
Recognizing Hand-drawn Glyphs from One Example and Four Lines
of Code

Rachel Blagojevic1, Dhruv Dhir2, Kapil Ranganathan2, Christof Lutteroth2 and Beryl
Plimmer2

1Massey University, 2University of Auckland
New Zealand

r.v.blagojevic@massey.ac.nz, dhruvdhir11@gmail.com, srkapil@gmail.com,
lutteroth@cs.auckland.ac.nz, beryl@cs.auckland.ac.nz

Abstract

The biggest challenge in the development of gesture-
based user interfaces is the creation of a gesture
recognizer. Existing approaches to support high-level
recognition of glyphs require a lot of effort from
developers, are error prone, and suffer from low
recognition rates. We propose a tool that generates a
recognizer for hand-drawn glyphs from one example. Our
tool uses the output of a basic shape recognizer as input to
the glyph recognition. The recognizer can be integrated
into an app by adding only four lines of code. By reducing
the development effort required, the approach makes it
possible for many touch-interaction apps to take
advantage of hand-drawn content. We demonstrate the
tools effectiveness with two examples. Furthermore, our
within-subject evaluation shows that programmers with
no knowledge of gesture recognition can generate a
recognizer and integrate it into an app more quickly and
easily than manually coding recognition rules, and that
the generated recognizer is more accurate than a manually
coded one.
Keywords: Gesture recognition; gesture based interaction.

1 Introduction
Touch interfaces on phones and tablets naturally afford
hand drawn input. Functional gestures such as swipe and
zoom are natively supported and widely used, yet there
are only a few apps that leverage hand-drawing as a form
of input. In part this is because such input is of little use
unless the computer can understand its meaning. This
understanding is reliant on robust recognizers, which are
difficult to program. As a result, it is currently too much
work for general programmers to add hand-drawn input
to their apps.

The field of ink and gesture recognition has developed
quickly over recent years. There are now a number of
easy-to-implement (Wobbrock et al., 2007) and
componentized solutions (Chang et al., 2012; Lü and Li,
2012) for gesture or single stroke recognition. However,

there are no similarly simple solutions to creating and
using high-level recognizers for glyphs comprised of
several strokes.
A bottom-up approach to recognition attempts to
recognize individual ink segments and then progressively
group these into larger and more complex glyphs, thus
developing an overall semantic understanding of the
diagram. Our recognizer performs high-level recognition
where glyphs comprised of more than one basic shape
(i.e. line, circle, rectangle etc.) are identified. Glyph
recognition is one of the last steps in a bottom-up
recognition process, coming after segmentation/grouping
and basic shape recognition steps have been completed.

High-level recognizers can be built via three main
approaches: textual, example-based and hybrid (Johnson
et al., 2009). The frequently used textual approach
involves describing the glyphs using rules. The formalism
that is generally used for this is sketch grammars, which
specify the rules for combining symbols using spatial and
temporal relations (Costagliola et al., 2005a; Hammond
and Davis, 2005). Conventionally, the textual approach
requires the manual specification of rules for each glyph
using the grammar. The recognizer uses these
descriptions to classify new glyphs. Defining glyphs in
this manner is both time-consuming and error-prone.
Additionally, it takes time for the developer to become
familiar with sketch grammars.

Example-based approaches offer an alternative way to
build recognizers. Instead of specifying glyphs through
rules, the developer provides example glyphs; from these
examples rules are automatically deduced and a ready-to-
use recognizer is produced. Thus, this approach can
generate a recognizer quickly without code or knowledge
of a grammar, through demonstration. This saves
developers of gesture-based interfaces time whilst adding
flexibility and robustness. One of our study participants
described it thus:

“no coding, no thinking, very easy”

In this project we demonstrate how exemplar-based
high-level recognition can be drastically simplified by 1)
requiring only a single exemplar glyph and 2) making it
easy to add a glyph recognizer to an application. The
glyph is drawn in our recognizer generator tool. This
generator includes a set of features that measure spatial
relationships of the strokes in the exemplar to produce a
recognition matrix. The recognition matrix is used to
recognize new glyphs. The application developer simply

Copyright © 2015, Australian Computer Society, Inc. This
paper appeared at the Sixteenth Australasian User Interface
Conference (AUIC 2015), Sydney, Australia. Conferences in
Research and Practice in Information Technology (CRPIT),
Vol. 162. Stefan Marks and Rachel Blagojevic, Eds.
Reproduction for academic, not-for-profit purposes permitted
provided this text is included.

passes the raw sketch data to the recognizer through an
API and the recognition result is returned to the program.
Adding the recognizer to an app only requires loading the
library and calling the recognizer.

To show the feasibility of this approach we have
developed two example apps (Figure 1), which include all
the core spatial relationships of hand-drawn glyphs in
general. They also demonstrate how hand-drawn input
could be used: one app generates HTML, the other is a
game.

 a) Tic-tac-toe

b) Web form glyphs

Figure 1. Glyphs recognized by each of our apps

The contributions of this project are:
• an approach that can generate a high-level glyph

recognizer from one example per glyph,
• specifications of three spatial features with

evidence indicating they are sufficient to
recognize a range of multi-stroke hand-drawn
glyphs,

• a simple API for app programmers to integrate
the recognizer into their program,

• an evaluation illustrating the efficiency and
accuracy of the proposed approach.

2 Related Work
The value of recognition lies in being able to use the
interpretation of a sketch in intelligent ways. Previous
work in high-level sketch understanding, describing the
way sketched glyphs are drawn and the relationships
between glyphs, falls into three categories (Johnson et al.,
2009): textual descriptions (grammars), exemplar-based
approaches, and hybrid approaches.

Grammars (Costagliola et al., 2005b; Costagliola et
al., 2005a; Hammond and Davis, 2005; Mas et al., 2005;
Hammond and Davis, 2007; Brieler and Minas, 2010;
Mas et al., 2010) commonly use a sketch description
language to define all glyphs of a domain. Recognizers
are then automatically generated using these descriptions.
The language can be used to define complex glyphs, often

in a hierarchical manner, using definitions of primitive
shapes to describe more complex glyphs. Editing
operations or gestures, relationships, and various
constraints can also be defined. The drawback of this
approach is that defining the grammar itself is a
cumbersome task with a large potential for error.

There are several example-based recognition systems
that support high-level understanding of diagrams
(Plimmer and Apperley, 2003; Sharon and Panne, 2006;
Avola et al., 2008). Much of this work stems from
Rubine’s (1991) early work in example-based gesture
recognition. Rules for determining semantics are
extracted from sketched examples by measuring various
features. The probability of a candidate glyph matching
an example is then calculated. The choice of features and
the available sketched example set are central to the
success of these approaches. Often these high-level
recognizers are for only one domain (Avola et al., 2008)
or can require 20+ examples per class (Sharon and Panne,
2006). In contrast our goal is to support multiple domains
with only one example per class.

There are also hybrid approaches which mix textual
and example based approaches. Shilman et al. (Shilman et
al., 2001) generate recognizers using textual descriptions,
but use examples to generate a statistical model of the
thresholds representing relationships between glyphs.
Hammond et al. (Hammond and Davis, 2006) require a
textual description of a shape which is either written by
the developer or can be generated automatically. The
description is checked using automatically generated
near-miss examples and the developer provides feedback
as to whether the example is positive or negative.

Both textual and hybrid approaches require textual
descriptions of diagrams. The manual specification of
each glyph in a domain is both time-consuming and error-
prone. On the other hand, the example-based method has
the unique potential to permit swift generation of
relatively robust high-level sketch recognizers in a non-
tedious manner. Thus, we decided to use the same
approach for our tool.

Gesture coder (Lü and Li, 2012) is a tool that allows
developers to generate example-based multi-touch
gesture recognizers. The system uses a state machine
approach for gesture recognition and generates developer-
modifiable code by learning from examples. Gesture
coder’s state machines are used to handle and distinguish
between different types of finger touches (swipe, pinch,
pan etc.). In contrast to the previously discussed
recognizers, gesture coder learns from demonstration
(using gesture trajectories, distance between gestures,
global gesture attributes etc.) and generates code for
recognition automatically rather than asking developers to
describe recognition using sketch sentences/descriptions.
Reported recognition rates are about 65% for 6 or more
classes. The user evaluation of Gesture Coder compared
programmers integrating it into an app with coding the
recognizer from the sketch primitives, an almost
impossible task for the non-expert participants to
complete within the timeframe of a study. Unsurprisingly,
many gave up and some produced only a simple partial
solution.

The $-Family (Wobbrock et al., 2007; Anthony and
Wobbrock, 2012; Vatavu et al., 2012) recognizers are

designed for simple, fast and accurate gesture
recognition. The $P and $N versions are able to recognize
multi-stroke gestures. The code required is minimal and
pseudocode is provided to assist developers.

Gesture Coder and the $-Family recognizers are
specifically for multi-touch/pen functional gestures rather
than glyph recognition. Glyphs are typically more
detailed in nature than a multi-touch functional gesture,
they are not always ordered by time, and require high-
level recognition to piece each bit together to interpret the
glyph as a whole. Multi-touch gestures can be easily
grouped according to time, i.e. the gesture is performed
within a certain time period and only one gesture is on the
canvas at one time. For diagramming, recognizers must
be able to handle many glyphs on the canvas at once.

In summary, there has been no approach so far that
can build robust high-level glyph recognizers with little
development effort. Existing approaches suffer from a
need to manually specify the rules in a text-based
grammar, or are restricted to a single stroke or gestures.

3 Our Approach
Glyphs in visual languages rely on the shapes of the
individual strokes and spatial relationships between these
strokes. In their seminal work on topical spatial
relationships, Egenhofer and Fanzosa (1991) define the
spatial relationships between a pair of ellipse shaped
regions as having the following possible conditions:
disjointed, touching, equal, containment, covers,
overlaps. Other work (1990) extends the definition to
include simple lines interspersed with the ellipses. Our
case is different in that, rather than regions, glyphs are
represented by a number of non-straight lines. In addition,
it is difficult to draw precisely so we must cater for some
fuzziness. We simplify the abovementioned set of
conditions to four that are sufficient to effectively
recognize a range of hand-drawn glyphs:

• Contains
• Intersects
• Adjacent
• Disjointed

Egenhofer and Fanzosa (1991) go on to show how
these conditions can be represented in a binary matrix to
describe a particular spatial arrangement of regions.

Whereas Egenhofer and Fanzosa considered only
ellipses and lines, this project deals with a far wider set of
basic strokes. For the single-stroke recognition we rely on
RATA.Gesture (Chang et al., 2012), it generates a stroke
recognizer from a few examples. The results of the
gesture recognizer are then used in our tool to build the
high-level glyph recognizer.

At the core of all gesture recognizers are features. We
have devised three features, one each for the conditions to
be recognized. To build a recognizer we also borrow from
Egenhofer and Fanzosa (1991) the idea to use a binary
matrix to represent which conditions exist in the current
drawing and which do not. How this recognizer is
constructed is described in Section 4. Section 5 describes
how the recognizer can be used by the application
programmer via an API. This API also makes it possible
for developers to test for features in a sketch manually.

In Section 6 we describe two proof-of-concept apps.
Each requires all spatial features to be recognized and
results in a different action when drawing is completed.
These apps are used to test the recognizers’ accuracy.
Finally, to ensure that the tool is usable by app
programmers and is more efficient than hand-coding the
spatial relationships, we conducted a comparative study
where student programmers performed two tasks: one
task using this tool, and the other task coding the rules
manually using the three proposed spatial features. This is
a fairer evaluation than in (Lü and Li, 2012) as functions
to detect spatial relationship features are made available
to the participants in our study.

4 Recognizer Generation
This section describes how our approach can be used to
generate a recognizer from one hand-drawn exemplar.
We use the example of a combo box to explain each
concept.

4.1 Features
Using knowledge of spatial properties from Egenhofer
and Fanzosa (1991), we identified three key
distinguishing features to include in our recognizer:
intersection, containment, and adjacency. If none of these
features are present, then the strokes are disjointed. These
features are depicted in Figure 2 for the combo box
example.

a) Intersection b) Adjacency

c) Containment

Figure 2. Features of a combo box

Intersection occurs when two strokes cross at any

point. This does not include self-intersections or strokes
that are close but not intersecting.

Containment is when the bounding box (axis aligned)
of one stroke is inside another stroke’s bounding box. If
the inner bounding box is outside of the outer bounding
box at any point then it is not considered containment –
this would be intersection or adjacency. Note that this
feature is not symmetric, e.g. the arrow of the combo box
in Figure 2c is contained in the textbox but the textbox is
not contained in the arrow.

Adjacency occurs when two strokes are intersecting
or horizontally or vertically adjacent. Horizontal and
vertical adjacency is calculated using the bounding boxes
(axis aligned) of the strokes. Consider horizontal
adjacency. First the maximum width of the two bounding
boxes is found, which is used to calculate a threshold for
“closeness”. “Closeness” is calculated as a proportion of

the maximum width or height, e.g. for horizontal
adjacency this is set to 50% of the maximum width,
which was determined by informal testing. If the distance
between the bounding boxes’ left or right sides are within
the threshold, they are considered horizontally “close”.
Then a similar calculation is completed to find whether
the bounding boxes sit on the same horizontal line by
checking if the top of one box is “close” to the middle of
the other. The threshold used here is 30% of the
maximum bounding box height. Vertical adjacency is
calculated in a similar way except that it considers the top
and bottom of the boxes to determine vertical “closeness”
and the left and right sides to determine if they are on the
same vertical line (thresholds for “closeness” used here
are 10% of the maximum bounding box height and 30%
of the maximum width respectively determined via
informal testing).

4.2 Matrices
A matrix for each of the above features is derived to
represent the relationships that exist in a multi-stroke
glyph (e.g. Figure 3). These matrices encode spatial
relationships between all possible pairs of strokes. Each
matrix has size n x n, where n is the number of single-
strokes in the glyph. In Figure 3 the first matrix
represents the intersections that exist between strokes in
the glyph, the second is for containment relationships and
the third for adjacency. The relationships are represented
using Boolean values, where ‘1’ indicates that the
relationship exists between two strokes. The name of
each single stroke is shown in the first row of the matrix;
these are ordered alphabetically as recognition is
independent of the order in which strokes are drawn. In
Figure 3, the highlighted cell of the intersection matrix
shows that there is an intersection between the textbox
and divider strokes, as illustrated in the figure. The
highlighted cell in the containment matrix shows that the
arrow is contained by the textbox. For the adjacency
matrix the highlighted relationship shows that the divider
is adjacent to the arrow. Overall, for the combo box there
are more adjacency relationships than intersection or
containment.

 !combobox #Glyph name
 Textbox-Arrow-Divider #Single strokes
Textbox
Arrow
Divider

 0, 0, 1,
 0, 0, 0,
 1, 0, 0,

#Intersection matrix

 #
 Textbox-Arrow-Divider
Textbox
Arrow
Divider

 0, 1, 0,
 0, 0, 0,
 0, 0, 0,

#Containment matrix

 #
 Textbox-Arrow-Divider
Textbox
Arrow
Divider

 0, 1, 1,
 1, 0, 1,
 1, 1, 0,

#Adjacency matrix

Figure 3. Feature matrices for a combo box. The
highlighted matrix cells correspond to the

relationships shown in the example sketches.

Recognition must be independent of stroke drawing
order. For example, the strokes in Figure 1 could be
added to a canvas in any order. To achieve drawing order

independence without computing all permutations of
drawing order, we sort the strokes in both the recognition
matrices and those on the canvas into alphabetical order
by their single stroke label.

The recognizer must also recognize glyphs that are a
superset of other glyphs, e.g. the textbox in Figure 1 is a
valid glyph in its own right and would usually be drawn
before the other parts of the combo box. The recognizer
must therefore consider all previous strokes regardless of
their recognition state. The recognizer tries to recognize
from the glyph with the largest to smallest number of
component strokes. This is computationally expensive so
we provide two recognizer modes: instant (only considers
strokes that are not already recognized as a part of a
glyph) and iterative (considers all strokes).

Developers create a recognizer by drawing one
example of each glyph they want to recognize in our tool.
This requires minimal effort and no understanding of
recognition techniques. They may provide more than one
example glyph if required. The feature matrices are
generated automatically using the examples and stored in
a recognizer file. This recognizer can then be integrated
into an app.

5 Recognizer Integration via the API
Once the recognizer has been generated, it can be loaded
into an app to identify newly drawn glyphs using the code
shown in Figure 4.

Helper recogHelper = new Helper(this); (1)
recogHelper.loadModelFile(RATA_SSR_FILE); (2)
recogHelper.loadFile(“UI.txt”); (3)
 …
Void onTraceRecognized(trace){
 String result=recogHelper.recognize(trace);(4)
}

Figure 4. Code required to integrate a recognizer

To use the generated recognizer in an app a Helper
object is created (Figure 4(1)). Next, the single-stroke
recognizer (Figure 4(2)) and the generated recognizer
matrix file (Figure 4(3)) are loaded. With the set-up phase
complete, new glyphs can be passed to the recognizer to
be identified as they are drawn with the
onTraceRecognized() function (this function is triggered
when a new stroke is drawn). The recognize() function
(Figure 4(4)) executes the recognition process. This
processing involves two steps:

1) recognizing each stroke individually using the
single stroke recognizer (Chang et al., 2012),
and

2) deducing spatial relationships between the
recognized strokes using the generated
recognizer.

With the results of the single stroke recognizer a
matrix can be generated from the newly drawn strokes.
The recognition system considers at most the n most
recent strokes, where n is the number of the strokes that
make up the largest glyph in the domain. This matrix is
compared against the loaded matrices (Figure 4(3)) for a
match. To optimize performance, the comparison is
skipped if there is no glyph in the domain which is made

up of the same number of strokes as the recognizer matrix
generated from user-drawn strokes. In case of a match,
the recognition result is returned to the developer’s app
through the onTracesRecognized() callback method for
them to process.

For the more advanced developer we have exposed
further recognition preferences that can be set through the
Helper object. The developer may choose which features
are considered during recognition; by default the
recognizer uses all three. Additionally, the developer may
choose to enable the instant recognition mode; by default
the iterative recognition that considers all strokes is used.

6 Proof of Concept
We have implemented two example apps as proof of
concept: sketching user interfaces and tic-tac-toe. All
three spatial relationships are represented in both
domains. The different domains also illustrate different
post-processing of the recognition results.

A survey was conducted to observe how people draw
within these domains; this aided us in identifying the
form of the glyphs required for recognition. Each
participant of the survey was asked to draw: a typical web
form, and a tic-tac-toe playing board with a circle or cross
in each grid. Participants used several user interface
glyphs such as textboxes, combo boxes, radio buttons,
checkboxes, buttons and labels for the web form. The
most common form of glyphs drawn is shown in Figure
1b. All participants drew the tic-tac-toe playing board as
shown in Figure 1a.

Using the results of our survey we generated
recognizers for each of the glyphs in the domains. This
involved drawing one example of each glyph with our
recognizer generation tool. For glyphs that could be
drawn in more than one way, i.e. combo boxes, an
example for each variant was drawn.

The recognizers were integrated into an app for each
domain. Once the glyphs are recognized within the app,
post processing can be performed to take advantage of the
recognition results. For the user interface domain we used
the sketches to generate corresponding HTML code. We
used the tic-tac-toe recognizer to create a game which
involves turn taking and informs the users when someone
has won. It also uses the recognition to perform error
checking, such as ensuring there is only one symbol per
cell and a symbol does not overlap other cells.

6.1 Recognizer accuracy
We also evaluated the accuracy of the recognizers
(calculated as the number of correctly classified glyphs /
total number of glyphs) in our proof of concept apps. To
do this we collected sketches from nine people where
they were asked to draw using the two apps. For the tic-
tac-toe app participants played five games of tic-tac-toe
against themselves. For the user interface app participants
drew eight of each web form component, (see Figure 1b).
Some participants drew slightly more or less than the
number specified depending on the time available. The
number of glyphs collected for each app and recognition
results are shown in Table 1.

The recognition results are good, with the tic-tac-toe
app reaching an almost perfect recognition rate, and the

user interface recognition achieving 85.9% accuracy. The
recognizer for the user interface domain had more glyphs
to interpret than tic-tac-toe which may account for the
difference in accuracy.

 #

Glyphs
% total
correct

% correct
(RATA)

% correct
(glyph rec)

User
Interface 496 85.9 94.5 91.3

Tic-tac-toe 435 99.5 100.0 99.5

Table 1. Recognition accuracy of each app.

The last two columns of Table 1 show the source of
errors made, with the percentage of glyphs that were
correctly classified by RATA (the single-stroke
recognizer) and by the generated glyph recognizer. The
glyph recognizer is responsible for a larger proportion of
the errors than RATA, particularly for the user interface
domain. On closer inspection we found two main sources
of misclassification for user interfaces: 45% of the
comboboxes (type 1 in Figure 1b) were misclassified; and
32% of the radiobuttons were misclassified. The
combobox was often identified as a textbox; we believe
this is because the inner line was not found to intersect
with the outer box. The radiobutton was commonly
classified as a label, most likely because the circles were
not found to be adjacent to the label. This indicates some
room for improvement for our glyph recognition strategy,
which could include allowing for more fuzzy conditions
to be applied, especially when determining thresholds for
“closeness”. It also highlights the need for extra measures
to be applied to minimise the effect of errors from
previous recognition steps, RATA in this case, on glyph
recognition. These issues are discussed further in Section
8.

7 User Study
The goal of the user study was twofold: to test whether
ordinary programmers could generate and integrate the
recognizer into an app; and to test if this is more efficient
in terms of time and accuracy than hard-coding a
recognizer for the chosen app. The task was to create a
high-level recognizer for a non-trivial domain. Ten 4th-
year students who were well-versed in Java programming
were recruited.

In order to make the comparative evaluation as fair as
possible, our evaluation makes two important differences
from the study by Lü and Li (2012), who performed a
similar evaluation for multi-touch functional gesture
recognition. First, we made sure all participants were
familiar with the domain. We chose the UI domain as all
of the participants had previous experience with UI
development. Second, we provided the participants with
adequate technological support when hard-coding a
recognizer. That is, the participants had access to our
features for detecting spatial relationships. There are a
number of feature libraries publically available that an
application programmer could employ, so realistically
developers would not code features.

7.1 Methodology
We conducted pilot tests with three participants to
determine whether the instructions and tasks were
appropriate. This was followed by individual sessions
during which each of the participants worked alone. We
collected information on participants’ prior experience
and opinions about the tasks through a questionnaire.

Each participant had to generate two recognizers for
the web UI domain: one generated using our tool (Tool)
and the other created through the hard-coding approach
(Hard-code). The glyphs they focused on are those shown
in Figure 1b. Participants were given a maximum of 30
minutes for each task. For both the tasks, participants
were provided with the User Interface app which
generated HTML code (on one half of the screen) for the
web UI glyphs sketched (on the other half of the screen).
The bits of the source code responsible for recognition
were omitted from the app, but where they should be
added was clearly marked with comments. The
participants followed the provided instructions to work
through both parts. To aid with the hard-coding task, we
particularly pointed out the functions to check for spatial
relationships (intersection, containment and adjacency)
between a pair of strokes, and also ensured they
understood how to use these functions to hard-code a
high-level recognizer.

In the questionnaire’s pre-task section participants
rated their familiarity with: touch interfaces, sketching
apps on touch-screen devices, Java programming,
Android programming and programming of sketch
recognizers. In the two post-task sections of the
questionnaire, participants were asked to rate task
comprehension, ease of using the approach to generate a
recognizer, perceived recognizer accuracy and
enjoyment. All these ratings were performed using a five-
point Likert scale. In the last section of the questionnaire,
participants were asked to rank the two approaches for
generating recognizers for ease of use and accuracy; they
were also asked to provide an overall ranking. Lastly,
they were asked to comment on what they liked/disliked
about the two approaches considered.

Half the participants were asked to generate a
recognizer using our tool first whereas the other half were
asked to create one using the hard-coding approach first,
to balance any order effects. Before starting the tasks,
participants were given a two minute demonstration of
how to use our tool to generate a recognizer by example,
and asked to complete the first part of the questionnaire.
In addition, we provided a hand-out containing
instructions for both the tasks. The participants were
asked to fill out a post-task section of the questionnaire
following each completion of each task. Participants
performed the tasks on an ASUS tablet running Android
4.2.1 and a DELL core i5 PC running the Eclipse IDE
(with ADT installed) on Windows 7.

After the participants implemented the recognisers in
the apps, they were asked to run them on the Android
tablet and test the recognition. They were encouraged to
stress test the recognizer by varying the order in which
the glyphs were sketched (the glyphs tested are the same
as in Figure 1b). At the end of the evaluation, the
participants were asked to complete the rest of the

questionnaire, including the open-ended questions and
comments. We used each participant’s test data to
measure the accuracy of the recognizers they produced. A
Wilcoxon Signed Rank Test was used to test for
significant differences in the results (as they were not
normally distributed), unless stated otherwise.

7.2 Results
Participant’s self-ratings of existing skills and knowledge
were recorded on a 1-5 scale, with 5 being “expert”. All
participants rated themselves as 5 regarding touch
interface use, but the mean was 3.2 for using sketching
apps on touch devices. For programming skills, all rated
Java programming as 5, with the Android programming
mean 4.3 and gesture recognition programming mean just
2, indicating none had experience in coding recognizers.

Table 2 shows the results of the questionnaire
particularly for questions asked about both methods of
recognizer creation.

Participants reported positively on task comprehension
(Table 2 Q1) for both tasks (Tool: M = 4.5 SD = 0.71,
Hard-code: M = 4.4 SD = 0.70). All participants either
completed the tasks or coded till their time expired. On
average participants took 11.60 minutes to complete the
Tool task (SD = 3.13), whereas hard-coding took an
average of 27.40 minutes (SD = 3.60). A paired t-test
showed that there was a significant difference in the time
that participants took to generate and integrate a
recognizer (t= -9.488, p < 0.001, Cohen’s d = -3.00).

Participants wrote 10 lines of code on average when
they used our tool and API; when hard-coding
participants added an average of 45 lines. Participant 2
produced one of the better results, shown in Figure 5 and
Figure 6. The code in Figure 6 shows the main
recognition method doRecognition(), which gets three
strokes as arguments. The method is dominated by many
conditional statements that consider the different
orderings in which the strokes making up a glyph are
given. For example, when recognizing a combo box in
the first lines of the method, each of the given
StrokeEvents could contain the text box that needs to be
recognized as part of a combo box. When hard-coding,
many participants did not complete the recognizer as they
did not include code to handle all permutations of strokes
that a glyph could be made up of. This was either

Question Method SD D N A SA
Q1. I
understood the
task

Tool 1 3 6
HC 1 4 5

Q2. Using the
tool/hardcoding
was easy

Tool 7 3
HC 2 2 6

Q3. I enjoyed
using the
tool/hardcoding

Tool 1 4 5
HC 2 1 5 2

Q4. The
recognition was
accurate

Tool 5 5
HC 2 3 3 2

Table 2. Results of comparative questionnaire (HC =
hard-code)

because of time restrictions or they did not consider these
cases.

Participants found generating a recognizer by example
using our tool to be very easy (M = 4.4, SD = 0.52).
Integrating the recognizer with the app was found to be
equally easy. The participants found using our tool (Table
2 Q2) significantly easier (Z=-2.251, p = 0.024, r = -0.50)
than doing the same by hard-coding (Tool: M = 4.3 SD =
0.48, Hard-code: M = 3.4 SD = 0.84). Also, the
participants found our tool to be more enjoyable (Table 2

 Q3) than hard-coding (Tool: M = 4.4 SD = 0.70, Hard-
code: M = 3.5 SD = 1.43), although this was not
statistically significant (Z=-1.476, p=0.14, r = -0.33).

Since our tool considers all possible permutations in
which the strokes of a diagram can be drawn, participants
rated it as significantly more accurate (Table 2 Q4) than
the hard-coded recognizer (Z=-2.232, p=0.026, r=-
0.50,Tool: M=4.5 SD=0.53, Hard-code: M=3.4
SD=1.07).

Helper msrHelper = new Helper(this);
msrHelper.loadModelFile(RATA_SSR_FILE);
msrHelper.loadFile(RATA_MSR_FILE);

void onTraceRecognized(TraceEvent stroke, String result) {
 msrHelper.recognize(stroke);
}
void onTracesRecognized(RecogResult r) {
 String msrResult = r.getResult();
}

Figure 5. Participant 2’s code using our tool

// TODO: Implement the method.
// In this method:
// 1) Recognize 2-stroke components i.e. Button, Checkbox and Radiobutton.
// 2) Recognize the 3-stroke component i.e. Combobox.

private String doRecognition(StrokeEvent strokeEvent1,StrokeEvent strokeEvent2,StrokeEvent
strokeEvent3){

if(strokeEvent3.exists() == true){
 if(strokeEvent1.isRecognisedResult("Textbox") && strokeEvent2.isRecognisedResult("Divider")

 && strokeEvent3.isRecognisedResult("Arrow") && isContained(strokeEvent1, strokeEvent3)
 && isIntersecting(strokeEvent1, strokeEvent2) && isAdjacent(strokeEvent2, strokeEvent3))

 return "combobox";
 if(strokeEvent2.isRecognisedResult("Textbox") && strokeEvent1.isRecognised...
 return "combobox";
 if(strokeEvent2.isRecognisedResult("Textbox") && strokeEvent3.isRecognised...
 return "combobox";
 if(strokeEvent3.isRecognisedResult("Textbox") && strokeEvent1.isRecognised...
 return "combobox";
 if(strokeEvent3.isRecognisedResult("Textbox") && strokeEvent2.isRecognised...
 return "combobox";
 if(strokeEvent1.isRecognisedResult("Textbox") && strokeEvent3.isRecognised...
 return "combobox";
}
if((isContained(strokeEvent1, strokeEvent2) && (strokeEvent1.isRecognisedResult("Textbox")

 && strokeEvent2.isRecognisedResult("Label")) || (isContained(strokeEvent2, strokeEvent1) &&
 strokeEvent2.isRecognisedResult("Textbox") && strokeEvent1.isRecognisedResult("Label")))){

 return "Button";
}
if(isAdjacent(strokeEvent1, strokeEvent2)){
 if((strokeEvent1.isRecognisedResult("Circle") && strokeEvent2.isRecognisedResult("Label"))

 || (strokeEvent2.isRecognisedResult("Circle") &&
strokeEvent1.isRecognisedResult("Label")))
 return "radiobutton";

 else if((strokeEvent1.isRecognisedResult("Textbox") &&
strokeEvent2.isRecognisedResult("Label"))
 || (strokeEvent2.isRecognisedResult("Textbox") &&
strokeEvent1.isRecognisedResult("Label")))
 return "checkbox";

}
return "NO_MATCH";

}

public boolean isIntersecting(StrokeEvent strokeEvent1, StrokeEvent strokeEvent2){
 … code was provided }

public boolean isContained(StrokeEvent strokeEvent1, StrokeEvent strokeEvent2){
 … code was provided }

public boolean isAdjacent(StrokeEvent strokeEvent1, StrokeEvent strokeEvent2){
 … code was provided }

Figure 6. Participant 2s Hard-coded implementation (note: many lines truncated as indicated with …)

For the same reason participants agreed that hard-coding
a recognizer was tedious (M = 3.8 SD = 0.92). Typical
participant comments for hard-coding were “need to
spend too much time”, “less flexible” and “very tedious”.

The accuracy of the recognizers built during the
evaluation was calculated by the number of correctly
recognized UI glyphs drawn by the participants / total
number of glyphs drawn by the participants. The
accuracy for recognizers generated using our tool was
100% (SD = 0), whereas the mean accuracy for
recognizers generated through hard-coding was 75.10%
(SD = 35.77).

Each and every participant rated our tool better than
hard-coding for accuracy as well as ease of use. The
overall ranking also showed our tool to be their preferred
approach. This positive feedback was further reflected in
the open-ended comments with answers such as: “the tool
aspires to the ideal of a recognition library by removing
the need to do any stroke processing”, “no coding, no
thinking, very easy”, “easy for lots of diagrams at once”.

8 Discussion
The goal of this project is to provide a tool for generating
high-level recognizers and an API to allow developers to
easily integrate these recognizers into their apps. Our
evaluation shows that developers unfamiliar with building
recognizers are able to quickly generate a high-level
recognizer with accurate results. The study participants
were unfamiliar with sketch recognition, yet they reported
the tool was easy as well as enjoyable to use. It was also
considerably quicker: generating a recognizer using the
tool took 12 minutes, as opposed to 27 minutes using the
spatial features we provided to hard-code a recognizer. In
addition, the recognizer generated using the tool was
superior to its counterpart in terms of accuracy. In a real
world scenario we would expect the diagrams to be larger
in terms of number of strokes. In such a situation the
benefits of using our tool (versus hard-coding) would
become even more apparent.

The spatial features of glyphs we have considered,
although not exhaustive, have produced good results for
the user interface and tic-tac-toe domain. In the future we
plan to extend these to consider the orientation
relationship between strokes, e.g. where a line attached to
the top or bottom of a circle has a different meaning. In
many cases, for example node-and-edge diagrams, this is
not important. However, there are situations where it may
be appropriate to make such differences. In addition, our
recognizer currently uses features that return a Boolean
value (either the feature is present for the given strokes or
it is not) and corresponding recognition matrices. This
simple approach has worked well for user interface and
tic-tac-toe domains. However, it could be expanded to
provide a continuous measure for domains such as set
diagrams, e.g. “50% overlap”, or could include machine
learning classifiers such as those that other recognizers
employ.

The use of any high-level recognizer relies on the
results of the recognition steps that precede the current
step in the process. A bottom-up approach to recognition
begins by recognizing single ink segments and then
progressively groups these into more complex glyphs.
The ultimate goal is to develop an overall semantic

understanding of the diagram. Our recognizer performs
high-level recognition where glyphs comprising of more
than one basic shape are identified; this is one of the last
steps in the recognition process. To account for the
preceding recognition steps we have used a single-stroke
recognizer (Chang et al., 2012). In future work we intend
to investigate ways of minimising the effect of errors
from earlier stages of recognition on the later stages such
as glyph recognition.

We are yet to optimise the runtime performance of the
recognizer. With larger sketches it would benefit from
partitioning the canvas using techniques such as (Moran
et al., 1997).

There are a number of single-stroke recognizers
available. The one we selected (Chang et al., 2012), has
the advantage of being example-based, requiring no
coding on the part of the programmer and having a simple
API. Thus it meets our goal of a no-coding solution to
glyph recognition. We have hidden the API of (Chang et
al., 2012) inside our own recognizer, but this could easily
be exposed to app programmers if this was deemed
helpful.

The sample apps that we developed show how our tool
can be applied in different domains. The UI tool converts
the sketch to HTML code that can be readily rendered in
a browser. This is in the spirit of many early sketch tools
such as (Landay, 1995). Tic-tac-toe is an example of a
mini game app. There are many possible mini games that
could be created using our tool.

9 Conclusion
We presented a novel approach that allows software
developers to create a high-level recognizer from one
example glyph, and integrate it into their app with as little
as four lines of code. The effectiveness of this tool has
been demonstrated in two apps employing recognizers
built using our tool and API. The user study shows that
developers unfamiliar with creating recognizers are able
to use the approach to generate accurate high-level
recognizers very easily, and are satisfied with the
usability of the tool.

10 References
Anthony, L. & Wobbrock, J. O. 2012. $N-protractor: a

fast and accurate multistroke recognizer. Proceedings
of Graphics Interface 2012. Toronto, Ontario, Canada:
Canadian Information Processing Society.

Avola, D., Ferri, F., Grifoni, P. & Paolozzi, S. 2008. A
Framework for Designing and Recognizing Sketch-
Based Libraries for Pervasive Systems. UNISCON.
Springer.

Brieler, F. & Minas, M. 2010. A model-based recognition
engine for sketched diagrams. Journal of Visual
Languages & Computing, 21, 81-97. Available: DOI
http://dx.doi.org/10.1016/j.jvlc.2009.12.002.

Chang, S. H.-H., Blagojevic, R. & Plimmer, B. 2012.
RATA.Gesture: A gesture recognizer developed using
data mining. AI EDAM, 26, 351-366. Available: DOI
doi:10.1017/S0890060412000194 [Accessed 2012].

Costagliola, G., Deufemia, V. & Risi, M. Sketch
Grammars: a formalism for describing and recognizing

diagrammatic sketch languages. Document Analysis
and Recognition, 29 Aug.-1 Sept. 2005 2005a. 1226-
1230.

Costagliola, G., Deufemia, V. & Risi, M. A trainable
system for recognizing diagrammatic sketch languages.
Visual Languages and Human-Centric Computing,
2005 IEEE Symposium on, 20-24 Sept. 2005 2005b.
281-283.

Egenhofer, M. J. & Franzosa, R. D. 1991. Point-set
topological spatial relations. International Journal of
Geographical Information System, 5, 161-174.

Egenhofer, M. J. & Herring, J. 1990. Categorizing binary
topological relations between regions, lines, and points
in geographic databases. University of Maine, Orono,
Maine, Dept. of Surveying Engineering, Technical
Report.

Hammond, T. & Davis, R. 2005. LADDER, a sketching
language for user interface developers. Computers &
Graphics, 29, 518-532. Available: DOI
10.1016/j.cag.2005.05.005.

Hammond, T. & Davis, R. 2006. Interactive learning of
structural shape descriptions from automatically
generated near-miss examples. Proceedings of the 11th
international conference on Intelligent user interfaces.
Sydney, Australia: ACM.

Hammond, T. & Davis, R. 2007. LADDER, a sketching
language for user interface developers. ACM
SIGGRAPH 2007 courses. San Diego, California:
ACM.

Johnson, G., Gross, M. D., Hong, J. & Do, E. Y.-L. 2009.
Computational Support for Sketching in Design: A
Review. Foundations and Trends in Human-Computer
Interaction, 2, 1-93.

Landay, J. Interactive sketching for user interface design.
Chi '95 Mosaic of Creativity, Doctoral Consortium,
May 7-11 1995 ACM. Photocopy on file, 63-64.

Lü, H. & Li, Y. 2012. Gesture coder: a tool for
programming multi-touch gestures by demonstration.
Proceedings of the 2012 ACM annual conference on
Human Factors in Computing Systems. Austin, Texas,
USA: ACM.

Mas, J., Llados, J., Sanchez, G. & Jorge, J. A. P. 2010. A
syntactic approach based on distortion-tolerant
Adjacency Grammars and a spatial-directed parser to
interpret sketched diagrams. Pattern Recognition, 43,
4148-4164. Available: DOI
http://dx.doi.org/10.1016/j.patcog.2010.07.003.

Mas, J., Sánchez, G. & Lladós, J. 2005. An Adjacency
Grammar to Recognize Symbols and Gestures in a
Digital Pen Framework. In: Marques, J., Pérez de la
Blanca, N. & Pina, P. (eds.) Pattern Recognition and
Image Analysis. Springer Berlin Heidelberg. Available:
DOI 10.1007/11492542_15.

Moran, T. P., Chiu, P. & van Melle, W. Pen-Based
interaction techniques for organizing material on an
electronic whiteboard. 10th Annual Symposium on
User Interface Software and Technology, 1997 Banff,
Canada. ACM, 45-54.

Plimmer, B. E. & Apperley, M. Software for Students to
Sketch Interface Designs. In: Rauterberg, M., Menozzi,
M. & Wesson, J., eds. Interact, 2003 Zurich.
Acceptance Rate, 73-80.

Rubine, D. H. Specifying gestures by example.
Proceedings of Siggraph '91, 28 July - 2 Aug 1991 Las
Vegas, USA. ACM, New York, 329-337.

Sharon, D. & Panne, M. V. D. 2006. Constellation
models for sketch recognition. Proceedings of the Third
Eurographics conference on Sketch-Based Interfaces
and Modeling. Vienna, Austria: Eurographics
Association.

Shilman, M., Pasula, H., Russel, S. & Newton, R. 2001.
Statistical visual language models for ink parsing.
Proceedings of the AAAI Spring Symposium on
Sketch Understanding.

Vatavu, R.-D., Anthony, L. & Wobbrock, J. O. 2012.
Gestures as point clouds: a $P recognizer for user
interface prototypes. Proceedings of the 14th ACM
international conference on Multimodal interaction.
Santa Monica, California, USA: ACM.

Wobbrock, J. O., Wilson, A. D. & Li, Y. 2007. Gestures
without libraries, toolkits or training: a $1 recognizer
for user interface prototypes. CHI. ACM.

	Recognizing Hand-drawn Glyphs from One Example and Four Lines of Code
	1 Introduction
	2 Related Work
	3 Our Approach
	4 Recognizer Generation
	4.1 Features
	4.2 Matrices

	5 Recognizer Integration via the API
	6 Proof of Concept
	6.1 Recognizer accuracy

	7 User Study
	7.1 Methodology
	7.2 Results

	8 Discussion
	9 Conclusion
	10 References

