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The estimation of evolutionary rates from serially sampled sequences has recently been the focus of several studies. In
this paper, we extend these analyzes to allow the estimation of a joint rate of substitution, x, from several evolving
populations from which serial samples are drawn. In the case of viruses evolving in different hosts, therapy may halt
replication and therefore the accumulation of substitutions in the population. In such cases, it may be that only
a proportion, p, of subjects are nonresponders who have viral populations that continue to evolve. We develop two
likelihood-based procedures to jointly estimate p and x, and empirical Bayes’ tests of whether an individual should be
classified as a responder or nonresponder. An example data set comprising HIV-1 partial envelope sequences from six
patients on highly active antiretroviral therapy is analyzed.

Introduction

Recently, there has been an increased interest in the
analysis of serial nucleotide sequence samples that are
gathered from the same population, each sample obtained
at a different time. This includes samples from rapidly
evolving viral populations such as HIV and Porcine
Reproductive and Respiratory Syndrome Virus (PRRSV)
(Leitner and Albert 1999; Forsberg et al. 2001) and ancient
DNA samples obtained from preserved or fossilized tissue
(Leonard, Wayne, and Cooper 2000; Barnes et al. 2002;
Lambert et al. 2002). Several methods have been de-
veloped to estimate the value of some time-dependent
evolutionary parameter when serially sampled sequences
are available. Rodrigo et al. (1999) and, later, Fu (2001)
developed methods to estimate the generation time of
a population. Maximum-likelihood and least-squares
estimators of single or multiple substitution rates have
also been developed (Drummond and Rodrigo 2000;
Rambaut 2000; Drummond, Forsberg, and Rodrigo 2001).
Drummond and Rodrigo (2000) also described a method to
reconstruct serial genealogies using serial sample UPGMA
(sUPGMA). Most recently, Seo et al. (2002a) have
explored optimal experimental designs for serial sampling,
when the aim is to estimate substitution rate and/or
divergence times. In addition, Seo et al. (2002b) and
Drummond et al. (2002) have described more sophisticated
methods for the estimation of substitution rates and effective
population size.

The estimation methods developed to date use only
sequences sampled serially from a single population.
However, certainly with viruses, it is quite common to
sample viral sequences from several different hosts, and
within each host, at different timepoints (e.g., Gunthard
et al. 1999; Holmes et al. 1992; Rodrigo et al. 1999;
Shankarappa et al. 1999). If we assume, as is frequently

done for viruses such as HIV-1, that there is little likelihood
of multiple transmission events, then viruses in each host
are part of an isolated and unique population, evolving
independently from a single founding variant.

In this paper, we describe two likelihood-based
methods for jointly estimating a substitution rate using
serially sampled sequences, when these are obtained from
different populations. These methods are analogous to those
developed by Gu (2001) for the analysis of functional
divergence in protein families, and we use Gu’s terminol-
ogy in this paper. In the first of these procedures, the subtree
of sequences from each population is treated as an unrelated
phylogeny. This ‘‘subtree likelihood’’ (STL) approach uses
the likelihoods of the subtrees as independent contributors
to the total likelihood of all samples. In an alternative
approach, a phylogeny of all sequences is constructed and
the ‘‘whole-tree likelihood’’ (WTL) is then used as a basis
for estimation.

The joint estimation of substitution rate is a reasonably
simple extension to work previously done (Rambaut 2000)
under both approaches. There is, however, an interesting
problem that provides a more challenging application of the
STL or WTL procedure. Gunthard et al. (1999) described
a study in which HIV-1 partial envelope (env) gene
sequences were obtained from individuals just before and
2 years after the commencement of combination antiret-
roviral therapy. The aim of the study was to determine if
antiretroviral therapy effectively controlled viral replica-
tion, as had previously been suggested by several workers
(Finzi et al. 1997; Wong et al. 1997). In the event that the
patient responds to therapy and viral replication is halted,
there would be no measurable (or statistically significant)
accumulation of substitutions in env sequences sampled
before and after therapy. In a study such as this, the aim is to
quantify and test whether the virus population continues to
evolve within a host over the period of the study. Gunthard
et al. (1999) analyzed each patient separately, but such
an analysis runs the risk of inflating the probability of a
type I error. Here, we apply the STL and WTL procedures
to provide joint estimators of both the proportion of
individuals who do not respond to therapy (i.e., whose
viral population continues to replicate and accumulate
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substitutions) and the rate of ongoing viral substitution in
these patients. Finally, we show how each patient may be
assigned to the class of nonresponders or responders using
empirical Bayes’ classifiers.

Methodology

Consider the case of sequences sampled serially from
a single population for which there is exact information on
sampling times and a known phylogeny. In a model where it
is assumed that there is a uniform rate of substitution (the
single-rate with dated tips [SRDT] model, Rambaut 2000),
total branch lengths from the root of the tree to the tips are
no longer required to be equal. Instead, branch lengths are
determined by the number of sampling intervals the
branches traverse and the substitution rate (fig. 1). The
parameters of the tree are the substitution rate, x, the vector
of times, s, corresponding to the dated tips and the (n�1 for
a bifurcating tree) internal node heights (h) measured in
units of substitutions (followingRambaut 2000; note that the
tip times may be measured either in generations or in some
calendar unit, and a simple rescaling allows one to move
between the two). As described previously by Drummond,
Forsberg, andRodrigo (2001),x is only estimatedwithin the
interval bounded by the first and last samples. Specifically,
no assumptions are made with regard to the rate between the
earliest sampling time and the root of the tree. This is
because the branch lengths, l, between the root and the
earliest sampling time can only be optimized jointly as li¼
xti. Settingx¼0 is equivalent to terminating all tips an equal
distance from the root and assuming that all sequences in the
sample are contemporary, as is done under a standard
molecular clock model.

For a given phylogeny, T, for which only the topology
is known, we may estimate the joint likelihood of x and H,
the vector of internal node heights on T, as the conditional
probability of obtaining the sequence data, S, given x, T,
H, and s, the vector of sampling times, as well as the
instantaneous substitution rate matrix, M (also assumed to
be known):

Lðx;HÞ ¼ ProbðS j x; T;H; s;MÞ ð1Þ
Since T, s, and M are fixed, we will write L(x, H ) ¼

Prob(S j x,H ) without loss of generality. This likelihood is
calculated in the standard manner (Felsenstein 1981;
Goldman 1990; Rodriguez et al. 1990) for phylogenetic
trees; the addition of x and s enters the calculations as
constraints on the branch tip positions (fig. 1). The MLEs of
the rate, x̂x, and elements of the vector of node heights, ĤH,
are constrained to be greater than or equal to zero and are

FIG. 1.—Alternative models of phylogenies with serially sampled
sequences. (A) A ‘‘single-rate with dated tips’’ (SRDT) tree, with the
times of serial sequence samples sequences known precisely. Under
a molecular clock, sequences from each timepoint terminate at the same
distance from the root of the tree. The branch lengths are extended by the
product of a single substitution rate, x, and the sampling interval. (B) A
partially constrained phylogeny of sequences from two subpopulations.
Only the lengths of the sampling intervals, �1 and �2, are known for the
samples from both populations. A common rate, x, is assumed. (C) A
partially constrained phylogeny with sampling intervals known and with
different rates, x1 and x2, for each population.
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chosen such that L(x̂x, ĤH) is maximized. It is worth noting, at
this point, that since we are only interested in x, H is
a nuisance parameter, and we estimate it only because it is
necessary to do so. (Note: Although we are assumingM to
be fixed, it is also possible to estimate M).

Using Subtree Likelihoods (STLs)

We wish to extend this model to the case where there
are n serially sampled data sets, S1,. . .,Sn, each from
a different population. Associated with each is a fixed tree,
Ti, possibly a different model of evolution, Mi, and
a different set of sampling times, si. When the aim is to
estimate a common substitution rate, the likelihood function
can be written as

Lðx;H1; . . . ;HnÞ
¼ ProbðS1; . . . ; Sn j x; T1; . . . ; Tn;

H1; . . . ;Hn; s1; . . . ; sn;M1; . . . ;MnÞ ð2Þ
As above, we will write L(x, H1, . . . , Hn)¼Prob(S1, . . . ,
Sn j x, H1, . . . , Hn) since T1, . . . ,Tn, s1, . . . ,sn and
M1, . . . , Mn are fixed.
Here, we assume that S1, . . . , Sn are drawn from
independent populations, so that for a sample of aligned
sequences, Si, from the ith population,

ProbðSi j S1; . . . ; Si�1; Siþ1; . . . ; SnÞ ¼ ProbðSiÞ ð3Þ
That is, sequences obtained from the ith population do not
depend on sequences obtained from any other population.
For this assumption to be true, the sequences from other
populations must not have any influence on the prior
probabilities of obtaining the sequences in the ith popula-
tion. If this condition is met, then any estimate of x that is
derived using a set of sequences, Si, is totally uninfluenced
by estimates of x obtained with other samples. Such
a situation would apply if the subtrees are connected by very
long branches on the joint phylogeny or by very short
branches with equal prior probabilities at the roots of all
subtrees. As Gu (2001) points out, this approach is
computationally tractable and, as we will show, appears to
give very similar results to the WTL approach.

Given equation 3, it follows that

Lðx;H1; . . . ;HnÞ ¼
Yn
i¼1

ProbðSi j x;H1; . . . ;HnÞ ð4Þ

For the ith population, Si depends on the evolutionary
history of that population only and consequently on the
node heights, Hi, associated with topology, Ti. Therefore,
equation 4 can be rewritten as

Lðx;H1; . . . ;HnÞ ¼
Yn
i¼1

ProbðSi j x;HiÞ ¼
Yn
i¼1

Liðx;HiÞ

ð4aÞ
where Li(x, Hi) is the likelihood defined in equation 1 of
x and H for the ith population. The joint MLE of x and
Hi, . . . , Hn is chosen to maximize equation 4. Asymptotic
(1� a)% profile confidence limits of x can be derived by
locating upper and lower values, x*, such that

ln Lðx̂x; ĤHi; . . . ; ĤHnÞ � ln Lðx*;H91; . . . ;H9nÞ ¼ v2
1;a=2

ð5Þ
where x̂x and ĤH1, . . . , ĤHn are the MLEs of x and H1, . . . ,
Hn, respectively, andH91, . . . ,H9n are theMLEs of H1, . . . ,
Hnwhenx¼x*. For 95% confidence limits, v21;0:05/2¼1.92
(Rambaut 2000; Drummond, Forsberg, and Rodrigo 2001;
Ota et al. 2001).

How do we modify equation 5 to allow groups of
subpopulations to have different values of x? As discussed
above, we want to extend equation 4 to allow for the
possibility that there is no measurable accumulation of
substitutions in some populations so that for these, x¼ 0.
The following description applies specifically to this case,
but it is general enough to be applied to other values of x as
well. More importantly, whereas we focus exclusively on
two rate categories (i.e., x . 0 and x¼ 0), these methods
can also be generalized to data with more than two rate
categories.

We define a Bernoulli random variable, R, where R¼
0 classifies a population for which x ¼ 0, and R ¼ 1,
a population where x . 0. Let R¼ (R1, . . . ,Rn) represent
the vector of population states. We can define the joint
likelihood of R and a common positive-valued x (for those
populations for which R ¼ 1) as

LðR;x;H1; . . . ;HnÞ
¼ ProbðS1; . . . ; Sn j R;x;H1; . . . ;HnÞ ð6Þ

The condition of independence given in equation 3 needs
to be extended as follows:

ProbðSi j S1; . . . ; Si�1; Siþ1; . . . ; Sn;R1; . . . ;Ri; . . . ;RnÞ
¼ ProbðSi j RiÞ ð7Þ

This means that the evolution of sequences sampled from
any given population depends on the status of that
population only and not on that of any other population.
Therefore,

LðR;x;H1; . . . ;HnÞ ¼
Yn
i¼1

ProbðSi j Ri;x;HiÞ

¼
Y
i

LiðRi;x;HiÞ ð8Þ

Li(R, x,Hi) is either the likelihood of the tree (topology, Ti,
and node heights,Hi) with all terminal tips equidistant from
the root (when Ri¼ 0; x is included for completeness but
does not feature in the likelihood calculations) or the
likelihood of Ti with tips terminating according to the
sampling times and substitution rate, x, (when Ri¼1). This
is equivalent to finding the particular configuration of
population states, R1. . .Rn, and the value of x associated
with those populations for which R¼1, such that L(R, x) is
maximized.

The value of this approach is that it identifies the
populations that show an accumulation of substitutions and
those that do not. However, frequently what is required is an
estimate of the proportion of populations that are classified
as either R¼ 0 or R¼ 1. Of course, this can be estimated
simply from R after maximizing equation 7. Ideally,
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however, if the intention is to obtain an MLE of this
proportion, the likelihood function needs to be recast.

Let the probabilities associated with R¼0 and R¼1 be
(1�p) and p respectively. MLEs of p and a positive-valued
x can be obtained jointly by maximizing the following
likelihood function:

Lðx; p;H1; . . . ;HnÞ

¼
Yn
i¼1

� X
j2ð0;1Þ

ProbðSi j Ri ¼ j;x; p;HijÞ

3ProbðRi ¼ j j x; p;HijÞ
�

¼
Y
i

½ð1� pÞLiðRi ¼ 0;x;Hi0Þ þ pLiðRi ¼ 1;x;Hi1Þ�

ð9Þ

where L(R¼0, x, Hi0) is the ith likelihood of Ti with node
heights, Hi0, optimized under a standard molecular clock,
and L(R¼1,x,Hi1) is a dated-tips tree with optimized node
heights, Hi1, and x common to all populations.

Asymptotic bivariate (1 � a)%-profile confidence
envelopes may be obtained by locating pairs of (x*, p*)
such that ln L(x̂x, p̂p, ĤHi, . . . , ĤHn) � ln L(x*, p*, H91, . . . ,
H9n) ¼ v22;a/2; here, H91, . . . , H9n are the node heights that
give the highest likelihood for x* and p*. Alternatively,
a profile confidence likelihood interval may be obtained for
each parameter (either x or p). For p, for instance, locate
upper and lower values, p*, such that

ln Lðx̂x; p̂p; ĤHi; . . . ; ĤHnÞ � ln Lðx9; p*;H91; . . . ; H9nÞ
¼ v2

1;a=2 ð10Þ

The same procedure can be used to find upper and lower
confidence values for x.

Joint estimation of p and x does not specifically
identify which populations are classified as R¼1 or R¼0. It
is however possible to use an empirical Bayes’ procedure to
classify the ith population according to their relative
posterior probabilities after fixing x¼ x̂x, p¼ p̂p, and Hi to
ĤHi0 or ĤHi1 depending on whether Ri ¼ 0 or R ¼ 1,
respectively. To implement this, the ratio

�i ¼
ProbðRi ¼ 1 j Si; x̂x; p̂p; ĤHi1Þ
ProbðRi ¼ 0 j Si; x̂x; p̂p; ĤHi0Þ

¼ ProbðSi j Ri ¼ 1; x̂x; p̂p; ĤHi1ÞProbðRi ¼ 1 j x̂x; p̂p; ĤHi1Þ
ProbðSi j Ri ¼ 0; x̂x; p̂p; ĤHi0ÞProbðRi ¼ 0 j x̂x; p̂p; ĤHi0Þ

�i ¼
p̂pProbðSi j Ri ¼ 1; x̂x; p̂p; ĤHi1Þ

ð1� p̂pÞProbðSi j Ri ¼ 0; x̂x; p̂p; ĤHi0Þ
ð11Þ

is calculated. If �i . 1, then it is more probable that the ith
population has a nonzero rate of substitution over the period
of sampling.

It is worthwhile noting that identifying the precise
configuration ofR¼ (R1,. . .Rn), as we do in equation 8, and
deriving p̂p by calculating a posteriori the proportion of
subpopulations classified as Ri ¼ 1 (or 0) may lead to an
inconsistent estimate of p, (i.e., there exists a small e such
that Prob(jp̂p�pj, e)fi 0, as nfi ‘). This is because as n

increases, the probability of incorrectly classifying sub-
populations increases; this affects our estimate of p when it
is calculated a posteriori. For this reason, it may be more
defensible theoretically to estimate p directly.

For k (k. 2) categories of rates, there will be a vector
p¼fp1, . . . , pkg where pi corresponds to the proportion of
subpopulations in rate category i. Equation 11 will be
inapplicable in such a case. Nonetheless, for each sub-
population, it is easy enough to calculate the posterior
probability of each rate category (for two categories, these
correspond to the numerator and denominator of equation
11). These posterior probabilities can be thought of as
‘‘classification probabilities;’’ a subpopulation is assigned
to the category with the highest classification probability.

Using Whole-Tree Likelihoods (WTL)

An alternative to the STL methods described above is
to build and use a tree that represents the joint phylogeny of
all sequences sampled from all populations. If the real
sampling times from different populations are known, it is
possible to build a serial phylogenetic tree of the entire set
of sequences. In this circumstance, the complete phylogeny
can be used to estimate a single mutation rate under the
SRDT model. This would be analogous to what Gu (2001)
refers to as the ‘‘whole-tree likelihood’’ approach. How-
ever, even if these times are available, it is still not obvious
that a single tree and the SRDT analysis would be the
appropriate approach, because it assumes that the rates of
substitution of the virus between individuals are the same as
those within individuals. Of course, this may not be true,
since the accumulation of substitutions between individuals
is subject to the evolutionary dynamics operating as a result
of transmission from host to host.

An alternative is to construct a partially-constrained
serial phylogenetic tree that allows the sequences within
each population to evolve according to the SRDT model
but also allows the lengths of branches connecting the
subtrees of sequences from the different populations to
vary freely (fig. 1B). In this case, the likelihood of the
partially-constrained serial tree, T, with a single model of
evolution, M, and node heights, HT, some of which are
free to vary, is

Lðx;HTÞ
¼ Probð� ¼ S1; . . . ; Sngf j x; T;HT; s1; . . . ; sn;MÞ

ð12Þ

In this case, there is a single rate, x, estimated for all
populations regardless of the sampling intervals. It is
perhaps more interesting to modify equation 12 to allow the
populations to have different rates (e.g., some populations
to have rate x. 0 and others have rate x¼0). In principle,
this is straightforward: we need only constrain the node
heights of the respective samples on a tree appropriate to
their assigned rates (fig. 1C).

If we are interested in estimating the numbers of
individuals with rates x . 0 or x ¼ 0, it is possible to
choose a partially constrained tree with the particular
assignment of samples to each rate group that has the
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highest likelihood. So, by cycling through all 2n possible
combinations of rate assignments, we are able to identify
the ML combination.

The approach above is equivalent to that applied
using the subtree likelihood method, in which a partic-
ular combination of population states R1. . .Rn (and the
value of x associated with those populations for which
R ¼ 1) that maximizes L(R, x) is found. As with that
approach, the disadvantage is that we do not estimate
a proportion, p, of the number of populations that have
state R ¼ 1.

It is possible, albeit tedious, to estimate both p and
x using theWTL approach. LetRi¼ (Ri1, . . . Rin) represent
the ith combination of states assigned to the n samples,
i¼1, . . . , 2n. Let ki be the number of samples assigned state
R¼1 and (n�ki) the number assigned state R¼0 inRi. The
joint likelihood for x and p is

Lðx; pÞ ¼
X2n
i¼1

pkið1� pÞðn�kiÞLðRi;xÞ ð13Þ

and is analogous to an expansion of equation 9. Obtaining
equation 13 actually involves cycling through 2n possible
instances of the fixed topology, each of which has a different
configuration of subclades assigned to the two rate
categories.

Finally, we are interested in assigning subpopulations
to different rate categories. As with the STL approach, we
do this using an empirical Bayes’ classifier. For the jth
subpopulation, j¼1, . . . , n, with rate assignment Rij2Ri in
the ith combination of rate assignments,

�j¼
ProbðRij¼1 j�;x̂x;p̂p;ĤHTðRij¼1ÞÞ
ProbðRij¼0 j�;x̂x;p̂p;ĤHTðRij¼0ÞÞ

¼
ProbðRij¼1 j x̂x;p̂p;ĤHTðRij¼1ÞÞProbð� jRij¼1;x̂x;p̂p;ĤHTðRij¼1ÞÞ
ProbðRij¼0 j x̂x;p̂p;ĤHTðRij¼0ÞÞProbð� jRij¼0;x̂x;p̂p;ĤHTðRij¼0ÞÞ

ð14Þ
where ĤHTðRij¼1Þ and ĤHTðRij¼0Þ indicate node heights of ML
topologies for which the sequences associated with the jth
subpopulation when it has rate assignments 1 and 0,
respectively. The terms Prob(U jRij ¼ 1, x̂x, p̂p, ĤHTðRij¼1ÞÞ
and Prob(Rij ¼ 0 jU, x̂x, p̂p, ĤHTðRij¼0ÞÞ are, in fact, the
likelihoods of the jth subpopulation having rate assignments
1 and 0, respectively, after fixing x and p to their ML
estimates. There are 2n�1 combinations in which the jth
subpopulation has rate assignment 1 and the same number
of combinations in which it has rate assignment 0.
Therefore,

Probð� jRij¼1;x̂x;p̂p;ĤHTðRij¼1ÞÞ

¼LðRij¼1Þ¼
X2n
i¼1

Rij

p̂p
p̂pkið1� p̂pÞðn�kiÞLðRi;x̂xÞ ð15Þ

The multiplier Rij/p̂p needs a little explanation. The
numerator, Rij, ensures that the only terms that are used
are those that correspond to combinations of Ri for
which Rij ¼ 1. The denominator, p̂p, corrects the product
p̂pki (1� p̂p)ðn�kiÞ because we are fixing the jth subpopulation
to have rate Rij ¼ 1. Similarly

Probð� jRij¼0;x̂x;p̂p;ĤHTðRij¼0ÞÞ

¼ LðRij¼0Þ¼
X2n
i¼1

ð1�RijÞ
ð1� p̂pÞ p̂p

kið1� p̂pÞðn�kiÞLðRi;x̂xÞ ð16Þ

Therefore, substituting equation 15 and equation 16 into
equation 14,

�j ¼
p̂pLðRij¼1Þ

ð1� p̂pÞLðRij¼0Þ

¼
P2n

i¼1Rijp̂p
kið1� p̂pÞðn�kiÞLðRi;x̂xÞP2n

i¼1ð1�RijÞp̂pkið1� p̂pÞðn�kiÞLðRi;x̂xÞ
ð17Þ

As with the STL approach, if �j . 1 then the jth
population is classified in rate category 1, that is, with rate
x ¼ x̂x . 0.

Example: Estimating the Proportion of Individuals
Responding to Antiretroviral Therapy

Gunthard et al. (1999) studied the evolution of partial
(regions C2–C3) HIV-1 env sequences over 2 years of
combination antiretroviral therapy in six individuals. Viral
RNA sequences were obtained just before therapy began
(‘‘early’’ sequences) and cell-associated viral DNA se-
quences were obtained 2 years later (‘‘late’’ sequences). As
mentioned previously, if therapy is successful at halting
viral replication, there is no opportunity for the virus to
accumulate mutations, since this only happens when viral
RNA is reverse transcribed to cDNA after infection of host
cells. Therefore, one expects that successful therapy will
leave behind a population of viral ‘‘fossils’’ embedded in
the genomes of host cells infected before therapy began.
This means that when therapy begins, the mutation rate, x,
becomes zero. Note that setting x¼ 0 only makes sense if
serial sequence samples are available. In the absence of
serially sampled data, x ¼ 0 implies that there can be no
differences between sequences, but with serial samples,
x¼0 only implies that over some period between sampling
events, there was no accumulation of substitutions.

Gunthard et al. (1999) reconstructed the phylogenies
of each set of sequences from each subject. They then
measured the evolutionary distance of each sequence to
the root of each tree and compared the distances of early
and late sequences using a nonparametric test. There
are obvious problems with this approach, principally the
genealogical dependence of evolutionary distances. In
effect, this analysis assumes that each sequence terminates
a lineage that evolved independently from the most recent
common ancestor. Here, we reanalyze the data obtained by
Gunthard et al. (1999).We used PAUP* (Swofford 1999) to
construct individual maximum-likelihood phylogenies for
sequences from each subject with a common GTRmodel of
evolution that we had previously estimated for all subjects
simultaneously. We applied the analyses described above
for both the STL-based andWTL-based approaches. For the
WTL analyses, an unrooted tree of the entire data set was
used. As expected, sequences from each subject clustered
together. For the STL analyses, the phylogeny of each set of
sequences was rooted using sequences from other subjects
as outgroups. Once the trees were rooted, the outgroup
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sequences were pruned from the trees so that the rooted
topology contained only the sequences for that subject.

STL Analyses

First, for each subject, we derived a nonnegative MLE
of x by setting the times between early and late sequences
at 2 years, using the estimated phylogeny and commonGTR
model of evolution. Interestingly, the MLEs of x for four of
the six subjects were, in fact, 0. The MLEs of x for
sequences obtained from Patient M was 1.8% per year, and
that of Patient C was 0.3% per year. Using the asymptotic
likelihood ratio test (LRT) described by Drummond,
Forsberg, and Rodrigo (2001), we found that x was
statistically different from 0 only for Patient M (P , 0.01
[table 1]). This result is interesting because we were only
able to find evidence for the continued accumulation of
substitutions in one subject. In contrast, using the non-
parametric approach and treating the distance-to-root of
each sequence as an independent measurement, Gunthard et
al. (1999) found that the viral populations in three subjects
continued to evolve. This is not surprising, because the
assumption that each sequence in a given sample sits at the
tip of an independently evolving lineage falsely inflates
both the degrees of freedom of a test (broadly defined, the
apparent number of replicates) and our confidence that any
estimated difference is statistically significant.

Next, we searched for the combination of six
population states, R¼ (R1, . . . ,R6), representing sequence
sets with statistically detectable increases in substitutions
between sampling times (R¼ 1) and those without (R¼ 0).
As described in equation 8, for any configuration in which
R ¼ 1 was assigned to more than one set of sequences,
a common x was estimated. The configuration that had the
highest log-likelihood (�4,391.35) of all 64 possible
configurations of R was one in which only Patient M
had a non-0 x (1.8% per year). This, of course, agrees with
the result obtained above: only sequences from Patient M
contained sufficient signal to detect a statistically signif-
icant non-0 substitution rate between sampling times.

At this point, it is worth noting that the log-likelihood
of one other configuration was only very slightly different
from that of the ML configuration. The configuration in
which Patients K and M have states R¼ 1, and a common
value of x¼ 0.017 (1.7% per year) has a log-likelihood of
�4,391.37. At first glance, this is a curious result—an

examination of table 1 indicates that for Patient K, the MLE
of x¼0. Why then should Patient K be assigned a state that
signals a detectable accumulation of substitutions? The
reason becomes obvious when we examine the topology of
the sequences for Patient K (fig. 2). The tree is reciprocally
monophyletic, with early sequences (labeled with the pre-
fix ‘‘KV’’) and late sequences (‘‘KP’’) clustering on dif-
ferent clades. This means that simply by moving the
position of the root on the branch connecting the two
clades, it is possible to get estimates of x that range from
0 to some positive value without changing the log-
likelihood.

Table 1
Maximum-Likelihood Estimate of Substitution Ratesa and Log-Likelihoods Associated with Different Values of x

Subject
MLE of x

(�log-likelihood)
�log-likelihood
when x ¼ 0

�log-likelihood when
x ¼ 0.017 �STL �WTL

Patient A 0.0000 (905.27) 905.27 914.58 2.26 3 10�5 1.36 3 10�5

Patient B 0.0000 (525.91) 525.91 673.52 1.96 3 10�65 2.17 3 10�67

Patient C 0.0032 (798.34) 799.30 804.25 0.002 0.001
Patient K 0.0000 (585.32) 585.32 585.35 0.242 0.01
Patient L 0.0000 (707.41) 707.41 817.18 5.31 3 10�49 1.54 3 10�50

Patient M 0.0176** (868.14) 875.32 869.75 65.609 492.749

NOTE.—** Statistically different from x ¼ 0 (p , 0.01). The last two columns provide empirical Bayes’ ratios, calculated under the STL (�STL) and WTL (�WTL)

approaches of the probabilities of x . 0 versus x ¼ 0 for each population, as discussed in the main text. A value greater than 1 signifies that it is more probable that

a population has a positive-valued substitution rate.
a Expressed as number of substitutions per site per year.

FIG. 2.—The midpoint-rooted phylogeny of sequences sampled from
Patient K. Sequences with the prefix KV were obtained before therapy
and those with the prefix KP were obtained 2 years after therapy.
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Finally, we estimated the proportion of responders and
a common x by maximizing the likelihood given in
equation 9. This was done using a grid search with values of
p between 0 and 1 at an interval of 0.01 and values of x
between 0 and 0.1 and with an interval of 0.001. The
resulting surface plot of log-likelihoods is given in figure 3.
The joint ML estimates of x and p are 0.017 and 0.20,
respectively. The value of x agrees with estimates obtained
above, and the estimate of p is also consistent with those
results. Only one of six subjects (Patient M) had a rate that
was statistically non-0, and if we discount Patient K
because the sequence data is uninformative about rates, then
we are left with only one in five patients (or 20%) showing
statistical evidence of continued evolution and, by
implication, nonresponsiveness to therapy. The bivariate
95% profile confidence envelope corresponds to the contour
that represents ln L¼�4,396.9, and the hatched bars on the
horizontal and vertical axes represent the 95% profile
confidence intervals for p and x, respectively. Finally,
using the ML values of x and p to classify the status of each
subject with an empirical Bayes’ procedure (table 1), we
found that, as expected, only Patient M had a value of� that
was greater than 1, signifying a non-0 rate of evolution. It is
worth noting that for Patient K, the likelihoods associated
with x ¼ 0 and x ¼ 0.017 are effectively identical;
consequently, the value of � is determined solely by the
ratio of p to (1 � p), since these are the probabilities of
belonging to the two rate categories.

WTL Analyses

When a partially constrained tree was fitted to the data
and a single rate allowed for all subpopulations on the tree
(see equation 12), theML estimate ofxwas, in fact, 0 (ln L¼
�2,717.5). However, if some populations were allowed to

have a commonx. 0 and others,x¼0, the combination of
rate categories that had the highest likelihood (ln L ¼
�2,709.7) was one in which only Patient M had a non-
0 substitution rate, x¼0.017 or 1.7% per year (fig. 4). This
result is identical to that obtained above using STLs.
Interestingly, the combination in which Patients K and M
both have non-0 rates (x¼ 0.012) has a log-likelihood that
is very close (ln L ¼�2,711.2). This also agrees with the
results obtained with the STL-based analysis.

We next used the WTL analysis to jointly obtain the
ML estimates of x and p. We did this using a grid search
over x and p with the same dimensions as done for the
equivalent STL analysis. The contour plot of the log-
likelihoods is shown in figure 5. The ML estimates of x
and p are 0.0175 and 0.17, respectively. Once again, these
results are almost identical to those obtained using the
equivalent STL analysis.

Finally, we applied the empirical Bayes’ classifier
given in equation 17 to each of the subpopulations and
obtained the results shown in table 1. These results confirm
our previous analyzes in showing that only Patient M can
be classified as a nonresponder. The values of � are not
markedly different from that obtained using the STL
classifier.

Discussion

In this paper, we describe methods to estimate
substitution rates of homologous genes from several

FIG. 3.—Contour plot of ln L, obtained using equation 9, as a function
of the proportion of responders, p, and substitution rate, x. The contour
corresponding to ln L ¼ �4,396.9 is the joint 95% profile confidence
envelope of x and p. The hatched bars on the horizontal and vertical axes
correspond to the 95% profile confidence intervals of p and x,
respectively.

FIG. 4.—The partially-constrained joint phylogeny of sequences
from all subjects indicating the ML combination of rate assignments. The
ML combination only has Patient M assigned as a nonresponder.
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independently sampled populations. We make one princi-
pal assumption in constructing these methods: a single
substitution rate applies to all sequences and all populations
or, as in the case of subjects undergoing antiretroviral
therapy, to those populations that continue to accumulate
substitutions. Departures from this assumption can, none-
theless, be accommodated in the same framework. For
instance, it is possible to restate equation 4a to differentiate
the populations into two or more sets, each with its own
substitution rate. In fact, this is exactly what equation 9
does, except that it constrains one of the rates to be 0. At the
extreme, it is possible to allow each population to have its
own substitution rate. However, in this case, the solution is
trivial, because the likelihood is maximized when the ML
rate for each population is determined.

The approaches we apply here based on subtree
likelihoods and whole-tree likelihoods are equivalent to
those used by Gu (2001). In our example, there appears to
be very little difference in the results. It is worth reiterating
the points that Gu (2001) makes in his comparison of the
subtree likelihood versus whole-tree likelihood approaches.
In essence, if there are very long or very short internal
branch lengths between clades, the whole-tree method
offers little improvement over the subtree method. This is
because the value of the whole-tree approach depends on
the extent to which the joint phylogeny influences the prior
probabilities of nucleotide states at the roots of each of the
individual subtrees and hence the likelihood of the tree
and its attendant parameter estimates. If these prior probabil-
ities and the resultant likelihood are unaffected or only
marginally affected by combining the subtrees into a single
joint phylogeny, then there is little added value in the
whole-tree approach, particularly when we consider the

computational overheads of the method. These can be quite
substantial; for instance, the grid search to generate the
likelihood contour plot using the STLmethod, programmed
with JAVA version 1.4, took an average of 71 s on a PC
with an AMD Athlon 1400þ processor and 512 Mb RAM.
In contrast, theWTL grid search, on the samemachine, took
8,195 s, or just over 2 h.

The STL methods we have developed in this paper
can also be applied to serial sequence samples drawn from
different, unlinked loci. In this case, we may be interested
in testing whether the different loci are evolving at the
same rate. Alternatively, the sampled loci may be par-
titioned into groups each evolving with its own rate.
The methods we have described here work as well with
such data.

Obviously, these methods should only be applied if
each subpopulation is evolving in a clocklike manner. It
should be routine to validate this assumption first using the
tests described by Rambaut (2000) and Drummond,
Forsberg, and Rodrigo (2001).

Our analyses, as we have described them, rely on the
assumption of a given topology. To relax this assumption,
we need to allow for uncertainty in the evolutionary
relationships of the sampled sequences. Two of us (A.D.
and A.G.R.) have been involved in recent work on the use
of Bayesian analysis of serially sampled sequences using
Markov chain Monte Carlo (MCMC) methods (Drummond
et al. 2002). This approach allows different topologies to be
sampled in proportion to their contribution to the joint
posterior probability of all unknown quantities. The plan for
the immediate future is to incorporate the analyses, and
different options, described here into the MCMC frame-
work already available.
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