15, 79, 80, 55].429

3.3. Taxonomy430

A summary of the research approaches to digital ink software is presented431

in Tables 3 and 4. This taxonomy has been compiled as a result of the data432

synthesis step (see §2.6). Table 3 lists the categories of annotation types and433

examples of each type. Table 4 lists the adding and adapting operations.434

3.3.1. Annotation types recognised435

It is clear from the various studies that been conducted (e.g. [46, 24, 47,436

8, 70, 83, 78]) that there are some common types of annotations. However437

21



Table 5: Annotation category recognised by implementation

Implementation Single Line Multiple Line Complex Connector Command

Callisto [8] Y Y Y
Classroom Presenter [5, 6, 4] Y Y
CodeAnnotator [20, 16] Y Y
Intelligent pen [28] Y Y Y Y
MATE [30] Y
Matulic & Norrie (2012) [50] Y
OneNote [83, 82] Y Y Y Y
PaperCP [39] Y
PaperPoint [72] Y
PaperProof [84] Y
Papiercraft [40, 41] Y
ProofRite [21] Y Y
Ramachandran & Kashi (2003)
[65]

Y

RCA [60, 64, 16] Y Y
ScreenCrayons [55] Y Y
Shilman & Wei (2004) [70] Y Y Y Y
Steimle (2009) [74] Y
United slates [18, 19] Y
vsInk [77] Y Y Y
Wu, Yang & Su (2008) [85] Y Y Y
Xlibris [62, 67, 68, 27, 48, 25,
26, 49, 24, 71]

Y Y Y Y Y

Yoon, Chen & Guimbretière
(2013) [86]

Y

Number of Implementations: 9 11 8 6 12

22



these are dependent on both the individual and the domain. Despite this438

limitation many implementations still attempt to recognise the annotation439

type as this allows for additional functionality later.440

The annotation types recognised could be determined for 22 implemen-441

tations. The remainder of the implementations either do not handle specific442

annotation types or do not describe the annotation types recognised. Table443

5 lists these implementations and the categories that they recognise.444

Ten different annotation types were found. The following are the defini-445

tions of each annotation type:446

(i) An underline is a line drawn underneath or through a sentence.447

(ii) A highlight is similar to an underline but drawn with a different (often448

semi-transparent) pen.449

(iii) An enclosure is a border around one or more elements.450

(iv) A margin bar is a vertical straight line drawn in a margin.451

(v) A brace is similar to a margin bar but has a pronounced rounded shape452

and a centre prominence.453

(vi) An arrow or call out is a line drawn from one element to another. It454

may have arrow heads on one or both end points.455

(vii) Text and symbols are characters written in the body of the underlying456

text. They are generally added in the whitespace around the underlying457

text.458

(viii) A drawing is a picture or diagram.459

(ix) Marginalia are longer notes added in the margin.460

(x) Commands are marks that the implementation is expected to under-461

stand and execute.462

Figure 6 shows the breakdown of which annotation types are commonly463

supported.464

Different annotation types have different requirements from a software465

perspective. These annotation types were grouped into five categories based466

on the requirements of each type:467

(i) Single line (underline and highlighting): these annotations are associ-468

ated with a single line in the document;469

(ii) Multiple line (enclosures, margin bars and braces): these annotations470

span multiple lines;471

(iii) Connectors (arrows/callouts): these annotations associate two areas or472

annotations together;473

23



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Underline

Highlighting

Enclosures

Margin bars

Braces

Arrows/call
outs

Text/symbols

Drawings

Marginalia

Commands

Single line

Multiple
line

Connector

Complex

Command

Number of Implementations

Figure 6: Number of implementations that recognise each category of annotations.

24



(iv) Complex (text/symbols, drawings and marginalia): these annotations474

have additional meaning in addition to their location.475

(v) Commands (commands): these marks are commands for the system to476

perform. These are usually a limited set of symbols that the system477

can recognise.478

Table 6 shows the five categories and an example of each of the types.479

Table 6: Examples of each annotation type.

Single Line Annotations

Underline Highlight

Multiple Line Annotations

Enclosure Margin Bar Brace

Connector Annotations

Callout/arrow

25



Table 6: Continued.

Complex Annotations

Text/symbol Drawing Marginalia

Commands

Command

Single line annotations were recognised by nine implementations. All nine480

implementations recognised underlines; six also recognised highlights.481

Multiple line annotations were recognised by eleven implementations. All482

eleven implementations recognised enclosures; six recognised margin bars and483

three recognised braces.484

Connectors were recognised by eight implementations.485

Complex annotations are recognised by six implementations. All six im-486

plementations specially mentioned they recognised text/ symbols; two recog-487

nised drawings and three recognised marginalia. These three implementa-488

tions mentioned marginalia as a separate type; other implementations may489

have supported the same type but reported them as text/symbols.490

Finally, commands were recognised by twelve implementations.491

In addition to these categories, annotations fit into two classes based on492

their intended use. The first class of annotations are those intended for a493

26



person. While a computer may recognise these annotations they often have494

additional meaning beyond their appearance and location. The second class495

of annotations are those intended for the computer. These annotations can496

be completely understood by the computer. All commands fall into this497

category as the computer must understand them in order to apply them.498

One challenge with annotation systems is dividing annotations into the499

two classes. If the annotation is intended for the application there needs to500

be some way of recognising these annotations; otherwise the application will501

treat them as intended for a human. The publications reviewed in this study502

describe the following approaches:503

(i) Pen buttons;504

(ii) Separate display space;505

(iii) Special gestures;506

(iv) Pen and touch.507

Pen buttons involve using one or more buttons on the stylus device. When508

the user wants to change modes they depress these buttons. The buttons can509

either change the mode until the button is pressed again or only change the510

mode while the button is depressed. With the second option the mode returns511

to the original when the button is released.512

With a separate display space there is an area of the screen where gestures513

must be entered. Any ink outside this area is assumed to be human-readable514

only. Gestures within this area will be recognised and potentially processed.515

Special gestures involve either a specific gesture set or a special gesture516

that is added to other gestures. With the specific gesture set the implemen-517

tation attempts to recognise all gestures. If the gesture is recognised then it518

will be processed; otherwise the implementation assumes that it is human-519

readable ink instead. With the special gesture the implementation will ignore520

all ink unless it includes the gesture. If the special gesture is included then521

the entire gesture is assumed to be a command.522

Finally, with pen and touch one hand is used to control the pen and523

another to provide touch input to the implementation. Based on the touch524

input th the implementation either treats the pen input as human readable525

or as commands.526

3.3.2. Adding operations527

Adding an annotation to a document involves several steps. Digital ink528

is captured as ink strokes. A single ink stroke is generated by a pen-down,529

27



Table 7: Adding and Adapting operations by implementation

Implementation Group Recognise Anchor Store Reposition Refit Orphan

Callisto [8] Y Y Y Y Y
Classroom Presenter
[5, 6, 4]

Y

CodeAnnotator [20, 16] Y Y Y Y Y
CodeGraffiti [42] Y Y Y
CoScribe [76, 75] Y Y
iAnnotate [61] Y Y Y Y
Intelligent pen [28] Y Y
Marinai (2013) [45] Y
MATE [30] Y
Matulic & Norrie (2012)
[50]

Y

OneNote [83, 82] Y Y Y
PADD [29] Y Y
PaperProof [84] Y Y
Papiercraft [40, 41] Y
Pearson & Buchanan
(2010) [56]

Y

ProofRite [21] Y Y Y Y
Ramachandran & Kashi
(2003) [65]

Y Y Y

RCA [60, 64, 16] Y Y Y Y Y Y
ScreenCrayons [55] Y
Shilman & Wei (2004)
[70]

Y Y

Steimle (2009) [74] Y
u-Annotate [17] Y Y
United slates [18, 19] Y Y
vsInk [77] Y Y Y Y Y Y
Wu, Yang & Su (2008)
[85]

Y Y Y

Xlibris [62, 67, 68, 27, 48,
25, 26, 49, 24, 71]

Y Y Y Y Y Y

Number of
Implementations:

7 17 16 13 9 4 4

28



pen moves, pen-up sequence. However people do not consider ink strokes in-530

dividually. Instead they cognitively group them together as annotations. An531

annotation can consist of a single ink stroke (e.g. an underline or enclosure)532

or multiple strokes (e.g. text or drawings).533

We found four operations involved in adding an annotation to a document:534

(i) Grouping: combining multiple ink strokes into a single annotation;535

(ii) Recognition: classifying all or part of the annotation;536

(iii) Anchoring: determining the location of the annotation relative to the537

underlying context (further details are mentioned in §3.3.3);538

(iv) Storage: persisting the annotation details, including information about539

the anchor;540

Very few publications reported on how annotations are stored. Most541

implementations that store the annotations use a separate file for the an-542

notations (i.e. they do not modify the original document). These files are543

either stored locally on the user’s machine [17, 64, 77] or sent to a server [61].544

Another approach is to modify the original file to store the annotations in it545

[18, 83, 82].546

Binary and XML-based formats are the only two storage formats men-547

tioned. Only one publication describes the storage format in detail [65] al-548

though some other implementations do use pre-defined formats (e.g. Mi-549

crosoft’s ISF format) [64, 77].550

Different implementations use different sequences of these steps. The551

sequence of steps implemented depends on the goals of the implementa-552

tion. However there are two general sequences: all-annotation and single-553

annotation.554

The all-annotation sequence processes all strokes in the document when a555

new stroke is added. The first step is to group strokes into annotations. Then556

the implementation attempts to recognise each annotation. The result from557

the recognition (the annotation type) is used to anchor the annotation in558

the document. Finally the annotation details are stored. With this sequence559

there is more information for the grouping and recognition steps. This may560

improve recognition accuracy but comes at the cost of increased computation.561

This increase is due to the need to reprocess all strokes. The implementations562

by Shilman and Wei [70], Wang et al. [83], Wang and Raghupathy [82] are563

examples of this sequence.564

The single-annotation sequence processes each stroke only once. When565

a stroke is added the first step is to group the stroke with an existing an-566

29



notation. If this is not possible then a new annotation is started. The567

implementation recognises the annotation and anchors it to the document.568

Recognition and anchoring are only applied to new annotations. No matter569

how many strokes are added to an existing annotation the type and anchor570

do not change. Finally the annotation is stored. This sequence requires less571

rework as recognition and anchoring is only performed once per annotation572

but this may reduce recognition and anchoring precision.573

The single-annotation sequence can involve the user in the grouping oper-574

ation. The amount of user involvement ranges from the user manually doing575

all the grouping to the implementation providing hints. Callisto requires the576

user to do the grouping (and recognition) [8]. RCA, CodeAnnotator and577

vsInk all provide grouping hints by displaying a border around the annota-578

tions. When the new stroke is inside or intersects an annotation’s border it579

is included with the annotation [20, 64, 77]. XLibris does not provide any580

user feedback or involvement in the grouping [24]. Instead it uses timing and581

spatial heuristics to automatically group strokes together.582

Not all implementations use all four operations. Some implementations do583

not mention any form of recognition (e.g. [17, 61]). Other implementations584

treat all strokes as individual annotations and do not mention any grouping585

(e.g. [70, 85]).586

There are also notable exceptions to the overall sequences listed above.587

These typically include one or more of the steps but don’t do it for the588

purpose of adding annotations. For example recognition is used to separate589

temporal, attention strokes from permanent ink annotations [6]; to identify590

sections in a document that would be most useful to the user [71]; and to591

apply a mask to the document to emphasize what was annotated [55].592

There have not been any comparative studies between these sequences to593

determine the relative efficacy of each.594

3.3.3. Anchoring mode595

Annotation anchoring involves associating an annotation with an element596

of context in the document. All current research treats freeform ink annota-597

tions as graphical elements. These graphical elements are positioned in the598

document relative to a bounding box. We have classified the anchor mode599

by the type of bounding box used (see Table 8).600

The most common approach is to use the whole page as the bounding601

box. Both the document and the annotations are treated as graphical repre-602

sentations. Typically the annotation’s top left corner is recorded as an offset603

30



Table 8: Number of implementations for each anchoring approach

Anchoring Approach Number of Implementations

Whole page 20
HTML Element 4
Code Line 4
Unknown 10
Word 2
Paragraph 1

Total: 41

from the top-left of the page. The annotations are merged onto the docu-604

ment to produce the final view. While this approach is simple and easy to605

implement it does not allow for the underlying document to change. If the606

document changes a new graphical representation needs to be generated and607

the associated coordinates either lose their meaning or need to be translated.608

There are no reports of translating an annotation to new coordinates without609

using a more sophisticated approach to anchoring.610

The remaining approaches all use a smaller element on the page. The611

page is decomposed into these elements and the closest element is selected612

as the bounding box. Where there are multiple choices the implementation613

will use some form of preferential ordering to select the “best” bounding box614

[82, 77].615

Both paragraph and word approaches use the words in the document616

as the anchor. The anchor can include using the words themselves, using a617

number to identify the word within the document (e.g. words 10 to 15) or the618

location of the words (e.g. words 1 to 5 in the second paragraph of the third619

page) [24]. All of these approaches assume the words do not change within620

the document. This approach does however support reflow of the existing621

text, for example the font size being changed so that words flow onto other622

lines [24].623

Anchoring with an HTML element uses the underlying HTML document624

object model (DOM). HTML uses a tree-like structure for generating a page.625

The browser renders this structure into a graphical representation that the626

user sees. Choosing an anchor position involves finding the closest element627

to the annotation. The information stored for the annotation includes the628

31



Table 9: Number of implementations that automatically adapting annotations

Repositioning Refitting Orphaning

Layout-only 3 2 0
Layout-and-content 6 2 4

Total 9 4 4

identifier of the element (if any), the path from the root to the element and629

the surrounding elements [17, 61].630

The bounding box for a code line is around each individual line. The631

anchor for code annotations consist of the line number and file name [20, 64,632

77].633

3.3.4. Adapting operations634

When the underlying document changes an annotation may need to adapt635

in response. By adapting the annotation it retains its meaning and value.636

The actual type of adaptation depends on how the underlying document is637

modified.638

There is less work published on automatically adapting annotations. Only639

ten out of the 31 implementations mention any form of automatic adaptation,640

we grouped these into three categories:641

(i) Repositioning: the annotation is moved to a new location;642

(ii) Refitting: the appearance of the annotation is changed;643

(iii) Orphaning: the underlying context for the annotation has been re-644

moved.645

In addition to these categories, implementations can be classified by the646

type of document modification that is handled. Table 9 shows the relation-647

ship between these two categories.648

Nine implementations handle repositioning annotations when the under-649

lying content changes, four them handle orphaning and four refit annotations.650

There was only one implementation that handled refitting but not reposition-651

ing [65]. This is unusual as normally repositioning is easier to implement than652

refitting. It may be this implementation does handle repositioning but it was653

not mentioned in the publication. All systems that implement orphaning also654

implement repositioning.655

32



Four out of the six implementations that handle content changes are code656

editors. The others are ProofRite and Callisto [21, 8]. All four implemen-657

tations that handle orphaning are also code editors. They all use the same658

approach for handling orphaning by deleting the annotation. None of the659

publications on these implementations mention anyway for the user to re-660

view the orphaned annotations [20, 42, 60, 64, 77].661

The effectiveness of annotation repositioning is related to anchoring. Repo-662

sitioning requires an anchoring mode at a more granular level than whole-663

page. All nine implementations that support repositioning use a more gran-664

ular mode. Four implementations used a line bounding box [64, 20, 42, 77];665

one used a bounding box based on HTML elements [61]; one used paragraph666

level bounding boxes [45]; two used word level bounding boxes [24, 8]; the667

final implementation did not mention how the annotations were anchored to668

the context [21].669

Repositioning calculates the new position of the annotation using the670

position of the anchor element plus an offset. The first step is to retrieve671

the current location of the reference point. The offset is then added to this672

reference point and the annotation positioned using the sum. All approaches673

are in reality using (x, y) co-ordinates (as the annotation is a graphical674

element) translated relative to the anchor [77].675

Only four implementations mentioned any refitting of annotations: XLib-676

ris [24]; Callisto [8]; ProofRite [21] and the system by Ramachandran and677

Kashi [65]. All of these implementations use similar rules. Two systems only678

handle layout changes (XLibris and Ramachandran and Kashi). For XLibris679

the rationale was to remove any confounding influence due to not finding an680

anchor for an annotation. Callisto and ProofRite handle both content and681

layout changes.682

In XLibris single-line annotations (underlines and highlighting) remain683

attached to the words they are anchored to. If a line splits then the an-684

notation will also split; if two lines with similar annotations are joined the685

annotations will also be joined. Multi-line annotations (enclosures and mar-686

gin bars) are stretched or condensed so the top and bottom margins of the687

annotation stay in the same relative positions to the underlying context.688

Complex annotations are not refitted [24].689

Callisto treats enclosures as a single line annotation and associates them690

with the line in the same way XLibris handles underlines and highlights.691

Braces are handled instead of margin bars. Callisto also has a mode where692

the annotations are converted to “cleaned” annotations. Underlines and693

33



highlights are converted to straight lines that align with the underlying text;694

enclosures are converted to rectangles with rounded corners and aligned to695

the underlying text; braces are converted to simple Bezier curves. Once696

cleaned the annotation then follows the same refit rules as the original anno-697

tations. The rationale for this is it is easier to automatically refit “cleaned”698

annotations [8].699

ProofRite follows the same rules as XLibris [8]. The system by Ramachan-700

dran and Kashi does not describe the rules for adapting annotations [65].701

Table 5 shows which implementations recognise the different categories702

of annotations. Table 7 shows the implementations which implement adding703

and adapting operations.704

3.4. Additional Functionality705

While the main focus of this review is how to add and adapt freeform ink706

annotations on digital documents we also recorded additional functionality707

that is possible in a digital environment. We report this functionality in this708

section for completeness. However due to the wide range of functionality709

that is available we do not cover them in detail.710

Table 10 outlines additional functionality provided by the different imple-711

mentations. This functionality extends annotations beyond what is available712

using pure pen and paper. During the data synthesis phase (see §2.6) these713

were grouped into seven categories: collaboration; distributed; dynamic sup-714

port; intelligent support; navigation; viewing and other. These are described715

below.716

Collaboration is about sharing annotations between people. At its sim-717

plest this involves sharing annotations one person makes with another. There718

are variations on this simple theme. First, annotations can be shared equally719

between different people (Sharing Annotations). In this variation each per-720

son is treated as an equal collaborator (at least at the implementation level).721

In contrast interactive lectures implies unequal sharing: one person is giving722

the lecture and the rest are students participating. Interactive lectures refers723

to either sharing the lecturers annotations to a wider group [5, 6, 4, 39] or724

the lecturer viewing students’ annotations [81, 39]. Another issue that is725

specific to sharing annotations is privacy . People often make annotations726

that they consider private and they do not want to share with other people727

[13, 81, 47, 75]. Thus some implementation have looked at how the privacy728

settings can be changed [81, 75].729

34



Table 10: Additional functionality provided by computer-assisted annotations

Category Functionality References

Collaboration Annotation privacy [75, 81]
Interactive lectures [5, 22, 39, 81, 6, 4, 72]
Sharing annotations [37, 33, 42, 51, 56, 75, 74, 85]

Distributed Control of remote device [72, 4, 39, 18, 19]
Shared information between
devices

[18, 19]

Dynamic support Automatic adaptation [8, 20, 24]
Manual changes [64, 77, 20]

Intelligent support Automatic word lookup [9]
Command execution [40, 41, 50, 65, 72, 84, 21, 30, 84]
Error recognition [5]
Gesture recognition [28, 40, 41, 50, 65, 72, 84, 21, 30, 84]
Handwriting recognition [6]
Masking [55]

Navigation
Automatic collection of
annotations

[49, 62, 67, 63]

Automatic list of related
materials

[63, 67, 62]

Automatic search based on
annotations

[27, 62, 67, 71, 68]

Hyperlinking [9, 25, 67, 62]
Linking documents [41, 74, 76]
Navigation based on
annotations

[20, 18, 30, 67, 77]

Tagging documents [74, 76]

Viewing Additional annotation space [4, 86]
Replay of annotations over time [14]
Zooming [3]

Other Combining pen with touch [50]
Direct screen capture and
annotation

[15, 80]

Information gathering [31]
Supporting workflow [59, 58, 57]

35



Some implementations offer distributed functionality: the system is sep-730

arated across multiple machines. There are two variations: controlling a731

device or sharing information. Controlling a device assumes there is master732

device and one or more devices being remotely. For example, lecture presen-733

tation systems often allow the lecturer to control the presentation without734

being anchored to the device that controls the projector [72, 4, 39]. In con-735

trast, sharing information is where all devices are considered equal [18, 19].736

Because the information is shared the user does not have to worry about737

what device they entered the data on. This overcomes some of the earlier738

limitations found when comparing pen-and-paper to electronic annotation739

making [53, 52].740

Functionality in the dynamic support category is about changing anno-741

tations after they have been added. This category divides into two groups:742

automatic adaptation and manual changes. With automatic adaptation the743

implementation tries to change the annotation in a way that the original744

meaning is preserved [8, 20, 24]. The user is either not or minimally involved745

in the changes. In contrast, manual changes is where the user has full con-746

trol over how the annotations are changed [64, 77, 20]. This can be changing747

the location of the annotation, completely deleting it or changing how the748

annotation’s appearance.749

Intelligent support adds contextually aware functionality to annotations.750

The majority of the research in this category requires recognition (e.g. recog-751

nising errors, functional gestures, and hand-writing). The premise behind752

recognition is if the system can understand an item it can then add extra753

support for it. For example, if a gesture can be recognised then an asso-754

ciated command can be executed automatically. Thus command execution755

is flow-on functionality from recognition. Other intelligent functionality in-756

cludes looking up words and masking out parts of the document based on757

the underlying context of an annotation [9, 55]. Both of these functions aim758

to reduce the workload on the user by anticipating their intentions.759

Navigation is another common category. For example, XLibris explored760

many different ways of navigating through documents based on a user’s anno-761

tations [62, 63, 67, 68, 27, 49]. These include collecting annotations together762

so the user can view them in one location; using hyperlinks to return to the763

original source; and generating lists based on the context of the annotations764

[62, 63, 67, 68, 27, 49]. Other navigation functionality includes the user link-765

ing documents together via annotations or tagging them for future reference766

[41, 74, 76].767

36



The next category, viewing, is how to display annotations in different768

ways. One commonly reported issue with annotations is the amount of space769

available for them. Some implementations have looked at how to increase770

space automatically without user interventions [4, 86]. Another approach771

is to replay annotations in chronological order so the viewer can see how772

they have been built up [14]. The third approach is to help with inputing773

annotations (in order to overcome of the limitations in technology) [3].774

Finally, remaining niche functionalities are grouped together under ‘other’.775

For example, combining pen and touch interactions together [50]; using screen776

capture to generate documents [15, 80]; information gathering [31] and sup-777

porting workflow [59, 58, 57].778

3.5. User Studies779

We found a variety of user study types reported. We divided them into780

three types:781

(i) Usability;782

(ii) Technical capacities;783

(iii) User expectations.784

Usability studies investigate the effectiveness and efficiency of the im-785

plementation. There are a number of usability studies that looked at the786

usefulness and learnability of various implementations [4, 24, 45, 51, 75].787

These studies have identified a range of issues that need to be considered.788

However few of these studies took their results and generalised them beyond789

the implementation. This makes these results specific to the implementa-790

tion itself without exploring the wider possibilities of what it means for user791

expectation.792

Studies on the technical capacities investigate the technical limitations of793

the implementation. These might include speed, performance, and accuracy.794

Again these studies are limited to the implementation; although the details795

do often show where the implementation can be improved.796

The final type of study is on user expectations. These investigate new797

avenues that are not possible with paper-based annotations. XLibris is an798

example of an implementation that was used to investigate user expectations799

in a variety of contexts [62, 67, 27, 48, 49, 71]. While these studies are800

interesting and provide more detail on user expectations for this review our801

specific focus on user expectations is around the automatic adaptation of802

annotations. There is only one study in this area [8].803

37



One important finding is that users like the implementations that are804

predictable and reliable. However if this is not possible then they do not want805

the implementation to change their annotations. Bargeron and Moscovich806

[8] found users would prefer the underlying text to be locked, so they cannot807

modify it, if the annotation cannot be accurately adapted. They theorised808

there would be a cut-over point for when to lock the context but they were809

unable to detect one based on their results.810

Another important finding is people are happy with “cleaned” annota-811

tions. These annotations are often preferred over the original annotations.812

In addition people are happier seeing these annotations change in response813

to changes in the underlying document than seeing their original annotations814

change. However cleaning the annotations increases user expectations. The815

users have a higher expectation that the implementation understands their816

meaning [8].817

While only one study specifically looked at user expectations around818

adaptation there are several other studies that include results related to819

automatic adaptation. One area where annotations do not always behave820

as expected occurs in the grouping operation. Some annotations (e.g. text,821

drawings, etc.) are expected to remain together. For example the cross stroke822

of the ‘t’ and the dot above the ‘i’ should remain in position relative to the823

rest of the letter. In some automatic implementations this does not happen824

during repositioning [24, 45].825

Another area that can cause confusion is resizing multiple line annota-826

tions [8, 24]. When the annotation is outside the text this is not an issue827

(e.g. margin bars or braces) but when the annotation is within the text the828

meaning is not preserved as effectively. One potential reason for this is adap-829

tations for this category of annotation do not take into account which words830

the annotation should be associated with.831

Anderson et al. [4] suggest that digital annotation can be more difficult832

to read than annotations on paper. Identified factors that cause this include:833

(i) Pen size: often the pen is a larger size than would be used on paper.834

The annotations can take up too much space on the document and835

obscure the underlying text;836

(ii) Pen colour: the colours chosen for the annotations can make them more837

difficult to read (especially when displayed via a projector);838

(iii) Annotation similarity: all annotations added using digital ink have the839

same colour. Unless the user changes the colour all ink annotations in840

38



the same location will merge together.841

These factors make it harder for people to accurately add annotations to842

the document. This reduction in accuracy then has a flow-on effect where843

annotations are more difficult to correctly adapt. DIZI is an example of a844

system that attempts to overcome these challenges [3].845

Anderson et al. [4] further suggest the last point occurs because digital846

ink doesn’t change over time like pen annotations do. They claim when ink847

is first added to paper it appears slightly different. Then as time passes the848

ink dries and the colour changes slightly. This makes it easier to differentiate849

annotations based on the time they were added. The colour also changes850

when multiple strokes are layered on top of each other with a pen. But with851

digital ink all the strokes have exactly the same colour.852

4. Discussion853

During the review we found a number of areas of significance. In this sec-854

tion we discuss these and how they impact on freeform digital annotations.855

In §4.1 we address one of the challenges in this review, the plethora of terms856

used, by providing a set of common terms. In §4.2 we discuss how the var-857

ious input mechanisms influence the functionality available. In this review858

we identified three adapting operations reported: repositioning, refitting and859

orphaning. Before these operations can be applied there are four adding oper-860

ations that influence automatic adaptation: grouping, recognising, anchoring861

and storing. The effectiveness of the adapting operations depends on the ef-862

fectiveness of these adding operations. Therefore §4.3 discusses the adding863

operations followed by §4.4 on the adapting operations. One important fac-864

tor that influences adaptation is the type of the annotation. Previous work865

has identified different types of annotations but these are normally limited to866

static documents. In §4.5 we describe how our taxonomy handles dynamic867

document and use this to identify gaps in the current literature. Another868

important concept that influences adaptation is annotation lifetime; in §4.6869

we discuss this and how it interacts with fluidity. In §4.7 explain why other870

functionality warrants a new review. Finally, in §4.8 we address a gap in the871

literature around user experience and going from individual usability studies872

to the wider picture.873

39



4.1. Terms874

One of the issues we found during this review is different publications875

use different terms for the same thing. We propose the following set of terms876

being either the most common term used or that which most clearly describes877

the feature.878

(i) Gesture: a pen or touch stroke from contact point through movement879

on the surface to lift off.880

(ii) Digital ink: gestures that remain on the surface as visible ink.881

(iii) Functional commands: gestures that result in a command (e.g. undo).882

(iv) Annotation: a group of logically related digital ink gestures.883

(v) Markup: a general term for all the annotations on a document.884

(vi) Lifetime: the expected duration of an annotations existence.885

(vii) Fluidity: the interaction experience of the user; in particular whether886

mode changes are necessary.887

(viii) Adaptation: the alteration of annotation so that they continue to hold888

their meaning when the underlying document changes.889

4.2. Input mechanisms890

The input mechanisms for annotations affect the functionality that soft-891

ware can provide. Based on the literature we define three dimensions: di-892

rectness, accuracy and physical size. Choosing an input mechanism involves893

a trade-off along these dimensions. For example, An Anoto pen allows the894

user to retain directness of input and immediate output, plus high accuracy,895

but at the cost of losing the directness of digital output. Thus the user knows896

what is happening on the paper but not on the computer; and should the897

digital representation change the user would be unaware unless they notified.898

In contrast, a Tablet PC is very direct for both input and output: the user899

is fully aware of what is happening at all times. The price for this trade-off900

is the reduction in accuracy.901

In addition to these dimensions there are other factors that influence the902

choice of input mechanism that are not captured in these three dimensions.903

These factors are harder to classify on a scale but still have an influence on904

the user experience. For example, Anoto pens use real paper as the input and905

display surface. This provides the full range of affordances that are available906

for paper (e.g. physicality, freedom of interactions, ability to spread out, etc.)907

but also paper’s limitations (e.g. being static, taking more space, unable to908

40



search, etc.) In contrast, tablets are full computers with all the processing909

ability that computers have. Users can tap into this functionality as part of910

their experience; but at the cost of a bulkier device and losing some of the911

affordances of paper.912

The majority of the implementations reported on use a tablet device for913

the input mechanism; with pen-and-paper UIs (Anoto pens) being the second914

most common input mechanism (see Figure 4). From a research perspective915

the main differential is whether the annotation is on paper vs. on screen with916

the occasional attempt to combine the two modalities (e.g. [50]). We theorise917

that tablets are most popular because they are fully functional computers918

with the added input modality of ink. Thus the research in this area is919

around how to use digital ink as the input modality and what benefits it920

provides compared to other input modalities. In contrast, using pen-and-921

paper UIs are approaching digital ink from the viewpoint of how can paper922

be extended with a focus on two areas. The first area is what additional923

functionality can be provided beyond a pure pen and paper environment (e.g.924

collaboration [76, 75] and lecture presentation [39, 72]). The second area is925

how to overcome the limitations of paper (e.g. lack of feedback [50] and lack926

of interactivity [74, 84, 41]). Of interest, initial research only used tablet927

PCs but now pen-and-paper UIs are gaining in popularity. This may be due928

to initial hardware limitations being overcome or the realisation that paper929

still offers many affordances that computers have yet to replicate. Overtime930

it may be possible for these two approaches to come together with their931

synergies feeding off each other. However this combination of approaches932

appears to be limited by the current hardware available.933

With the current state of technology, it appears that most of the techni-934

cal annotation issues for static documents have been at least partially solved.935

This is especially true for annotating using pen-and-paper UIs but also for936

tablet-based implementations. What remains for static documents is the937

process of improving what is already available. However there are increas-938

ing numbers of devices with mobile touch/pen input which suggests that939

it is timely to consider dynamic documents more. This is especially rele-940

vant around how to handle changes when the underlying document context941

changes.942

4.3. Adding operations943

Grouping is the process of combining multiple gestures together into a944

single annotation. This is required because people do not think of annota-945

41



tions as individual gestures but a whole while computers receive the digital946

ink as individual gestures. When the gestures are grouped together success-947

fully then the entire annotations appears to be one whole unit. One common948

problem with adapting an annotation is when individual parts of the anno-949

tation move independently of the others [24, 45]. This then causes confusion950

as the user expected the whole to stay together.951

Recognition is the process of understanding either part or all of the anno-952

tation. This is important because different annotation types require different953

actions [24, 8]. For example, adapting an underline requires the underline954

stay underneath the associated words. If the annotation is incorrectly recog-955

nised then the wrong action will be applied to it, again resulting in user956

confusion. Another potential area of investigation that relies on recogni-957

tion is cleaning annotations [8]. Cleaning annotations potentially provides958

an intermediate representation that is easy for processing but still remains959

understandable to the user. However they must be correctly recognised to960

remain understable; incorrect recognition would result in a wrong cleaning961

operation being applied.962

Anchoring is the processing of associating the annotation with a location963

in the underlying document. Anchoring is a key prerequisite for reposition-964

ing: the annotation will only move to the correct location if the anchor is965

correct. However, as identified in the literature, there are a variety of different966

anchoring approaches. The simplest approach is to associate the annotation967

within the page. This only requires a graphical offset to the top of the page968

without any need to identify individual elements on the page. But what this969

gains in simplicity it loses in functionality: there is no way to do any adapt-970

ing operations at a lower level than the page. In contrast, the most granular971

level is to identify individual words (or even letters). But this approach raises972

more issues: first, how to correctly identify the anchor word; second, how to973

find this word again after the document has changed; and third, how to adapt974

the annotation if it spans multiple words. Other approaches have used less975

granular anchors (line or paragraph level) or anchors based on the underlying976

document code (e.g. HTML). What is common about all these approaches is977

there is a trade-off. Moving to a more granular level allows more control and978

flexibility but at an increasing cost of complexity. As yet, there is no clearly979

identified “best” approach. Instead it depends on what the implementation980

is trying to do and how important it is to accurately adapt the annotation.981

The final operation, storage, is less important for adapting annotations.982

Its impact is around how annotations can be retrieved later on. For imple-983

42



mentations that are only interested in immediately evaluating the adding984

or adapting operations, this operation can be omitted altogether. However985

for implementations that need to be persisted this operation is important.986

One current issue with this operation is the data that is stored. There is987

not a common data format or storage location: thus each implementation988

needs to implement this operation itself. There are some common formats989

(e.g. InkML or Microsoft’s ISF format) but these appear to be focused at990

the digital ink level rather than the higher level of annotations. Thus using991

these formats requires extensions to include relevant information.992

Both anchoring and storing have well-studied solutions. There are sound993

solutions for anchoring that work in most circumstance. While storing uses994

a variety of datatypes this is not a fundamental concern. Recognizing and995

grouping are both related and challenging. The problems encountered with996

recognition and grouping are being investigated in the wider field of freeform997

digital ink. While this is outside the scope of this review we refer the inter-998

ested reader to [32].999

In addition to the individual steps, there is also the question of what1000

order should these steps be applied. We have identified two general orders:1001

process each annotation individually; and process all annotations each time1002

a change is made. Each approach offers benefits and trade-offs. Processing1003

each annotation individually is faster but information from other annotations1004

can help with processing an annotation. Individual processing also fixes the1005

annotation type at the time it is added; whereas for all annotation processing1006

the type may change as other gestures are added thus potentially confusing1007

the user. Thus this is an open area of research.1008

4.4. Adapting operations1009

The current literature has mixed results around the adapting operations.1010

Repositioning by itself has well-defined solutions. The errors around repo-1011

sitioning are not due to the repositioning itself but because of errors in the1012

adding operations. Improving the adding operations, either individually or1013

together, will improve repositioning without any additional work. In con-1014

trast, both refitting and orphaning do require additional work. Also, these1015

two areas are under-represented in the research. Refitting has only been im-1016

plemented in four implementations and the focus has been on a very narrow1017

set of annotation types (single line and multiple line). Of these four imple-1018

mentations, only one has looked at the user expectations. Orphaning has1019

also been in four implementations and only one type of orphaning has been1020

43



implemented. In addition, none of these have looked at user expectations.1021

In the aligned field of text annotation, studies have found that users ex-1022

pect annotations to be available after their anchor has been deleted [11, 66].1023

Based on prior research this could take two forms. The first is to store all1024

the orphaned annotations so the user can review them later 3. An alternate1025

approach would be to show an icon at the ”best guess” location on the asso-1026

ciated document [11]. Selecting this icon would then display the annotation.1027

For each approach the user should be provided options on what to do with1028

the orphaned annotation (e.g. delete, reposition, modify).1029

4.5. Annotation categories1030

In her original taxonomy Marshall [46] classified annotations along two1031

dimensions: within-text vs. marginal or blank space; and telegraphic vs.1032

explicit. During her investigation Marshall looked at annotations added to1033

textbooks: one assumes for student study. Both the annotations and their1034

underlying context are static. In contrast, digital documents are dynamic so1035

the content underneath annotations can change. Thus Marshall’s taxonomy,1036

while still valid, is more limited for dynamic documents. Some annotations1037

on dynamic documents do not fit in Marshall’s four quadrants. For example,1038

connector annotations for in both within-text and marginal and commands1039

may be added anywhere on the document. Given these challenges we use an1040

alternate form of taxonomy based on how the annotation would adapt in a1041

digital environment.1042

This taxonomy builds on the work by Golovchinsky and Denoue and1043

Bargeron and Moscovich. In their work [24, 8] they grouped annotations1044

into three categories: single line, multiple line and complex4. Previously1045

both connectors and commands were categorized as complex annotations.1046

This is partly because these categories were used as a basis for automatically1047

adapting annotations. Single line and multiple annotations were refitted as1048

the underlying content changed while complex annotations were not. To1049

these three categories we add connectors and commands (see Table 5).1050

Connectors are often used to link another annotation to a location in the1051

underlying document [64, 20, 82]. Accordingly, they potentially have two an-1052

3Prior work indicts the associated context must also be stored [77].
4Both publications included similar annotation types in each category. The only ex-

ception is enclosures. Bargeron and Moscovich treated these primarily as single line an-
notations while Golovchinsky and Denoue treated them as multiple line.

44



chor points: one fixed to a location in the document and another associated1053

with an annotation. An alternate form of connector is one that joins two1054

sections of the content. These connectors also have two anchor points but1055

both associated with the document. There has been no research published1056

investigating how to automatically adapt connectors. Connectors should be1057

repositioned like any other annotation; we also assume it would follow sim-1058

ilar rules for orphaning. However refitting is a more interesting scenario:1059

theoretically it would possible to refit connectors so these two anchor points1060

move independently. There has been no research published on how this work1061

work or, more importantly, on what the user expectations are. We postulate1062

that there are two forms of refitting a connector. For connectors associated1063

with another annotation the connector and associated annotation should be1064

repositioned so the document anchor remains valid. For connectors associ-1065

ated with two different locations in the document the connector should be1066

stretched or shrunk so the two anchor points remain in the correct locations.1067

Commands are often used for instructing the implementation to do some-1068

thing (e.g. erase or move content [84, 30, 21], move to another location1069

[5, 6, 4, 81], link documents [74], etc.) Unlike most other annotations the im-1070

plementation is expected to understand these annotations. One major area1071

of research around commands is how to recognise them (see below). Un-1072

like most other forms of annotation commands are transient and have only1073

a short term lifetime. Again, there has been no research on automatically1074

adapting command annotations. We also posit these would follow the same1075

rules for repositioning and orphaning as other annotations. However given1076

that commands are temporary the value of refitting them is questionable.1077

Combining together our two taxonomies (annotation types and annota-1078

tion support operations) we can see the biggest gaps are refitting connector,1079

command and complex annotations and orphaning. There are very few imple-1080

mentations that look at the technical complexities and none that investigate1081

user expectations.1082

4.6. Annotation lifetime1083

The lifetime of an annotation is an important concept that, while evident1084

from this review, is not widely discussed. There is a continuum of lifetimes;1085

with three major points on the continuum: instantaneous, short term, and1086

long term. Functional commands are instantaneous. The command is exe-1087

cuted and the annotation discarded. Short term annotations have a limited1088

lifetime. Once the annotation indicating that something needed editing has1089

45



fulfilled its purpose it is removed. Long term annotations become part of the1090

document; for example providing commentary or explanatory notes.1091

There is an interplay between lifetime and fluidity. In order to differen-1092

tiate functional commands and digital ink many systems required the user1093

to change modes (which is cognitively disruptive). This is because the soft-1094

ware has difficulty reliably differentiating gesture classes. There is ongoing1095

research into gesture recognition that may provide a solution; however cur-1096

rently there is a need to provide the software with a way separate commands1097

from ink. There are a number of solutions suggested including using buttons1098

(pen-based or separate), separate display areas, special gestures, pressure,1099

and pen and touch. Each of these has its own limitations and strengths:1100

which is most suitable is context dependent. Buttons require specialized1101

hardware, and added user dexterity but have the advantage of certainty.1102

Separate display areas uses screen real estate and requires a move in focus1103

for the user but can provide a zoomed area for writing. Both special gestures1104

and pressure require training (the user, the system or both) and recognition1105

errors are still possible but results in a more fluid interaction. Pen and touch1106

requires special hardware, bimanual interaction and recognition but has the1107

most potential for providing fluid interaction and builds on our inherent bi-1108

manual abilities: for example a person may draw with pencil in one hand1109

and an eraser in the other. Li et al. [38] investigated the performance of some1110

of these approaches and found a bimanual approach (pen in preferred hand1111

and button-push with non-preferred hand) was the fastest. This approach1112

also had one of the lowest error rates and was preferred by most participants1113

[38].1114

4.7. Other functionality1115

The systematic review has identified a wide range of other functionality1116

that is provided in various projects (see Table 10). The most important1117

of these are navigation and collaboration support. However the work in1118

regards to both of these is immature and intersects with the related fields of1119

computer supported collaborative work and document libraries respectively.1120

These two areas, and the others identified in Table 10, warrant a specific1121

literature review as more investigation is undertaken. This review could also1122

go further and incorporate other functionality in other areas of annotation1123

(i.e. text-based annotations).1124

46



4.8. User experience1125

Finally, of note is that the research into the technical issues with annota-1126

tion are more advanced than the user experience. While the work of Marshall1127

[46] laid an excellent foundation for how people annotate books, many of the1128

studies reported here focus entirely on the technical issue. Those user studies1129

that are reported, for example [55, 44, 77], are usually usability studies that1130

evaluate the usability of the specific application without regard to the fun-1131

damental and theoretical principles. We could only find two studies [24, 8]1132

that investigated user expectations on adapting annotations. While there1133

has been work in this area for text-based annotation there is an urgent need1134

for more work in this regard around freeform ink annotation.1135

In addition, most studies have focused on evaluating the effectiveness1136

of their own implementation. Very few implementations attempt to gener-1137

alise beyond their initial implementation5. While there are many solutions1138

to technical challenges and interesting ideas for functionality, it is hard to1139

generalise beyond the initial implementations. What works in one particular1140

implementation, with its specific environment and objectives, may not work1141

when transposed to another implementation. This may be a limitation of1142

our field, where we focus on smaller units of work rather than exploring the1143

bigger picture, that limits the transferability of our findings outside our field.1144

This raises the question: are we leaving the bigger picture of how our work1145

could benefit mankind to industry? This is a serious issue as industry has1146

different objectives and driving motives which skews the long-term benefit of1147

our research.1148

5. Future Directions1149

This review has identified several areas of investigation in future. These1150

include:1151

(i) Investigating how both connectors and commands could be automat-1152

ically adapted. This includes both the technical aspects and the user1153

expectations, as well as investigating all three adapting operations.1154

(ii) Investigating the two overall approaches for adding annotations and1155

the strengths and limitations of each approach. We posit that each1156

5XLibris is the main exception.

47



overall approach will be useful for different scenarios but we do not1157

which approach is better or how this would be evaluated.1158

(iii) Improving the accuracy of each step for adding annotations. This in-1159

cludes reviewing these operations in the wider domain of freeform digital1160

ink and their applicability to annotations.1161

(iv) Investigating how orphaned annotations can be handled. Again there1162

is prior work in other domains that can be used as a starting point.1163

(v) Studying user expectations around freeform ink annotations in docu-1164

ments; especially for dynamic documents.1165

(vi) Reviewing the additional functionality provided by digital annotations.1166

6. Concluding Remarks1167

The motivation for this review was to determine what has been investi-1168

gated for freeform digital ink annotations on text documents. Two research1169

questions were formulated to guide the review. First, the operations needed1170

to robustly add annotations; and second what support there is for automat-1171

ically adapting annotations when a document changes. Using a systematic1172

mapping study we present a taxonomy of current work.1173

Adding annotations to documents is well covered in the research. There1174

are four operations used for adding annotations: grouping; recognising; an-1175

choring; and storing. However there is not a common order to how these1176

operations are used; instead there are variations based on the overall ap-1177

proach used and the level of user interaction provided. We also identified1178

ten commonly recognised types of annotation. These are grouped into five1179

categories based on their requirements for adding and adapting.1180

Automatic adapting of annotations has not been investigated widely.1181

Repositioning is the most common adapting implementation, followed by or-1182

phaning and then refitting annotations. If the annotation is added robustly1183

then repositioning occurs without additional work. The implementations1184

that implement orphaning all work by deleting the annotation. The two im-1185

plementations refit annotations only look at a reduced set of annotations:1186

single-line and simple multi-line annotations. This is an area that needs1187

additional investigation.1188

The most common type of human study is a usability study of how well an1189

implementation performs but these do not improve the overall understanding1190

of the underlying user expectations. There are few studies that investigate1191

user expectations and only one that studied adapting annotations. This is a1192

48



major gap in the current literature. We do not know how people will react1193

to different types of changes or even how they might want an annotation to1194

change. Nor are there technical solutions to many of the annotation styles1195

commonly used. Future work addressing this gap digital ink annotation1196

research should use the taxonomy presented here to describe how the research1197

relates to the field.1198

Finally, one challenge in this study was identifying similar functionality1199

due to the different terms used for the same thing. We recommend that a1200

standardised set of terminology be used in future. In this study we suggest1201

an initial set of definitions.1202

7. References1203

[1] A Adler, A Gujar, BL Harrison, K O’Hara, and A Sellen. A diary study1204

of work-related reading: Design implications for digital reading devices.1205

In Proc. of the SIGCHI Conf. on Hum. Factors in Comput. Sys., CHI1206

’98, pages 241–248, New York, NY, USA, 1998. ACM Press/Addison-1207

Wesley Publishing Co. doi: 10.1145/274644.274679.1208

[2] MJ Adler and C Van Doren. How to Read a Book. Simon and Schuster,1209

New York, 1972.1210

[3] M Agrawala and M Shilman. DIZI: A digital ink zooming interface for1211

document annotation. In MF Costabile and F Paternò, editors, Human-1212

Computer Interaction - INTERACT 2005, volume 3585 of Lect. Notes1213

in Comput. Sci., chapter 9, pages 69–79. Springer Berlin Heidelberg,1214

2005. doi: 10.1007/11555261 9.1215

[4] R Anderson, L. McDowell, and B Simon. Use of classroom presenter1216

in engineering courses. In Proc. of the 35th Annu. Conf. on Front. in1217

Educ., FIE ’05, pages T2G–13, 2005. doi: 10.1109/FIE.2005.1611913.1218

[5] RJ Anderson, R Anderson, B Simon, SA Wolfman, T VanDeGrift, and1219

K Yasuhara. Experiences with a tablet PC based lecture presentation1220

system in computer science courses. SIGCSE Bull., 36(1):56–60, 2004.1221

doi: 10.1145/1028174.971323.1222

[6] RJ Anderson, C Hoyer, C. Prince, J. Su, F. Videon, and SA Wolfman.1223

Speech, ink, and slides: The interaction of content channels. In Proc.1224

of the 12th Annu. ACM Int. Conf. on Multimedia, MULTIMEDIA ’04,1225

49



pages 796–803, New York, NY, USA, 2004. ACM. doi: 10.1145/1027527.1226

1027713.1227

[7] E Ball, H Franks, J Jenkins, M McGrath, and J Leigh. Annotation is1228

a valuable tool to enhance learning and assessment in student essays.1229

Nurse Educ. Today, 29(3):284–291, 2009. doi: 10.1016/j.nedt.2008.10.1230

005.1231

[8] D Bargeron and T Moscovich. Reflowing digital ink annotations. In1232

Proc. of the SIGCHI Conf. on Hum. Factors in Comput. Sys., CHI ’03,1233

pages 385–393, New York, NY, USA, 2003. ACM. doi: 10.1145/642611.1234

642678.1235

[9] K Bhardwaj, S Chaudhury, and SD Roy. Augmented paper system: A1236

framework for user’s personalized workspace. In Proc. of the 4th Natl.1237

Conf. on Comput. Vis., Pattern Recognit., Image Process. and Graph.,1238

pages 1–4, 2013. doi: 10.1109/NCVPRIPG.2013.6776182.1239

[10] P Brandl, M Haller, J Oberngruber, and C Schafleitner. Bridging the gap1240

between real printouts and digital whiteboard. In Proc. of the Work.1241

Conf. on Adv. Vis. Interfaces, AVI ’08, pages 31–38, New York, NY,1242

USA, 2008. ACM. doi: 10.1145/1385569.1385577.1243

[11] AJ Brush, A Bargeron, A Gupta, and JJ Cadiz. Robust annotation1244

positioning in digital documents. In Proc. of the SIGCHI Conf. on1245

Hum. Factors in Comput. Sys., CHI ’01, pages 285–292, New York, NY,1246

USA, 2001. ACM. doi: 10.1145/365024.365117.1247

[12] D Cabral and N Correia. Pen-based video annotations: A proposal1248

and a prototype for tablet PCs. In T Gross, T Gulliksen, P Kotzé,1249

L Oestreicher, P Palanque, RO Prates, and M Winckler, editors,1250

Human-Computer Interaction - INTERACT 2009, volume 5727 of Lect.1251

Notes in Comput. Sci., pages 17–20. Springer Berlin Heidelberg. doi:1252

10.1007/978-3-642-03658-3 5.1253

[13] JJ Cadiz, A Gupta, and J Grudin. Using web annotations for asyn-1254

chronous collaboration around documents. In Proc. of the 2000 ACM1255

Conf. on Comput. Support. Cooperative Work, CSCW ’00, pages 309–1256

318, 359002, 2000. ACM. doi: 10.1145/358916.359002.1257

50



[14] RG Cattelan, C Teixeira, H Ribas, E Munson, and MGC Pimentel.1258

Inkteractors: Interacting with digital ink. In Proc. of the 2008 ACM1259

Symp. on Appl. Comput., SAC ’08, pages 1246–1251, New York, NY,1260

USA, 2008. ACM. doi: 10.1145/1363686.1363973.1261

[15] S Chandrasekar, JG Tront, and JC Prey. WriteOn1.0: A tablet PC-1262

based tool for effective classroom instruction. SIGCSE Bull., 41(3):1263

323–327, 2009. doi: 10.1145/1595496.1562975.1264

[16] SH Chang, X Chen, RA Priest, and B Plimmer. Issues of extending the1265

user interface of integrated development environments. In Proc. of the1266

9th ACM SIGCHI New Zealand Chapter’s Int. Conf. on Hum.-Comput.1267

Interact., CHINZ ’08, pages 23–30, New York, NY, USA, 2008. ACM.1268

doi: 10.1145/1496976.1496980.1269

[17] MA Chatti, T Sodhi, M Specht, R Klamma, and R Klemke. u-Annotate:1270

An application for user-driven freeform digital ink annotation of E-1271

Learning content. In Proc. of the 6th Int. Conf. on Adv. Learn. Technol.,1272

pages 1039–1043, 2006. doi: 10.1109/ICALT.2006.1652624.1273

[18] N Chen, F Guimbretière, and A Sellen. Designing a multi-slate reading1274

environment to support active reading activities. ACM Trans. Comput.-1275

Hum. Interact., 19(3):18:1–18:35, 2012. doi: 10.1145/2362364.2362366.1276

[19] N Chen, F Guimbretière, and A Sellen. Graduate student use of a multi-1277

slate reading system. In Proc. of the SIGCHI Conf. on Hum. Factors1278

in Comput. Sys., CHI ’13, pages 1799–1808, New York, NY, USA, 2013.1279

ACM. doi: 10.1145/2470654.2466237.1280

[20] X Chen and B Plimmer. CodeAnnotator: Digital ink annotation within1281

Eclipse. In Proc. of the 19th Australas. Conf. on Comput.-Hum. Inter-1282

act., OZCHI ’07, pages 211–214, New York, NY, USA, 2007. ACM. doi:1283

10.1145/1324892.1324935.1284

[21] K Conroy, D Levin, and F Guimbretière. Proofrite: A paper-augmented1285

word processor. In Demo Session of UIST. ACM, 2004.1286

[22] M Dontcheva, SM Drucker, and MF Cohen. V4V: A view for the viewer.1287

In Proceedings of the 2005 Conference on Designing for User eXperience,1288

DUX ’05, New York, NY, USA, 2005. AIGA: American Institute of1289

Graphic Arts.1290

51



[23] RL Fowler and AS Barker. Effectiveness of highlighting for retention of1291

text material. J. of Appl. Psychol., 59(3):358, 1974.1292

[24] G Golovchinsky and L Denoue. Moving markup: Repositioning freeform1293

annotations. In Proc. of the 15th Ann. ACM Symp. on User Interface1294

Softw. and Technol., UIST ’02, pages 21–30, New York, NY, USA, 2002.1295

ACM. doi: 10.1145/571985.571989.1296

[25] G Golovchinsky and CC Marshall. Hypertext interaction revisited. In1297

Proc. of the 11th ACM Conf. on Hypertext and Hypermedia, HYPER-1298

TEXT ’00, pages 171–179, New York, NY, USA, 2000. ACM. doi:1299

10.1145/336296.336358.1300

[26] G Golovchinsky and CC Marshall. Hypertext interactivity: from choice1301

to participation. New Rev. of Hypermedia and Multimedia, 6(1):169–196,1302

2000. doi: 10.1080/13614560008914722.1303

[27] G Golovchinsky, MN Price, and BN Schilit. From reading to retrieval:1304

Freeform ink annotations as queries. In Proc. of the 22Nd Ann. Int.1305

ACM SIGIR Conf. on Res. and Dev. in Inf. Retr., SIGIR ’99, pages1306

19–25, New York, NY, USA, 1999. ACM. doi: 10.1145/312624.312637.1307

[28] M Götze, S Schlechtweg, and T Strothotte. The intelligent pen: Toward1308

a uniform treatment of electronic documents. In Proc. of the 2nd Int.1309

Symp. on Smart Graph., SMARTGRAPH ’02, pages 129–135, New York,1310

NY, USA, 2002. ACM. doi: 10.1145/569005.569024.1311

[29] F Guimbretière. Paper augmented digital documents. In Proc. of the1312

16th Ann. ACM Symp. on User Interface Softw. and Technol., UIST ’03,1313

pages 51–60, New York, NY, USA, 2003. ACM. doi: 10.1145/964696.1314

964702.1315

[30] G Hardock, G Kurtenbach, and W Buxton. A marking based interface1316

for collaborative writing. In Proc. of the 6th Ann. ACM Symp. on User1317

Interface Softw. and Technol., UIST ’93, pages 259–266, New York, NY,1318

USA, 1993. ACM. doi: 10.1145/168642.168669.1319

[31] K Hinckley, X Bi, M Pahud, and B Buxton. Informal information gath-1320

ering techniques for active reading. In Proc. of the SIGCHI Conf. on1321

Hum. Factors in Comput. Sys., CHI ’12, pages 1893–1896, New York,1322

NY, USA, 2012. ACM. doi: 10.1145/2207676.2208327.1323

52



[32] G Johnson, MD Gross, J Hong, and EY Do. Computational Support1324

for Sketching in Design: A Review, volume 2. Now Publishers Inc.,1325

Hanover, MA, USA, 2009. doi: 10.1561/1100000013.1326

[33] M Kam, J Wang, A Iles, E Tse, J Chiu, D Glaser, O Tarshish, and1327

J Canny. LiveNotes: A system for cooperative and augmented note-1328

taking in lectures. In Proc. of the SIGCHI Conf. on Hum. Factors1329

in Comput. Sys., CHI ’05, pages 531–540, New York, NY, USA, 2005.1330

ACM. doi: 10.1145/1054972.1055046.1331

[34] R Kawase, E Herder, and W Nejdl. A comparison of paper-based and1332

online annotations in the workplace. In U Cress, V Dimitrova, and1333

M Specht, editors, Learn. in the Synerg. of Mult. Discipl., volume 5794 of1334

Lect. Notes in Comput. Sci., pages 240–253. Springer Berlin Heidelberg,1335

2009. doi: 10.1007/978-3-642-04636-0 23.1336

[35] B Kitchenham and S Charters. Guidelines for performing systematic1337

literature reviews. Technical report, Keele University and Durham Uni-1338

versity Joint Report, 2007.1339

[36] B Kitchenham, R Pretorius, D Budgen, O Brereton, M Turner, M Niazi,1340

and S Linkman. Systematic literature reviews in software engineering1341

a tertiary study. Inf. and Softw. Technol., 52(8):792–805, 2010. doi:1342

10.1016/j.infsof.2010.03.006.1343

[37] SR Levine and SF Ehrlich. The Freestyle system. In A Klinger, editor,1344

Hum.-Mach. Interactive Syst., Lang. and Inf. Syst., pages 3–21. Springer1345

US, 1991. doi: 10.1007/978-1-4684-5883-1 1.1346

[38] Y Li, K Hinckley, Z Guan, and JA Landay. Experimental analysis of1347

mode switching techniques in pen-based user interfaces. In Proc. of the1348

SIGCHI Conf. on Hum. Factors in Comput. Sys., CHI ’05, pages 461–1349

470, New York, NY, USA, 2005. ACM. doi: 10.1145/1054972.1055036.1350

[39] C Liao, F Guimbretière, R Anderson, N Linnell, C Prince, and V Raz-1351

mov. PaperCP: Exploring the integration of physical and digital affor-1352

dances for active learning. In C Baranauskas, P Palanque, J Abascal,1353

and SDJ Barbosa, editors, Human-Computer Interaction INTERACT1354

2007, volume 4663 of Lect. Notes in Comput. Sci., pages 15–28. Springer1355

Berlin Heidelberg, 2007. doi: 10.1007/978-3-540-74800-7 2.1356

53



[40] G Liao, F Guimbretière, and K Hinckley. PapierCraft: A command1357

system for interactive paper. In Proc. of the 18th Ann. ACM Symp.1358

on User Interface Softw. and Technol., UIST ’05, pages 241–244, New1359

York, NY, USA, 2005. ACM. doi: 10.1145/1095034.1095074.1360

[41] G Liao, F Guimbretière, K Hinckley, and J Hollan. PapierCraft: A1361

gesture-based command system for interactive paper. ACM Trans.1362

Comput.-Hum. Interact., 14(4):18:1–18:27, 2008. doi: 10.1145/1314683.1363

1314686.1364

[42] L Lichtschlag and J Borchers. CodeGraffiti: Communication by sketch-1365

ing for pair programmers. In Adjunct Proc. of the 23nd Annu. ACM1366

Symp. on User Interface Softw. and Technol., UIST ’10, pages 439–440,1367

New York, NY, USA, 2010. ACM. doi: 10.1145/1866218.1866260.1368

[43] Z Liu. Reading behavior in the digital environment: Changes in reading1369

behavior over the past ten years. J. of Doc., 61(6):700–712, 2005.1370

[44] WE Mackay, G Pothier, C Letondal, K Bøegh, and H. E. Sørensen.1371

The missing link: Augmenting biology laboratory notebooks. In Proc.1372

of the 15th Annu. ACM Symp. on User Interface Softw. and Technol.,1373

UIST ’02, pages 41–50, New York, NY, USA, 2002. ACM. doi: 10.1145/1374

571985.571992.1375

[45] S Marinai. Reflowing and annotating scientific papers on eBook readers.1376

In Proc. of the 2013 ACM Symp. on Doc. Eng., DocEng ’13, pages 241–1377

244, New York, NY, USA, 2013. ACM. doi: 10.1145/2494266.2494311.1378

[46] CC Marshall. Annotation: From paper books to the digital library. In1379

Proc. of the 2nd ACM Int. Conf. on Digit. Libr., DL ’97, pages 131–140,1380

New York, NY, USA, 1997. ACM. doi: 10.1145/263690.263806.1381

[47] CC Marshall and AJB Brush. From personal to shared annotations. In1382

CHI ’02 Ext. Abstr. on Hum. Factors in Comput. Syst., CHI EA ’02,1383

pages 812–813, New York, NY, USA, 2002. ACM. doi: 10.1145/506443.1384

506610.1385

[48] CC Marshall, MN Price, G Golovchinsky, and BN Schilit. Collaborating1386

over portable reading appliances. Pers. Technol., 3(1-2):43–53, 1999.1387

doi: 10.1007/BF01305319.1388

54



[49] CC Marshall, MN Price, G Golovchinsky, and BN Schilit. Designing1389

e-Books for legal research. In Proc. of the 1st ACM/IEEE-CS Joint1390

Conf. on Digit. Libr., JCDL ’01, pages 41–48, New York, NY, USA,1391

2001. ACM. doi: 10.1145/379437.379445.1392

[50] F Matulic and MC Norrie. Supporting active reading on pen and touch-1393

operated tabletops. In Proc. of the Int. Work. Conf. on Adv. Visual1394

Interfaces, AVI ’12, pages 612–619, New York, NY, USA, 2012. ACM.1395

doi: 10.1145/2254556.2254669.1396

[51] A Mazzei, J Blom, L Gomez, and P Dillenbourg. Shared annotations:1397

The social side of exam preparation. In D Hernández-Leo, T Ley,1398

R Klamma, and A Harrer, editors, Scaling up Learning for Sustained1399

Impact, volume 8095 of Lect. Notes in Comput. Sci., pages 205–218.1400

Springer Berlin Heidelberg, 2013. doi: 10.1007/978-3-642-40814-4 17.1401

[52] MR Morris, AJB Brush, and BR Meyers. Reading revisited: Evaluating1402

the usability of digital display surfaces for active reading tasks. In 2nd1403

Annu. IEEE Int. Workshop on Horiz. Interactive Hum.-Comput. Syst.,1404

pages 79–86, 2007. doi: 10.1109/TABLETOP.2007.12.1405

[53] K O’Hara and A Sellen. A comparison of reading paper and on-line1406

documents. In Proc. of the SIGCHI Conf. on Hum. Factors in Comput.1407

Sys., CHI ’97, pages 335–342, New York, NY, USA, 1997. ACM. doi:1408

10.1145/258549.258787.1409

[54] C Okoli and K Schabram. A guide to conducting a systematic literature1410

review of information systems research. Sprouts: Work. Papers on Inf.1411

Syst., 10(26), 2010.1412

[55] DR Olsen, T Taufer, and JA Fails. ScreenCrayons: Annotating any-1413

thing. In Proc. of the 17th Annu. ACM Symp. on User Interface Softw.1414

and Techn., UIST ’04, pages 165–174, New York, NY, USA, 2004. ACM.1415

doi: 10.1145/1029632.1029663.1416

[56] J Pearson and G Buchanan. Real-time document collaboration using1417

iPads. In Proc. of the 3rd Workshop on Res. Adv. in Large Digit.1418

Book Repos. and Complement. Media, BooksOnline ’10, pages 9–14, New1419

York, NY, USA, 2010. ACM. doi: 10.1145/1871854.1871859.1420

55



[57] B Plimmer. A comparative evaluation of annotation software for grad-1421

ing programming assignments. In Proc. of the 11th Australasian Conf.1422

on User Interface, AUIC ’10, pages 14–22, Darlinghurst, Australia, Aus-1423

tralia, 2010. Australian Computer Society, Inc.1424

[58] B Plimmer and M Apperley. Making paperless work. In Proc. of the1425

8th ACM SIGCHI New Zealand Chapter’s Int. Conf. on Comput.-Hum,1426

Interaction, CHINZ ’07, pages 1–8, New York, NY, USA, 2007. ACM.1427

doi: 10.1145/1278960.1278961.1428

[59] B Plimmer and P Mason. A pen-based paperless environment for anno-1429

tating and marking student assignments. In Proc. of the 7th Australasian1430

User Interface Conf., AUIC ’06, pages 37–44, Darlinghurst, Australia,1431

Australia, 2006. Australian Computer Society, Inc.1432

[60] B Plimmer, J Grundy, J Hosking, and R Priest. Inking in the IDE:1433

Experiences with pen-based design and annotation. In IEEE Symp.1434

on Vis. Lang. and Hum.-Centric Comput., pages 111–115, 2006. doi:1435

10.1109/VLHCC.2006.28.1436

[61] B Plimmer, SH Chang, M Doshi, L Laycock, and N Seneviratne. iAnno-1437

tate: Exploring multi-user ink annotation in web browsers. In Proc. of1438

the 11th Australasian Conf. on User Interface, AUIC ’10, pages 52–60,1439

Darlinghurst, Australia, Australia, 2010. Australian Computer Society,1440

Inc.1441

[62] MN Price, G Golovchinsky, and BN Schilit. Linking by inking: Trail-1442

blazing in a paper-like hypertext. In Proc. of the 9th ACM Conf. on1443

Hypertext and Hypermedia, HYPERTEXT ’98, pages 30–39, New York,1444

NY, USA, 1998. ACM. doi: 10.1145/276627.276631.1445

[63] MN Price, BN Schilit, and G Golovchinsky. XLibris: The active reading1446

machine. In Proc. of the SIGCHI Conf. on Hum. Factors in Comput.1447

Sys., CHI ’98, pages 22–23, New York, NY, USA, 1998. ACM. doi:1448

10.1145/286498.286510.1449

[64] R Priest and B Plimmer. RCA: Experiences with an IDE annotation1450

tool. In Proc. of the 7th ACM SIGCHI New Zealand Chap. Int. Conf.1451

on Comput.-Hum. Interaction, CHINZ ’06, pages 53–60, New York, NY,1452

USA, 2006. ACM. doi: 10.1145/1152760.1152767.1453

56



[65] S Ramachandran and R Kashi. An architecture for ink annotations1454

on web documents. In Proc. of the 7th Int. Conf. on Doc. Analysis1455

and Recognition, pages 256–260 vol.1, 2003. doi: 10.1109/ICDAR.2003.1456

1227669.1457

[66] R Sanderson and H Van de Sompel. Making web annotations per-1458

sistent over time. In Proc. of the 10th Ann. Joint Conf. on Digit.1459

Lib., JCDL ’10, pages 1–10, New York, NY, USA, 2010. ACM. doi:1460

10.1145/1816123.1816125.1461

[67] BN Schilit, G Golovchinsky, and MN Price. Beyond paper: Supporting1462

active reading with free form digital ink annotations. In Proc. of the1463

SIGCHI Conf. on Hum. Factors in Comput. Sys., CHI ’98, pages 249–1464

256, New York, NY, USA, 1998. ACM Press/Addison-Wesley Publishing1465

Co. doi: 10.1145/274644.274680.1466

[68] BN Schilit, MN Price, and G Golovchinsky. Digital library information1467

appliances. In Proc. of the 3rd ACM Conf. on Digit. Lib., DL ’98, pages1468

217–226, New York, NY, USA, 1998. ACM. doi: 10.1145/276675.276700.1469

[69] AJ Sellen and R Harper. The myth of the paperless office. MIT Press,1470

Cambridge, Mass, 2002.1471

[70] M Shilman and Z Wei. Recognizing freeform digital ink annotations.1472

In S Marinai and A Dengel, editors, Doc. Anal. Syst., volume 3163 of1473

Lect. Notes in Comput. Sci., pages 322–331. Springer Berlin Heidelberg,1474

2004. doi: 10.1007/978-3-540-28640-0 30.1475

[71] F Shipman, MN Price, CC Marshall, and G Golovchinsky. Identifying1476

useful passages in documents based on annotation patterns. In T Koch1477

and I Sølvberg, editors, Res. and Adv. Technol. for Digit. Lib., volume1478

2769 of Lect. Notes in Comput. Sci., pages 101–112. Springer Berlin1479

Heidelberg, 2003. doi: 10.1007/978-3-540-45175-4 11.1480

[72] B Signer and MC Norrie. PaperPoint: A paper-based presentation and1481

interactive paper prototyping tool. In Proc. of the 1st Int. Conf. on1482

Tangible and Embedded interaction, TEI ’07, pages 57–64, New York,1483

NY, USA, 2007. ACM. doi: 10.1145/1226969.1226981.1484

57



[73] ML Simpson and SL Nist. Textbook annotation: An effective and ef-1485

ficient study strategy for college students. J. of Read., 34(2):122–129,1486

1990. doi: 10.2307/40032053.1487

[74] J Steimle. CoScribe: Integrating paper and digital documents for1488

collaborative knowledge work. volume 2, pages 174–188, 2009. doi:1489

10.1109/TLT.2009.27.1490

[75] J Steimle. Collaborative Cross-media Annotation of Documents, pages1491

103–126. Human-Computer Interaction Series. Springer Berlin Heidel-1492

berg, 2012. doi: 10.1007/978-3-642-20276-6 5.1493

[76] J Steimle, O Brdiczka, and M Muhlhauser. CoScribe: Integrating pa-1494

per and digital documents for collaborative knowledge work. Learning1495

Technologies, IEEE Transactions on, 2(3):174–188, 2009.1496

[77] CJ Sutherland and B Plimmer. vsInk: Integrating digital ink with pro-1497

gram code in visual studio. In Proceedings of the Fourteenth Australasian1498

User Interface Conference - Volume 139, AUIC ’13, pages 13–22, Dar-1499

linghurst, Australia, Australia, 2013. Australian Computer Society, Inc.1500

[78] CJ Sutherland, A Luxton-Reilly, and B Plimmer. An observational1501

study of how experienced programmers annotate program code. In1502

J Abascal, S Barbosa, M Fetter, T Gross, P Palanque, and M Winckler,1503

editors, Human-Computer Interaction INTERACT 2007, volume 92971504

of Lect. Notes in Comput. Sci., pages 177–194. Springer International1505

Publishing, 2015. doi: 10.1007/978-3-319-22668-2 15.1506

[79] JG Tront, V Eligeti, and J Prey. Classroom presentations using tablet1507

PCs and WriteOn. In Annu. Frontiers in Ed. Conf, pages 1–5, 2006.1508

doi: 10.1109/FIE.2006.322336.1509

[80] JG Tront, V Eligeti, and J Prey. WriteOn: A tool to support teaching1510

software engineering. In 19th Conf. on Softw. Eng. Ed. and Training1511

Workshops, pages 8–8, 2006. doi: 10.1109/CSEETW.2006.25.1512

[81] KN Truong, GD Abowd, and JA Brotherton. Personalizing the capture1513

of public experiences. In Proceedings of the 12th Annual ACM Sympo-1514

sium on User Interface Software and Technology, UIST ’99, pages 121–1515

130, New York, NY, USA, 1999. ACM. doi: 10.1145/320719.322593.1516

58



[82] X Wang and S Raghupathy. Ink annotations and their anchoring in1517

heterogeneous digital documents. In 9th Int. Conf. on Doc. Anal. and1518

Recognition, volume 1, pages 163–167, 2007. doi: 10.1109/ICDAR.2007.1519

4378696.1520

[83] X Wang, M Shilman, and S Raghupathy. Parsing ink annotations on1521

heterogeneous documents. In Eurographics Workshop on Sketch-Based1522

Interfaces and Modeling, pages 43–50. Eurographics Association, 2006.1523

[84] N Weibel, A Ispas, B Signer, and MC Norrie. PaperProof: A paper-1524

digital proof-editing system. In CHI ’08 Ext. Abstr. on Hum. Factors1525

in Comput. Syst., CHI EA ’08, pages 2349–2354, New York, NY, USA,1526

2008. ACM. doi: 10.1145/1358628.1358682.1527

[85] H Wu, SJH. Yang, and Y Su. Free-form annotation tool for collabora-1528

tion. In IEEE Int. Conf. on Sensor Networks, Ubiquitous and Trust-1529

worthy Comput., SUTC ’08, pages 555–560, 2008. doi: 10.1109/SUTC.1530

2008.60.1531

[86] D Yoon, N Chen, and F Guimbretière. TextTearing: Opening white1532

space for digital ink annotation. In Proc. of the 26th Annu. ACM Symp.1533

on User Interface Softw. and Technol., UIST ’13, pages 107–112, New1534

York, NY, USA, 2013. ACM. doi: 10.1145/2501988.2502036.1535

[87] R Zeleznik, T Miller, C Li, and JJ Laviola Jr. MathPaper: Mathematical1536

sketching with fluid support for interactive computation. In A Butz,1537

B Fisher, A Krüger, P Olivier, and M Christie, editors, Smart Graphics,1538

volume 5166 of Lect. Notes in Comput. Sci., pages 20–32. Springer Berlin1539

Heidelberg, 2008. doi: 10.1007/978-3-540-85412-8 3.1540

[88] S Zyto, DR Karger, MS Ackerman, and S Mahajan. Successful classroom1541

deployment of a social document annotation system. In Proc. of the1542

SIGCHI Conf. on Hum. Factors in Comput. Sys., CHI ’12, pages 1883–1543

1892, New York, NY, USA, 2012. ACM. doi: 10.1145/2207676.2208326.1544

59


	Introduction
	Research Method
	Research Questions (Step 1)
	Protocol Development and Review (Step 2 and 3)
	Search Strategy (Step 4)
	Selection Criteria (Step 5)
	Data Extraction (Step 6)
	Overview
	Input mechanism
	Application domain
	Document type
	Overview of adding annotations
	Annotation types recognised
	Overview of adapting annotations
	Change type supported
	Usability study results
	Additional functionality provided

	Data Synthesis (Step 7)

	Results
	Search Results
	General Information
	Input mechanism
	Change type allowed
	Application domains
	Document formats

	Taxonomy
	Annotation types recognised
	Adding operations
	Anchoring mode
	Adapting operations

	Additional Functionality
	User Studies

	Discussion
	Terms
	Input mechanisms
	Adding operations
	Adapting operations
	Annotation categories
	Annotation lifetime
	Other functionality
	User experience

	Future Directions
	Concluding Remarks
	References

