
Computer Science 230
Assignment 2: Extending Bounce

Deadline: 5th May

April 13, 2006

Acknowledgment: assignment adapted from work originally prepared by Rick Mugridge.

Introduction

This assignment aims to give you some experience with object-oriented programming, in partic-
ular class hierarchies, abstract classes, and refactoring. The assignment involves further devel-
oping the Bounce application introduced in lectures. Essentially, Bounce involves an animation
comprising an extensible set of shape types. Shapes have in common knowledge of their position
and velocity while each kind of special shape has a specific way of rendering itself.
You will need to investigate five java.awt classes: Image, Graphics, FontMetrics, Color and Toolkit to
complete this assignment. Browsing the online JDK API should be sufficient for the needs of this
assignment.
The resources for this assignment are available from my Teaching page http://www.cs.auckland.
ac.nz/∼alexei/teaching/.

Tasks

The assignment is broken into several tasks of varying complexity. Complete the work in the
order of the tasks, using a Test-Driven Development approach. Estimate the time you expect to
take for each task just before you start working on it, and record this. Also keep a record of how
long you spend on each task (to the nearest 5 minutes). Notice whether your estimates improve
due to this feedback.
Some of the tasks in this lab will require that you rethink the class hierarchy. The best approach
is not always obvious – welcome to the real world of design.

Completion

To get the marks for this Lab, you need to have:

• Written good-quality unit tests for each task.

• Completed each task satisfactorily.

• Reported an estimate of time taken for each task.

• Tracked the time actually spent on each task.

• High-quality code with no smells.

• A good understanding of the assignment and your code.

1

http://www.cs.auckland.ac.nz/~alexei/teaching/
http://www.cs.auckland.ac.nz/~alexei/teaching/


• A good understanding of TDD and refactoring,

• Not changed the program beyond what was required.

You will need to hand in

• source code for you assignment, including TestCases and

• an executable jar file that runs your version of Bounce with a bunch of nice shapes

• a short report (one paragraph) outlining the estimated and actual times for each task and
noting any important points about the design and development of the tasks.

Your mark will be 75% for implementation of tasks (15% each), but you will get no marks for tasks
completed without adequate test cases. A further 10% of your marks will come from submitting
a nice executable jar file of your completed Bounce program that entertains me. The final 15%
will be for the short report.

1 Task One: Add an Image shape

Write unit tests for an ImageShape, a new type of Sprite which moves like the other shapes but
displays itself as an image such as the one in Figure 1. Implement it and include such a shape in
your animation.

Figure 1: An image of the sand cat Felis margarita

Unlike the provided shapes, it is created with a specified image that will have a width and height.
The arguments to the constructor are ordered as follows: x, y, deltaX, deltaY, image.
The ImageShape is to be painted to fill the size of its image, using drawImage(Image image, int x, int
y) calls to the Painter (this method will need to be added to the Painter interface).

Hints:

• You need to reconsider the class Shape when you carry out this task.

• When developing the unit tests for ImageShape, you should include test cases to check that
it bounces off the walls correctly. One way of writing these tests is to use a MockPainter
and to check that its log contains the correct sequence of calls given the size of the image.

• You may need to use a MediaTacker or IconImage to force the image to be loaded in a timely
fashion. Where should this code go?

2



2 Task Two A: Rectangle with Text

Write unit tests for a RectangleTextShape, a new type of Sprite which moves like the other shapes.
It displays itself just as a RectangleShape, except that it displays the text, centred in the rectangle
(the text may be larger than the rectangle).
It should be created with a specified width and height, In addition, it has an argument to the
constructor for the text String to be displayed. The arguments to the constructor are ordered as
follows: x, y, deltaX, deltaY, width, height, text.
To centre the text, you need to take account of the maximum height and width in pixels that the
text will need to be displayed (using the default font, so calculate it dynamically). See the Java
class java.awt.FontMetrics for details of how to calculate this. Rounded arithmetic is to be used to
calculate the position of the text.
Implement it and include such a shape in your animation.

Hints:

• The usual way to get a FontMetrics is from a Graphics. But in this assignment, the paint()
method of a Shape takes a Painter as argument (and it may be a MockPainter). So a Graphics
is unavailable. To get around this, we’ll implement the centering of the text inside the
Painter.

• Add a method drawCentredText(int x, int y, String text) to the javaPainter interface. In Mock-
Painter, simply implement the new method to log drawing of centered text. In Graphic-
sPainter, use the drawString() method of java.awt.Graphics to plot the text. Use the java.awt.Graphics
object to get a FontMetrics. With a FontMetrics object, you can extract sufficient information
to implement text centering.

• One way to calculate the Y coordinate to be passed to drawString() is as follows. Calculate
the height of the text from the sum of the default font’s ascent and descent. These values
can be queried from the FontMetrics object. The Y coordinate can then be calculated as

shape’s Y coordinate - ((ascent + descent) / 2)

However, where the ascent is greater than the descent, the Y coordinate needs to be in-
creased by ascent - descent pixels. In other cases, where the descent is greater than the ascent,
a similar adjustment needs to be made.

• The text is drawn after the rectangle is drawn.

3 Task Two B: Oval with Text

Write unit tests for a OvalTextShape, a new type of Sprite which moves like the other shapes. It dis-
plays itself just as a OvalShape, except that it displays the text, centred as with a RectangleTextShape
(see section 2).
It is created with the same arguments to its constructor as RectangleTextShape. Implement it and
include such a shape in your animation.

Hints:

This task seems simple after the previous one, but it raises a number of interesting design issues.
You may want to consider refactoring the class hierarchy. You may also want to look at how
Template Methods might feature in your revised hierarchy. As a result of refactoring, you may find
that particular classes become redundant.

3



4 Task Three: Borders

Write unit tests for a BorderShape, a new type of Shape which moves like the other shapes. How-
ever, unlike the other Shapes, it contains a Shape and moves with that Shape (ie, its position is
completely determined by the contained shape.
The BorderShape constructor should take a Shape, an integer line thickness, an integer gap be-
tween the border and the contained shape and a Color defining the color of the border.
It paints a rectangular border of the given thickness around its embedded Shape, with a user-
defined gap between the internal shape and the border. The (rectangle) border is drawn after the
shape is drawn.
Borders may be nested to arbitrary depth (ie, a BorderShape may be included inside another Bor-
derShape). For example, the following screenshot shows a simple BorderShape which contains
another BorderShape which itself contains a OvalShape.

As with any other Shape, a BorderShape is not permitted to move beyond the boundaries of its
two dimensional world.
Implement class BorderShape and include instances in your animation.

Hints:

• A BorderShape’s properties are determined by the Shape it encloses. In particular, x, y, width
and height are a function of the contained shape (and constructor parameters) and deltaX
and deltaY are the same for the BorderShape and its part.

• To add support for color, introduce two new methods to the Painter interface: getColor()
and setColor(). getColor() should return a java.awt.Color value and setColor() should take
a java.awt.Color argument. Using these methods, you can query the current color before
setting a new color and drawing. After drawing in your preferred color, you can reset the
current color to its original value.

5 Task Four: A new kind of motion

Up until now all of the shapes have shared the property that they bounce off of the walls and
have a velocity that doesn’t experience any friction or gravity. In this task you will write unit tests

4



for a new kind of motion GravityMotion. GravityMotion will implement a new interface Motion
that will be taken by the Shape constructor instead of deltaX and deltaY. A class that implements
BouncingMotion will need to be written to support the old behavior. The new GravityMotion class
will have, in addition to deltaX and deltaY, an acceleration due to gravity, g. In the real world
acceleration due to gravity is measured in metres/sec/sec, however in our virtual world it is
easiest to measure gravity in pixels/clock/clock. This gravitational force will increase deltaY by
g pixels each clock tick.

6 Task Five: BounceListener and changing shapes

Add a BounceListener interface that has a single method bounceOccurred(Shape shape). The Motion
interface should be updated to have addBounceListener and removeBounceListener methods. This
new BounceListener interface can then be used to implement a shape that can change how it is
rendered after it bounces off a wall. This exercise will probably involve a bit of thinking about
exactly how to implement the changes in painting but the results are worthwhile. After this task
you should be able to have an object that changes between a rectangle and an oval after each
bounce off of a wall.

5


	Task One: Add an Image shape
	Task Two A: Rectangle with Text
	Task Two B: Oval with Text
	Task Three: Borders
	Task Four: A new kind of motion
	Task Five: BounceListener and changing shapes

