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ABSTRACT
Molecular sequences obtained at different sampling times from populations of rapidly evolving pathogens

and from ancient subfossil and fossil sources are increasingly available with modern sequencing technology.
Here, we present a Bayesian statistical inference approach to the joint estimation of mutation rate and
population size that incorporates the uncertainty in the genealogy of such temporally spaced sequences
by using Markov chain Monte Carlo (MCMC) integration. The Kingman coalescent model is used to
describe the time structure of the ancestral tree. We recover information about the unknown true ancestral
coalescent tree, population size, and the overall mutation rate from temporally spaced data, that is, from
nucleotide sequences gathered at different times, from different individuals, in an evolving haploid
population. We briefly discuss the methodological implications and show what can be inferred, in various
practically relevant states of prior knowledge. We develop extensions for exponentially growing population
size and joint estimation of substitution model parameters. We illustrate some of the important features
of this approach on a genealogy of HIV-1 envelope (env) partial sequences.

ONE of the most significant developments in popula- eter � � 2Ne� (Griffiths and Tavare 1994; Stephens
and Donnelly 2000), migration rates (Bahlo andtion genetics modeling in recent times was the
Griffiths 2000), and recombination (Griffiths andintroduction of coalescent or genealogical methods (King-
Marjoram 1996; Fearnhead and Donnelly 2001). Me-man 1982a,b). The coalescent is a stochastic process
tropolis-Hastings Markov chain Monte Carlo (MCMC;that provides good approximations to the distribution
Metropolis et al. 1953; Hastings 1970) has been usedof ancestral histories that arise from classical forward-
to obtain sample-based estimates of � (Kuhner et al.time models such as the Fisher-Wright (Fisher 1930;
1995), exponential growth rate (Kuhner et al. 1998),Wright 1931) and Moran population models. The ex-
migration rates (Beerli and Felsenstein 1999, 2001),plicit use of genealogies to estimate population parame-
and recombination (Kuhner et al. 2000).ters allows the nonindependence of sampled sequences

In addition to developments in coalescent-based pop-to be accounted for. (“Genealogy” and “tree” are used
ulation genetic inference, sequence data sampled atinterchangeably throughout. In both cases we are refer-
different times are now available from both rapidlyring to a collection of edges, nodes, and node times
evolving viruses, such as human immunodeficiency virusthat together completely specify a rooted history.) Many
(HIV; Holmes et al. 1992; Wolinsky et al. 1996; Rodrigocoalescent-based estimation methods focus on a single
et al. 1999; Shankarappa et al. 1999), and from ancientgenealogy (Fu 1994; Nee et al. 1995; Pybus et al. 2000)
DNA sources (Hanni et al. 1994; Leonard et al. 2000;that is typically obtained using standard phylogenetic
Loreille et al. 2001; Barnes et al. 2002; Lambert et al.methods. However, there is often considerable uncer-
2002). This temporally spaced data provides the poten-tainty in the reconstructed genealogy. To allow for this
tial to observe the accumulation of mutations over timeuncertainty it is necessary to compute the average likeli-
and thus estimate mutation rate (Drummond and Rod-hood of the population parameters of interest. The cal-
rigo 2000; Rambaut 2000). In fact, it is even possibleculation involves integrating over genealogies distrib-
to estimate variation in the mutation rate over timeuted according to the coalescent (Griffiths and
(Drummond et al. 2001). This leads naturally to theTavare 1994; Kuhner et al. 1995). We can carry out
more general problem of simultaneous estimation ofthis integration for some models of interest, using
population parameters and mutation parameters fromMonte Carlo methods. Importance-sampling algorithms
temporally spaced sequence data (Rodrigo and Felsen-have been developed to estimate the population param-
stein 1999; Rodrigo et al. 1999; Drummond and Rod-
rigo 2000; Drummond et al. 2001).

In this article we estimate population and mutation
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parameters, dates of divergence, and tree topology fromZoology, University of Oxford, South Parks Rd., Oxford, OX1 3PS,
United Kingdom. E-mail: alexei.drummond@zoology.oxford.ac.uk temporally spaced sequence data, using sample-based

Genetics 161: 1307–1320 ( July 2002)



1308 A. J. Drummond et al.

Bayesian inference. The important novelties in the infer- and a second group of studies of synthetic sequence
data.ence are the data type (i.e., temporally sampled se-

Kingman coalescent with temporally offset leaves: Inquences), the relatively large number of unknown model
this section we define the coalescent density for theparameters, and the MCMC sampling procedures, not
constant-sized Fisher-Wright population model. In ex-the Bayesian framework itself. The coalescent gives the
tensions we give the corresponding density for the caseexpected frequency with which any particular genealogy
of a population with deterministic exponential growth.arises under the Fisher-Wright population model. The
It is assumed genealogies are realized by the Kingmancoalescent may then be treated either as part of the
coalescent process. Our time units in this article areobservation process defining the likelihood of popula-
“calendar units before the present” [e.g., days beforetion parameters or as the prior distribution for the un-
present (BP)], where the present is the time of the mostknown true genealogy. In either case we must integrate
recent leaf and set to zero. Let � denote the numberthe likelihood over the state space of the coalescent.
of calendar units per generation and � � Ne�. The scaleBayesian and purely likelihood-based population ge-
factor � converts “coalescent time” to calendar time andnetic inference use the same reasoning and software up
is one of two key objects of our inference. Note that weto the point where prior distributions are given for the
do not estimate � and Ne separately, only their product.parameters of the coalescent and mutation processes.

Consider a rooted binary tree g with n leaf nodes andAre there then any important difficulties or advan-
n � 1 ancestral nodes. For node i, let ti denote thetages in a Bayesian approach over a purely likelihood-
age of that node in calendar units. Node labels arebased approach? The principal advantage is the possibil-
numerically increasing with age so i � j implies ti � t j.ity of quantifying the impact of prior information on
Let I denote the set of leaf node labels and let Y denoteparameter estimates and their uncertainties. The new
the set of ancestral node labels. There is one leaf nodedifficulty is to represent different states of prior knowl-
i � I associated with each individual in the data. Theseedge of the parameters of the coalescent and mutation
individuals are selected, possibly at different times, fromprocesses as probability densities. However, such prior
a large background population. An edge �i, j �, i � j ofelicitation is often instructive. In the absence of prior
g represents an ancestral lineage. Going back in time,information, researchers frequently choose to use non-
an ancestral node i � Y corresponds to a coalescence ofinformative/improper priors for the parameters of in-
two ancestral lineages. The root node, with label i �terest. Such an approach may be problematic and can
2n � 1, represents the most recent common ancestorresult in improper posterior distributions. There exist
(MRCA) of all leaves. Let tI be the times of the leavesa number of important cases in the literature in which
and tY be the divergence times of the ancestral nodes.knowledgeable authors inadvertently analyze a mean-
Let Eg denote the edge set of g, so that g � (Eg , tY)ingless, improper posterior distribution. Why then do
specifies a realization of the coalescent process. Forwe choose to treat improper priors in this article? We
given n and tI, let 	 denote the class of all coalescentare developing and testing inferential and sampling
trees (Eg , tY) with n leaf nodes having fixed ages tI. Themethods. These methods become more difficult as the
ages tY are subject to the obvious parent-child age orderamount of information in the prior is reduced. The
constraint. The element of measure in 	 is dg � dtn
1sampling problem becomes significantly more difficult.
. . . dt2n�1 with counting measure over distinct topologiesWe therefore treat the “worst case” prior that might
associated with the distinguishable leaves.naturally arise. Since this prior is improper, we are

The probability density for a tree, fG(g |�), g � 	 isobliged to check that the posterior is proper. However,
computed as follows. Let ki denote the number of lin-when confronted with a specific analysis, detailed bio-
eages present in the interval of time between the nodelogical knowledge should be encoded in the prior distri-
i � 1 and the node i. The coalescent process generatesbutions wherever possible.
g � (Eg , tY) with probability densityAlthough Bayesian reasoning has frequently been ap-

plied to phylogenetic inference (Yang and Rannala
fG(g|�) �

1
�n�1

· �
2n�1

i�2

e (�ki(ki�1)/2�)(ti�ti�1). (1)1997; Thorne et al. 1998; Mau et al. 1999; Huelsenbeck
et al. 2000), it has thus far been the exception in popula-
tion genetic inference (Wilson and Balding 1998). The interpretation is as follows. Fix a time t and suppose

In this article, we begin with a description of the mod- k lineages are present at that time. A coalescence event
els we use. We then give the overall structure of the between any of the k(k � 1)/2 pairs of distinguished
inferential framework, followed by an overview of how lineages occurs at instantaneous rate 1/�. Given that
MCMC is carried out. We mention extensions of the two lineages coalesce at time t, the probability it was
basic inference that allow for (1) deterministically vary- some particular pair is 2/k(k � 1). It follows that, in
ing populations and (2) estimation of substitution pa- the time interval of length ti � ti�1 preceding the time
rameters. Finally, we illustrate our methods with a group of a leaf node i � I, “nothing” happens with probability

e (�ki(ki�1)/2�)(ti�ti�1) and that the length of time, t � ti�1,of studies of a sample of HIV-1 envelope (env) sequences
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preceding coalescent node i � Y is a random variable of R. We return to inference for relative rates in exten-
sions.with density (ki(ki � 1)/2�) · e (�ki(ki�1)/2�)(ti�ti�1). Taking

the product of these factors over all intervals [ti�1, ti], We now write the likelihood for �. Consider an edge
�i, j � � Eg of tree g. The individual associated with nodei � 2, 3, . . . , 2n � 1, we obtain Equation 1 (Rodrigo

and Felsenstein 1999). j is a direct descendant of the individual associated with
node i. However, the sequences Di and Dj may differMutation: We use the standard finite-sites selection-

neutral likelihood framework (Felsenstein 1981) with if mutations have occurred in the interval. Let eQ de-
note the 4 � 4 matrix exponential of Q. In the stan-a general time-reversible (GTR) substitution model

(Rodriguez et al. 1990). However, as we are considering dard finite-sites selection-neutral likelihood framework
Pr{Dj,s � c�|Di,s � c} � [e�Q �(ti�tj)]c,c� for c � C. The proba-genealogies in calendar units (or generations) as op-

posed to mutations we take some space to develop nota- bility for any particular set of sequences D, DA to be
realized at the nodes of a given tree istion.

Associated with each leaf node i � I there is a nucleo-
Pr�D, DA|g, �� � �

�i,j ��Eg

�
L

s�1
Dj,s�φ

[eQ �(ti�tj )]Di,s,Dj,s (4)tide sequence Di � (Di,1, Di,2, . . . , Di,s, . . . , Di,L) of some
fixed length L, say. Nucleotide base characters Di,s, i �
I, s � 1, 2, . . . , L take values in the set C � {A, C, G,

(in the above formula, compact notation is obtained byT}. An additional gap character, φ, indicates missing
including in the product over edges an edge terminatingdata. Let D � (D1, D2, . . . , Dn)T denote the n � L matrix
at the root from an ancestor of infinite age). We mayof sequences associated with the tree leaves, and let DA

eliminate the unknown ancestral sequences DA from thedenote the (n � 1) � L matrix of unknown sequences
above expression by simply summing all DA � D,associated with the ancestral nodes. The data are D

together with tI, that is, the n sequences observed in the
Pr�D|g, �� � �

DA�D
Pr �D, DA|g, ��. (5)

leaf individuals and the n ages at which those individual
sequences were taken. Let D � C(n�1)L denote the set

It is feasible to evaluate this sum, using a pruning algo-of all possible ancestral sequences. Consider a site s �
rithm (Felsenstein 1981).1, 2, . . . , L in the nucleotide sequence of an individual.

Bayesian inference for scale parameters: We now con-The character at site s mutates in forward time according
sider Bayesian inference for scale parameters � and �.to a Poisson jump process with 4 � 4 rate matrix Q.
Both of these quantities take a real positive value. TheHere, Qi,j is the instantaneous rate for the transition
joint posterior density, hM�G(�, �, g|D), for the scalefrom character i to character j, and A ← 1, C ← 2,
parameters and genealogy, is given in terms of the likeli-G ← 3, T ← 4. We assume mutations are independent
hood and coalescent densities above and two additionalbetween sites. Let 
 � (
A, 
C, 
G, 
T) be a 1 � 4 vector
densities, fM(�) and f�(�). These functions quantifyof base frequencies, corresponding to the stationary
prior information about the scale parameters. Let Z bedistribution of the mutation process, 
Q � (0, 0, 0, 0).
an unknown normalizing constant. The posterior is thenThe matrix Q is parameterized in terms of a symmetric

“relative rate” matrix R,
hM�G(�, �, g |D) �

1
Z

Pr �D|g, �� fG(g |�)fM(�)f�(�). (6)

We are interested in the marginal density, hM�(�, �|D).R �







RA↔C RA↔G RA↔T

RA↔C RC↔G RC↔T

RA↔G RC↔G 1
RA↔T RC↔T 1







(2)
We summarize this density using samples (�, �, g) �
hM�G. The sampled genealogies can be thought of as
uninteresting “missing data.”as

Consider now the densities fM(�) and f�(�). In any
particular application these functions will be chosen toQi,j �


iR i,j

�k
k �l�k
lR k,l

, i � j
summarize available prior knowledge of scale parame-
ters. It is common practice to avoid the problem of prior

Qi,j � ��j�iQ i,j . (3)
elicitation and attempt to construct a “noninformative”
prior. This notion is poorly defined, since a prior mayThe time units of the rate Qi,j have been chosen so that

the mean number of mutations per unit time occurring be noninformative with respect to some hypotheses,
but informative with respect to others. Nevertheless, weat a site is equal to one. Let � give the mean number

of mutations per calendar unit (e.g., mutations per year) illustrate sample-based Bayesian inference under a prior
that contains little information. We do this for two rea-at a site.

The conversion factor � is the second of the two sons. First, we wish to give our sampling instruments a
thorough workout. From this point of view an improperprincipal objects of our inference. In addition to �, the

relative rates, R, may be estimated. We have found that prior is the best choice. Second, when carrying out
Bayesian inference, it is necessary to test the sensitivity ofwherever it is feasible to estimate the scale parameters

� and �, our data are informative about the elements conclusions to changes in the state of prior knowledge.
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What conclusions would a person in a state close to
ignorance reach from these data? The improper prior
we consider represents ignorance of a rather natural
kind. People using our methods will very likely want to
consider this particular state of knowledge, along with
others that are more representative of their own.

In our case � and � are both scale parameters (for
time). The Jeffreys prior, f(z) � 1/z, z � 0, invariant
under scale transformations z → az, and the uniform
prior on z � 0 are candidates for fM(�) and f�(�). If
fM � 1/�, f� � 1/�, and fG(g |�) and Pr{D|g, �} are as
given in Equations 1 and 5 then it may be shown that
the posterior density in Equation 6 is not finitely normal-
izable. We may nevertheless consider ratios of posterior
densities. But that means the only feasible Bayesian in-
ference, at least under the uniform, improper prior,
is exactly frequentist inference. We cannot treat the
parameters of interest as random variables. Suppose
fixed upper limits � � �* and troot � t*root may be set, Figure 1.—Diagrams of two proposal mechanisms used to
along with a lower limit � � �*. For the problems we modify tree topology during an MCMC analysis. (A) This move
use to illustrate our methods in examples, conservative is called the “narrow exchange” and is similar to a nearest

neighbor interchange. This move picks two subtrees at ran-limits of this kind determine a state of knowledge that
dom under the constraint that they have an aunt-niece rela-arises quite naturally. Moreover it may be shown that the
tionship; i.e., the parent of one is the grandparent of the

posterior density is finitely normalizable under uniform other, but neither is parent of the other. Once picked these
priors on the restricted state space, even though the two subtrees are swapped so long as doing so does not require
prior on � remains improper. any modifications in node heights to maintain parent-child

order constraints. (B) This move is similar to one proposed
by Wilson and Balding (1998) and involves removing a
subtree and reattaching it on a new parent branch.MARKOV CHAIN MONTE CARLO FOR

EVOLUTIONARY PARAMETERS

The posterior density hM�G is a complicated function dard deviation of some estimate of �f(k), formed from
defined on a space of high dimension (between 30 and the MCMC output. Large lag autocorrelations should
40 in the examples that follow). We summarize the fall off to zero and remain within O(�f) of zero, as dis-
information it contains by computing the expectations, cussed by Geyer (1992). Note that in the examples
over hM�G, of various statistics of interest. These expecta- section, these standards are not uniformly applied. The
tions are estimated using samples distributed according first two analyses pass all three checks. The last two
to hM�G. We use MCMC to gather the samples we need. analyses pass the first test. Here we are displaying the
MCMC and importance sampling are part of a family limitations of our MCMC algorithm. However, we be-
of Monte Carlo methods that may be used individually lieve the convergence is adequate for the points we
or in concert to solve the difficult integration problems make. In the appendix, Convergence and standard errors
that arise in population genetic inference. Earlier work describes the integrated autocorrelation time (IACT)
on this subject is cited in the Introduction. Figure 1 and effective sample size (ESS) measures used to test
shows a cartoon of two proposal mechanisms used. See the efficiency of our sampler.
the appendix for details of the proposal mechanisms The MCMC algorithm we used was implemented
and MCMC integration performed. twice, more or less independently, by A. Drummond,

As always in MCMC, it is not feasible to test for conver- in JAVA and by G. K. Nicholls in MatLab. This allowed us
gence to equilibrium. MCMC users are obliged to test to compare results and proved very useful in debugging
for stationarity as a proxy. We make three basic tests. some of the more complex proposal mechanism combi-
First, we check that results are independent of the start- nations. To minimize programming burden, one of our
ing state using 10 independent runs with very widely implementations (G. K. Nicholls in MatLab) was partial,
dispersed initializations. Second, we visually inspect out- allowing only fixed population size and fixed R to be
put traces. These should contain no obvious trend. compared. This is discussed more extensively in Imple-
Third, we check that the MCMC output contains a large mentation issues in the appendix.
number of segments that are effectively independent
of one another, independent, at least, in the distribution

EXTENSIONS
determined empirically by the MCMC output. Let �f(k)
give the autocorrelation at lag k for some function f of Extending the framework of the Introduction and

MCMC for evolutionary parameters to include de-the MCMC output. Let �f denote the asymptotic stan-
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terministically varying models of population history and study. The total dataset consists of 60 sequences from
these five time points. The length of the alignment isestimation of relative rate parameters is straightforward.

Let � � (0, ∞)5 be the state space for the relative rates 660 nucleotides. Gapped columns were included in the
analysis. The evidence for recombination seems to beof R above the diagonal and excluding RG↔T. Let s �

(�, �, g, r, R), and let hS(s|D) denote the posterior density negligible in this dataset (Rodrigo et al. 1999) and
recombination is ignored for the purposes of illustratingfor S � �*S , where �*S � �*M�G � � � � (see the appen-

dix). The posterior probability density has the form our method. Rough estimates of Ne may be obtained by
assuming a generation length of � � 1 day per genera-
tion (Rodrigo et al. 1999). However, we emphasize thathS(s|D) �

1
Z

Pr �D|g, �, R� fG(g |�, r)fM(�) f�(�) fr(r) fR(R).
we estimate Ne� only in this work. The dataset was split

(7) into two subsets for separate analysis. One contained all
pretreatment sequences (28 sequences), and the otherLet T denote the age of the most recent leaf, i.e., T �
contained all sequences after treatment commencedmini�Iti. In this article T � 0. Let t � T be a generic
(32 sequences; henceforth called posttreatment). Theage. In this model Ne � Ne(t). Recall that �, the number
rationale behind this split is that both (1) populationof calendar units per generation, is an unknown con-
size and (2) mutation rate per unit time may be affectedstant. Define a constant � � Ne(T)� and a growth rate
by a replication inhibitor such as Ziduvodine. In all ofparameter r. The density fG(g|�, r) is the density deter-
the analyses, base frequencies were fixed to empiricallymined by the coalescent process with a population grow-
determined values; however, inference of these woulding as Ne(t) � (�/�)e�r(t�T ) (Slatkin and Hudson
have been trivial. Two analyses are undertaken on each1991). In terms of the notation defined in Kingman
dataset. The pretreatment data are strongly informativecoalescent with temporally offset leaves in connection with
for all parameters estimated. The results are robust toEquation 1, for genealogies with temporally spaced tips
the choice of priors and MCMC convergence is quick.the density is
In contrast, the posttreatment data are only weakly infor-
mative for �, �, and troot parameters; the results arefG(g |�, r) �

1
�n�1

· �
2n�1

i�2

e rti e (�ki(ki�1)/2�r)(erti�erti�1). (8)
sensitive to the choice of prior; and MCMC convergence
is very slow.

If all of the relative rates in R, except RG↔T, are estimated Pretreatment data, constant population size, HKY substitu-
we are fitting a general time-reversible model of substitu- tion: In this first analysis of the pretreatment dataset,
tion. However, it is sometimes useful to consider simpler we fit the HKY substitution model and assume a constant
nested models. One such model is the Hasegawa-Kis- population size. We are estimating �, �, g, and �. We
hino-Yano (HKY) model (Hasegawa et al. 1985). In illustrate our methods using uniform prior distributions
the HKY model transitions occur at rate � relative to on � and �, an upper limit on mutation rate of �* �
transversions. Thus RA↔G � RC↔T � � and RA↔C � RA↔T � 1, a lower limit on Ne� of �* � 1, and a very conservative
RC↔G � RG↔T � 1. Either a Jeffreys prior or a uniform upper limit on troot of t* � 107 days. Ten MCMC runs
prior can be used for the relative rates. However, as a were made, with starting values for mutation rate distrib-
result of our parameterization, the Jeffreys prior pro- uted on a log scale from 5 � 10�3 down to 10�7 muta-
vides more accurate estimates. In the examples that tions/site/day. This range greatly exceeds the range
follow, a uniform prior is used for R and � as this repre- of values supported by the posterior. To test MCMC
sents the most ignorant state of knowledge and is more convergence on tree topologies, each of the 10 MCMC
than adequate for the purpose of illustrating the meth- runs was started on a random tree drawn from a coales-
odology. In the same spirit fr(r) is set uniform on r, and cent distribution with population size equal to 1000 (in
this also proves acceptable. exploratory work we initialize on a sUPGMA or neigh-

bor-joining topology). The 10 Markov chain simulations
were run for 2,000,000 steps and the first 100,000 steps

EXAMPLES
were discarded as burn-in. Each run took �4 hr on a
machine with a 700 MHz Pentium III processor. TheIn this section, we illustrate our methods on two HIV-1

env data sets and a series of synthetic data sets of compa- mean IACT of the mutation rate parameter was 4190,
giving an ESS of �450 per simulation. Table 1 presentsrable size.

HIV-1 env data: The method was first tested on HIV-1 parameter estimates for all 10 runs, illustrating close
concordance between runs. Note also that the variabil-partial envelope sequences obtained from a single pa-

tient over five sampling occasions spanning �3 years: ity, between runs, of estimated means is in line with
standard errors estimated within runs. This is a consis-an initial sample (day 0) followed by additional samples

after 214, 671, 699, and 1005 days. Details of this dataset tency check on our estimation of the IACT. Figures 2
and 3 show the marginal posterior density of � and �have been published previously (Rodrigo et al. 1999).

An important feature of these data is that monotherapy for each of the 10 runs. In all 10 runs the consensus
tree computed from the MCMC output was the same,with Zidovudine was initiated on day 409 (Drummond

et al. 2001) and continued during the remainder of the despite the fact that the starting trees were drawn ran-
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TABLE 1

Parameter estimates for 10 independent analyses of the pretreatment dataset assuming
constant population size and HKY model of mutation

Mutation rate Population size
(mutations/generation/site � generation Age of root Transition/transversion

Run � 105) length (�) (days) bias parameter (�)

1 6.238 (0.0517)a 1284 (13.0) 796 (6.03) 4.132 (0.00634)
2 6.173 (0.0498) 1304 (12.7) 799 (5.99) 4.141 (0.00599)
3 6.218 (0.0466) 1291 (12.7) 794 (5.45) 4.124 (0.00631)
4 6.168 (0.0434) 1303 (14.0) 797 (5.65) 4.138 (0.00629)
5 6.297 (0.0474) 1269 (12.8) 784 (5.45) 4.134 (0.00640)
6 6.159 (0.0458) 1309 (12.4) 802 (6.21) 4.135 (0.00630)
7 6.308 (0.0539) 1270 (13.9) 784 (5.90) 4.130 (0.00678)
8 6.256 (0.0463) 1279 (11.5) 790 (5.63) 4.133 (0.00674)
9 6.247 (0.0474) 1283 (13.1) 791 (5.75) 4.122 (0.00661)

10 6.201 (0.0578) 1291 (15.4) 801 (7.54) 4.123 (0.00736)
Overall 6.227 1288 794 4.131
95% HPD interval [4.20, 8.28] [660, 2050] [580, 1040] [3.07, 5.31]

a Numbers in parentheses are the standard errors of the means calculated using IACT statistic.

domly (data not shown). Combining the output of all independent runs of 3,000,000 cycles, each starting with
an independent random tree topology (the mean IACT10 runs, the 95% highest posterior density (HPD) inter-

vals for the mutation rate and troot are, respectively, [4.20, for � was 7955 giving an ESS of 358 per run). Figure 4
shows the 10 estimates of the marginal posterior density8.28] � 10�5 mutations per site per day, and [580, 1040]

days. of mutation rate. Table 2 shows parameter estimates for
each of the 10 runs. Convergence is still achieved withPretreatment data, exponential growth, general substitution

model: In this second analysis of the pretreatment data- the extra parameters.
Compare the distribution of summary statistics underset, we fit the general time-reversible substitution model,

with exponential growth of population size. We are esti- the two models described here and in Pretreatment data,
constant population size, HKY substitution. Given the na-mating �, �, g, r, RA↔C, RA↔G, RA↔T, RC↔G, and RC↔T. This

is the most parameter-rich model we fit. To assess the ture of infection of HIV-1, it seems likely that an expo-
nential growth rate assumption is more accurate. Esti-convergence characteristics of this analysis we ran 10

Figure 2.—The marginal posterior density of
mutation rate for 10 independent MCMC runs
on the pretreatment HIV-1 env dataset. Each run
was started on a random topology. Initial muta-
tion rates ranged from 5e -3 to 1e -7.
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Figure 3.—The marginal posterior density of
� for 10 independent MCMC runs on the pretreat-
ment HIV-1 env dataset. Each run was started on
a random tree topology. Initial mutation rates
ranged from 5e -3 to 1e -7.

mated 95% HPD intervals for the growth rate r, [1.09 � population size. The first analysis uses the same priors
as the first pretreatment analysis. In contrast to the10�3, 6.65 � 10�3], exclude small growth rates, corrobo-

rating this view. The 95% HPD intervals for the mutation pretreatment dataset, the mutation rate of the posttreat-
ment dataset is difficult to estimate. This is illustratedrate and troot are, respectively, [3.61, 8.11] � 10�5 muta-

tions per site per day and [570, 1090] days. Compare in Figures 5 and 6, in which the marginal posterior
densities of � and � estimated from 10 independentthese with the model in Pretreatment data, constant popula-

tion, HKY substitution. The change in model has minimal MCMC runs, each 5,000,000 cycles long, are compared.
We were unable to compute an IACT for each run,effect (�10%) on the posterior mean mutation rate.

Posttreatment: The posttreatment data are analyzed so we are unable to compare within- and between-run
variability. However, the between-run concordance visi-twice under the HKY substitution model with constant

Figure 4.—The marginal posterior density of
mutation rate for 10 independent MCMC runs
on the pretreatment HIV-1 env dataset. An expo-
nential growth rate mode of demography and a
general time-reversible (GTR) model of substitu-
tion were assumed. Each run was started on a
random tree topology. Initial mutation rates
ranged from 5e -3 to 1e -7.
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TABLE 2

Parameter estimates for 10 independent analyses of the pretreatment dataset assuming
exponential growth and GTR model of mutation

Mutation rate Population size
(mutations/generation/site � generation Age of root Growth rate

Run � 105) length (�) (days) (r � 103)

1 5.910 (0.0623)a 5404 (127) 800 (7.43) 3.815 (0.0407)
2 5.761 (0.0526) 5321 (125) 821 (7.05) 3.719 (0.0436)
3 6.045 (0.0550) 5089 (123) 786 (6.85) 3.832 (0.0418)
4 5.891 (0.0708) 5443 (172) 806 (8.56) 3.839 (0.0377)
5 5.849 (0.0609) 5338 (113) 812 (8.05) 3.815 (0.0423)
6 5.930 (0.0615) 5242 (170) 804 (8.66) 3.748 (0.0409)
7 5.857 (0.0589) 5318 (148) 806 (7.33) 3.780 (0.0388)
8 5.809 (0.0605) 5236 (123) 817 (7.51) 3.696 (0.0382)
9 5.982 (0.0542) 5064 (127) 795 (5.63) 3.786 (0.0382)

10 5.859 (0.0692) 5306 (188) 813 (10.2) 3.708 (0.0400)
Overall 5.889 5276 806 3.774
95% HPD interval [3.61, 8.11] [920, 12450] [570, 1090] [1.09, 6.65]

a Numbers in parentheses are the standard errors of the means calculated using IACT statistic.

ble in Figure 5 justifies the following statement. The of low � and large troot are not well distinguished from
otherwise identical states of larger � and smaller troot.posttreatment mutation rate shows one mode at �2.8 �

10�5 mutations/site/day with a second mode on the In the second posttreatment analysis, we revise the
upper limit on troot downwards, from 107 to t* � 3650,lower boundary. The data determine a diffuse, and bi-

modal, marginal posterior on �. One of the modes is a value more representative of actual prior knowledge
for this dataset. The new limit, set 3 years before sero-associated with states (�, �, g) with physically unrealistic

root times (greater than the age of the patient). These conversion occurred in the infected patient, is still con-
servative. Here we explored the prior belief that HIVare allowed, if we are not prepared to assert some restric-

tion on troot. This behavior also occurs when we use a infection most often originates from a small, homoge-
nous population and then subsequently accumulatesJeffreys prior on the mutation rate (data not shown).

It reflects a real property of the data, namely that states variation. This prior effectively assumes that all viruses

Figure 5.—The marginal posterior density of
mutation rate for 10 independent MCMC runs
on the posttreatment HIV-1 env dataset. The thick
line represents the density of all 10 runs com-
bined. Each run was started on a random tree
topology. Initial mutation rates ranged from 5e -3
to 1e -7.
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Figure 6.—The marginal posterior density of
� for 10 independent MCMC runs on the post-
treatment HIV-1 env dataset. Each run was started
on a random tree topology. Initial mutation rates
ranged from 5e -3 to 1e -7.

in an infected individual share a common ancestor at 5 and 6. Information about troot has been converted into
information about mutation rates and population size.most as old as the time of infection of the host. The

estimated 95% HPD interval for the mutation rate was Simulated sequence data: To test the ability of our
inference procedure to recover accurate estimates of[1.16, 4.27] � 10�5 mutations/site/day, markedly down

from the pretreatment mutation rate. Figure 7 depicts parameters from the above HIV-1 dataset we undertook
four simulation studies. In each experiment we gener-the resulting unimodal marginal posterior density for

mutation rate, showing that the spurious mode has been ated 100 synthetic datasets. For experiment 1, the poste-
rior estimates of �, �, and � obtained from the pretreat-eliminated. Again, no IACT was computed. However,

between-run variability was much improved over Figures ment dataset in Pretreatment data, constant population size,

Figure 7.—The marginal posterior density of
mutation rate for 10 independent MCMC runs
on the posttreatment HIV-1 env dataset where the
age of the root had an upper limit of 10 years
(3650 days). The thick line represents the density
of all 10 runs combined. Each run was started on
a random tree topology. Initial mutation rates
ranged from 5e -3 to 1e -7.
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TABLE 3 ments 3 and 4 demonstrate that the use of a Jeffreys
prior for these and other scale parameters results inPercentage of times that the true parameter was found in the
�90% recovery in all parameters. We are not aiming95% HPD region of the marginal posterior density
to prescribe any particular noninformative prior. Our
choice of uniform prior in earlier experiments is delib-Experiment
erately crude. However, it allows us to lay out the meth-

Parameter 1 2 3 4 odology with as little emphasis as possible on prior elic-
Mutation rate 92 96 96 97 itation. The reader should undertake this process for a
� 98 99 96 97 specific problem.
Growth rate 91 92 94 92
RA → C 87* 93 96 92
RA → G 79* 90 96 94 DISCUSSION
RA → T 83* 90 94 96

We have described Bayesian coalescent-based meth-RC → G 88* 96 98 91
ods to estimate and assess the uncertainty in mutationRC → T 88* 92 98 94
parameters, population parameters, tree topology, and

*Success rate was significantly �95%. dates of divergence from aligned temporally spaced se-
quence data. The sample-based Bayesian framework
allows us to bring together information of different

HKY substitution were used to generate 100 coalescent kinds to reduce uncertainty in the objects of the infer-
trees and then simulate sequences on each of the re- ence. Much of the hard work is in designing, implement-
sulting trees. The synthetic data were generated under a ing, and testing a suitable Monte Carlo algorithm. We
constant-size population model with the HKY mutation found a suite of MCMC updates that do the job.
model but analyzed under an exponentially growing We have analyzed two contrasting HIV-1 datasets and
population model and a GTR mutation model. In the 400 synthetic datasets to illustrate the main features of
second experiment, 100 synthetic datasets were gener- our methods. The results of the three HIV-1 env data
ated using the pretreatment parameter estimates in Pre- subsections show that a robust summary of parameter-
treatment data, exponential growth, general substitution model rich models, including the joint estimation of mutation
as the true values. In this case the models for simulation rate and population size, is possible for some moderate-
and inference are matched. Synthetic data were gener- sized datasets. The pretreatment data restrict the set
ated under an exponentially growing population model of plausible parameter values to a comparatively small
and a GTR mutation model. In both experiments 1 and range. For this dataset, useful results can be obtained
2 uniform bounded priors were used for all parameters. from a state of ignorance about physically plausible out-
Experiments 3 and 4 differed from experiments 1 and comes. This situation is in contrast to the situation illus-
2 only in that we used Jeffreys’ (1946) prior for scale trated in the Posttreatment section. For this dataset, prior
parameters (mutation rate, population size, and relative ignorance implies posterior ambiguity, in the form of
rates). a bimodal posterior distribution for the mutation rate.

All datasets had the same number of sequences (28), One of these modes is supported by genealogies con-
the same sampling times (0 and 214 days), and the same flicting with very basic current ideas about HIV popula-
sequence length (660) as the pretreatment dataset. Ta- tion dynamics. We modify the coalescent prior on gene-
ble 3 shows that the true values are successfully recov- alogies to account for this prior knowledge, restricting
ered (i.e., fall within the 95% HPD interval) �90% of the the most recent common ancestor to physically realistic
time in all cases except for the relative rate parameters in values. The ambiguity in mutation rate is removed. Simi-
experiment 1. In the most complex model we fit, we lar results could be obtained in a likelihood-based analy-
recover true parameter values. The overparameteriza- sis of the posttreatment data, since the prior information
tion present in experiments 1 and 3 does not seem amounts to an additional hard constraint on the root
problematic for estimating mutation rate, �, or growth time of the coalescent genealogy.
rate. These results suggest that inference of biologically There is some redundancy in the set of MCMC up-
realistic growth rates is quite feasible. The relative rates dates we used, in the sense that the limiting distribution
performed most poorly in the parameters of interest. of the MCMC is unaltered if we remove the scaling
This is caused predominantly because the uniform prior update (move 1) or the Wilson-Balding update (move
on relative rates introduces metric factors that inflate 2; see appendix for details of these moves). However,
the densities. In experiment 1, when the true value of these two updates types are needed in practice. There
a relative rate parameter was not within the 95% HPD are two timescales in MCMC, time to equilibrium and
interval (which occurred 75 times out of 500), it was mixing time in equilibrium. The scaling move sharply
almost always overestimated (74 out of 75 times). Fur- reduces mixing time in equilibrium. The Wilson-Bald-
thermore, conditioning on a tranversion (RG↔T � 1), a ing update is needed to bring the equilibrium time to

acceptable values. We have seen MCMC simulations,rare event, may also have an impact. However, experi-
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transformation

(�, �, (Eg , tY)) → (�/�, ��, (Eg, �tY)).

APPENDIX: MCMC DETAILS AND MOVE TYPES If x� � �x then x � ��x� with �� � 1/�. The change of
variables in the product measure isMarkov chain Monte Carlo for temporally spaced se-

quence data including proposal mechanism used is de- HX(dx�|D)d�� � �n�3 HX(dx|D)d�.
scribed.

Denote by �M�G the space [0, ∞) � [0, ∞) � 	 of all Note that this transformation is not simply a change of
units. The times ti associated with ancestral nodes i �possible (�, �, g) values. Let
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Y are scaled while leaf node times ti, i � I (which are Node age move: Label this move m � 4. Choose an
part of the data) are left unchanged. internal node, i � Y, uniformly at random. Let ip �

The move is as follows. Choose a � � Unif(��1, �) parent(i) and let j and k be the two children of i [so
and set x� � �x. If x� �*M�G (if, for example, �/� � �*, i � parent( j) and i � parent(k), j � k]. If i is not the
or the parent-child age order constraint is violated at root, choose a new time ti� uniformly at random in
the unscaled leaves in the scaled tree), then the move [(tj ∨ tk), tip]; otherwise, if i is the root, choose � �
fails and we set Xn
1 � x. In a slight abuse of notation Unif(��1, �) (see move m � 1) and set ti� � (tj ∨ tk) 

we set Q1(x, x�) � 1/�n�3 in the formula for �1(x, x�) in �(ti � �(tj ∨ tk)). Let t�Y denote the set of ancestral node
Equation 9 (Green 1995 explains how this scale factor times, tY, with ti replaced by ti�. Let x� � (�, �, (Eg, t�Y)).
arises in Metropolis-Hastings MCMC). The choice � � If i is not the root, then Q 4(x, x�) � 1 in Equation 9. If
1.2 gave reasonable acceptance rates in our simulations. i is the root then Q 4(x, x�) � 1/�.

Wilson-Balding move: Label this move m � 2. A random Random walk moves for � and �: Label this move m �
subtree is moved to a new branch. This move is based 5. The random walk update to � is as follows. Let a real
on the branch-swapping move of Wilson and Balding constant w� � 0 be given. Choose � � Unif(�w�, w�)
(1998). The SPR move in PAUP* (Swofford 1999) is and set x� � (�, � 
 �, g). If x � �*M�G, then the move
similar. However, the move below acts on a rooted tree fails and we set Xn
1 � x. Since the candidate generation
and maintains all node ages except one. process is symmetric, Q 5(x, x�) � 1, in the formula for

Two nodes, i, j � I � Y are chosen uniformly at �5(x, x�) in Equation 9. The random walk move for �,
random without replacement. Let jp � parent( j) and with random walk window parameter w�, say, is similar
ip � parent(i). If tjp � ti, if ip � j or ip � jp, then the move to the move just described for �. The window sizes w�
fails and we set Xn
1 � x. Given i and j, the candidate state and w� must be adjusted to get reasonable sampling
x� � (�, �, g�) is generated in the following way. Let efficiency.
ı̃ denote the child of ip that is not i, and let ipp � Implementation, convergence checking, and debug-
parent(ip), the grandparent of i. Reconnect node ip so ging: Convergence and standard errors: The efficiency of
that it is a child of jp and a parent of j; that is, set our Markov sampler, as a tool for estimating the mean

of a given function f, is measured by calculating fromE �g � �� jp, j �, �ip, ı̃�, �ipp, ip�� � Eg\ �� jp, ip�, �ip, j �, �ipp, ı̃��.
the output �f � 1 
 2��f(k), the IACT of f. Dividing
the run length by �f, we get the number of “effective

If node j is not the root, assign to node ip a new time
independent” samples in the run (the number of inde-t �ip chosen uniformly at random in the interval [(ti ∨ tj),
pendent samples required to get the same precision fortjp]. If node j is the root, choose � � Exp(�) and set
estimation of the mean of f). We call this the ESS. Bettert �ip � tj 
 �. Let t �Y denote the set of node times with
MCMC algorithms have smaller IACTs and thus largert ip replaced by t �ip. Let x� � (�, �, (E �g , t �Y)). If node j and
ESSs, though it may be necessary to measure � in unitsnode ip are not root, the ratio Q2(x, x�) in Equation 9 is
of CPU time to make a really useful comparison. One
will typically want to run the Markov chain at least a fewQ 2(x, x�) � (tjp � (ti ∨ tj))/(tipp � (ti ∨ tı̃)).
hundred times the IACT, to test convergence and get

If node j is the root, reasonably stable marginal histograms. Note first that
we do not know the IACT when we set the MCMCQ 2(x, x�) � �/(exp(��/�)(tipp � (ti ∨ tı̃))),
running. Exploratory runs are needed. Second, a state-

and if ip is the root, ment like “We ran the MCMC for 106 updates discarding
the first 104” is worthless without some accompanyingQ 2(x, x�) � (tjp � (ti ∨ tj))exp(�(tip � tı̃)/�)/�.
measurement of an IACT or equivalent. This point is

Subtree exchange: Label this move m � 3. Choose a made in Sokal (1989). The summation cutoff in the
node i � I � Y. Let ip � parent(i), jp � parent(ip), estimate for the IACT, �f, is determined using a mono-
and let j denote the child of jp that is not ip. If node i tone sequence estimator (Geyer 1992). The IACTs we
is the root or a direct child of the root, or t ip � tj, then get for our MCMC algorithms suggest that analysis of
the move fails and we set Xn
1 � x. Given i and j, the large datasets (50–100 sequences and 500–1000 nucleo-
candidate state x� � (�, �, g�) is generated in the follow- tides) is feasible with current desktop computers. Exam-
ing way. Swap nodes i and j, setting ples may be found in examples (Table 2). The inverse

of the IACT of a given statistic is the “mixing rate.”E �g � ��ip, j � � jp, i�� � Eg\ �� jp, j �, �ip, i��.
Statistics with small mixing rates are called the “slow
modes” of a MCMC algorithm. The mutation rate � wasLet x� � (�, �, (E�g , tY)). The ratio Q3(x, x�) � 1 in
the slowest mode among those we checked, and weEquation 9.
therefore present IACTs for that statistic in examples.The subtree exchange above is a local operation. In

Implementation issues: In this section we discuss debug-a second version of this move we chose node j uniformly
at random over the whole tree. ging and MCMC efficiency of our two implementations.
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We compare expectations computed in the coalescent The scaling and Wilson-Balding updates are particularly
effective.with estimates obtained from MCMC output. Standard

We have experimented with a range of other moves.errors are obtained from estimates of the corresponding
However, while it is easy to think up computationallyIACT. Consider a tree with four leaves, two at time zero
demanding updates with good mixing rates per MCMCand two offset � time units to greater age. Consider
update, we have focused on developing a set of primitivesimulation in the coalescent, with no data. The expecta-
moves with good mixing rate per CPU second. In ourtion of troot is
experience simple moves may have low acceptance rates,

EG�troot� � (� 
 4�/3)(1 � e��/�) 
 (� 
 3�/2)e��/�. but they are easy to implement accurately and are rap-
idly evaluated. They may give good mixing rates when

A number of other expectations may be computed. we measure in CPU seconds. Larget and Simon (1999)
For problems involving data, expectations are not have given an effective MCMC scheme for a similar

available. However, an MCMC algorithm with several problem. We did not use their scheme, as its natural
different move types may be tested for consistency. The data structure did not fit well with our other operators.
equilibrium is the posterior distribution of �, �, and g A second update, which may be useful to us in the
and should not alter as we vary the proportions in which future, would use the importance-sampling process of
move types are used to generate candidate states. For Stephens and Donnelly (2000) to determine an inde-
example, move 2 (Wilson-Balding) is irreducible on its pendence sampling update.
own, while moves 3 and 4 (subtree exchange and node- Because of the explicit nature of MCMC inference,
age move) form another irreducible group. We fix a the details of a particular analysis, including the pro-
small synthetic dataset and compare the output of two posal mechanisms, the chain length, the evolutionary
MCMC runs: one generated using move 2 alone and model, and the prior distributions, can be quite difficult
the other using moves 3 and 4 alone in tandem. to keep track of. One of us (A. Drummond) developed

We now turn to questions of MCMC efficiency. Each an XML data format to describe phylogenetic/popula-
update has a number of parameters. These are adjusted, tion genetic analyses. This enables the user to write
by trial and error for each analysis, so that the MCMC down the details of an analysis in a human-readable
is reasonably efficient. An ad hoc adaptive scheme, based format that can also be used as the input for the com-
on monitoring acceptance rates, and akin to that de- puter program. For the more visually inclined a graphi-
scribed in Larget and Simon (1999), was used. The cal user interface (GUI) was developed that can gener-
samples used in output analysis are taken from the final ate the XML input files, given a NEXUS or PHYLIP

alignment.portion of the run, in which these parameters are fixed.


