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It is frequently true that molecular sequences do not evolve in a strictly clocklike manner. Instead, substitution rate
may vary for a number of reasons, including changes in selection pressure and effective population size, as well
as changes in mean generation time. Here we present two new methods for estimating stepwise changes in substi-
tution rates when serially sampled molecular sequences are available. These methods are based on multiple rates
with dated tips (MRDT) models and allow different rates to be estimated for different intervals of time. These
intervals may correspond to the sampling intervals or to a priori—defined intervals that are not coincident with the
times the serial samples are obtained. Two methods for obtaining estimates of multiple rates are described. The first
is an extension of the phylogeny-based maximum-likelihood estimation procedure introduced by Rambaut. The
second is a new parameterization of the pairwise distance least-squares procedure used by Drummond and Rodrigo.
The utility of these methods is demonstrated on a genealogy of HIV sequences obtained at five different sampling

times from a single patient over a period of 34 months.

Introduction

Although molecular sequences accumulate substi-
tutions over time, the rate at which this occurs may not
be constant. The rate of substitution is dependent on
biological processes, including the intensity of selection,
changes in effective size (when selection is present), and
changes in the dynamics of the population, say, a shift
in mean generation time. These effects can change sub-
stitution rate (1) over time, (2) in different lineages, and
(3) at different positions along the sequence. In this pa-
per, we present methods that model the substitution rate
of molecular sequences obtained serialy from individ-
uals within a population or between species (and higher
taxa) by allowing the rate to change over time in a step-
wise fashion.

Population genetics studies that utilize molecular
sequences typically rely on samples of sequences that
have been obtained contemporaneously (Felsenstein
1992; Fu 1994; Nee et a. 1995; Pybus, Rambaut, and
Harvey 2000). However, there has recently been in-
creased interest in the analysis of samples that are gath-
ered serially, each at adifferent time. Thisincludes sam-
ples from rapidly evolving vira populations such as
HIV (Leitner and Albert 1999; Rodrigo et a. 1999) and
samples of ancient DNA from fossilized remains (Leon-
ard, Wayne, and Cooper 2000). It is our aim to derive
estimates of substitutional parameters from this type of
data using biologicaly relevant models.

Recently, two papers have independently described
methods to estimate substitution rate, ., from seria
samples under the assumption of a molecular clock.
Rambaut (2000) shows how a phylogeny-based maxi-
mum-likelihood estimate (MLE) of the constant substi-
tution rate, ., expressing the divergence between dated
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sequences as a product of p and the time interval, can
be obtained (fig. 1a). Drummond and Rodrigo (2000),
using a distance-matrix least-squares (L S) approach, pa-
rameterize intersample divergence in two ways. First,
analogous to Rambaut’s single rate with dated tips
(SRDT) model, w-parameterization estimates only asin-
gle substitution rate, w, using wt; as the intersample di-
vergence for the ith interval with elapsed time t; (o is
the number of substitutions per unit time, but since time
may be measured in chronological units rather than in
generations, Drummond and Rodrigo use o instead of
w). Second, with §-parameterization, each intersample
interval is alowed to have its own substitution rate, w;;
i.e., for the ith interval with elapsed time t;, oit; = §;
(fig. 1b). In keeping with Rambaut’s terminology, we
will refer to this as the ““ multiple rates with dated tips”
(MRDT) model. Drummond and Rodrigo (2000) go on
to use these substitution rate estimates in a phyloge-
netic reconstruction procedure called serial-sample un-
weighted pair grouping method with arithmetic means
(SUPGMA) which recovers a tree with lineages that
terminate in the order of sampling.

In this paper, we extend Rambaut’s (2000) tree-
based SRDT likelihood estimation procedure to include
the MRDT model. In addition, we show that there are
two forms of the MRDT model, one where the rates are
estimated differently for each sampling interval (corre-
sponding to Drummond and Rodrigo’s [2000] & param-
eterization, above), and another where the rates are dif-
ferent for different a priori—defined intervals that do not
necessarily coincide with sampling intervals (fig. 1c).
Maximum-likelihood (ML) and LS estimators can be
constructed for both forms of the MRDT model. Finally,
we illustrate the use of these methods on an example
data set of HIV-1 partial envelope (env) sequences ob-
tained serialy from an individual who was treated with
Zidovudine midway through the sampling program.

Likelihood M odel

Let us consider the case of sequence data for which
there is exact time information and a known phylogeny.
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Fic. 1.—Three different models of substitution: (a) the SRDT model, with a uniform substitution rate; (b) the MRDT model, where each
sampling interval has a different substitution rate; and (c) the MRDT model, where the substitution rate change point does not coincide with a

sampling occasion.

Our generalization allows for the rate of substitution to
have stepwise changes over time and gives rise to a
multiple-rate model. The MRDT model is constructed
by dividing the one substitution rate of the SRDT model
(Rambaut 2000) into a vector Q@ = {wy, wy, ... , O,
where w; is the ith substitution rate in the model (fig.
1). Hence, this w-parameterization allows the substitu-
tion rate to have a number of stepwise changes between
the most recent and the most ancient sampling times.
Asin the SRDT model, branch lengths from the root of
the tree are no longer required to be equal. Instead,
branch lengths must sum to values determined by the
temporal spacing of the tip in question and the different
substitution rates of the time periods that the tip tra-
verses. Since the information about substitution rates
comes from the relative positioning of tips in the tree,
it is evident that rate parameters can only be estimated
for time intervals for which there exists at least one
sequence sample. Hence, the maximum number of w
parameters is given by the number of sampling points
minus one, as one time point is needed for reference.
However, this maximum number of rate parameters can-
not be estimated for every tree topology. Take, for ex-
ample, the simplest case of two sequences sampled at
different times. In this situation, the uncertainty of the
root confounds rate and time parameters, and the se-
quence data only hold information about the upper limit
of the rate (set by the branch length between the two
sequences).

The parameters of the tree are thus the substitution
rates ) and the vector of times corresponding to the
dated tips and the (n — 1 for a bifurcating tree) internal
node heights (h), measured in units of substitutions (fol-
lowing Rambaut 2000; note that the tip times may be
measured either in generations or in some calendar unit,
and a simple rescaling allows one to move between the
two). Our framework estimates a series of substitution
rates only within the interval bounded by the first and
last samples. Specifically, no assumptions are made with
regard to the rate between the earliest sampling time and
the root of the tree. Over this interval, there is no chro-
nological information, and the branch lengths are free
to be optimized in the standard manner as composite
parameters of time and substitution rate. This rate may,

of course, be of interest, for example, in dating the most
recent common ancestor (MRCA). In this case, addi-
tional assumptions must be made: a natural assumption
in the case of stepwise changes is that the earliest esti-
mated rate remains constant when extrapolated back in
time to the root.

For a given tree T, the likelihood of € is the con-
ditional probability of obtaining the sequence data S giv-
en Q, T, and 7, the vector of times, as well as the in-
stantaneous substitution rate matrix M (also assumed to
be known):

L(Q) = Prob(S|Q, T, 7, M). @
This likelihood is calculated in the standard manner
(Felsenstein 1981; Goldman 1990; Rodriguez et al.
1990) for phylogenetic trees; 0 and 7 enter the calcu-
lations as constraints on the branch tip positions (fig. 1b
and c). The MLEs of the rates, ®;, are jointly chosen
such that L(€) is maximized. The only remaining con-
straint in place is that each estimated rate cannot be less
than zero.

Confidence interval estimation in the case of mul-
tiple w’'s is less straightforward. There are at least two
ways of computing confidence intervals for multiple
rates. First, multivariate upper and lower (1 — «)% con-
fidence limits may be obtained by locating rates that
correspond to log likelihood values differing from the
maximum log likelihood value by x¢./2, where k is the
number of rates estimated. If unbiased, these confidence
intervals have a probability of (1 — «) of enclosing the
true Q. Second, a profile confidence likelihood interval
may be obtained for each o as follows. Over a range of
w;, locate the upper and lower values of w; such that

=2|In L(w%, 0%, ..., 0¥, o, 0¥, ..., of)
- In L((I)l, (’J:)z, “ ey ‘I)ifll &)i! a)i+1, “ ey &)k)l
= Xi./2, @)

where @, is the MLE of the jth rate, and & is the ML
estimate of the jth rate when w; is fixed at a given value.

In the case where all elements of € are equal, the
MRDT model collapses to the SRDT model of a uni-



form molecular clock. If all w parameters are set to O,
the MRDT model reduces to the standard contempora-
neous tips clock model (the single-rate [SR] model;
Goldman 1993; Rambaut 2000). In fact, under the like-
lihood framework, oneis able to test whether the MRDT
model is a significantly better model for the data than
the SRDT model. Since the SRDT model is simply a
constrained MRDT model, the standard asymptotic like-
lihood ratio test can be applied. In this case, the test
statistic,

A = 2[In L(Q, not al o O Q equa)

— InL(Q, dl o O Q equa)], 3
is asymptotically distributed x2 with k — 1 degrees of
freedom under the null hypothesis that the two models
are not significantly different, where k is the number of
o parameters.

When testing the SRDT model against the SR mod-
el, the null and aternative hypotheses are of the form
The test is a one-tailed test. If « is chosen as the level
of significance, then the null hypothesis should be re-
jected if

A=2InL(e >0 — InL(w = 0] > x. (4
Incidentaly, this result can also be derived by treating
the constraint that » has to be greater than or equal to
zero as a boundary value problem (Ota et al. 2000).

L east-Squares Model

With the distance matrix LS estimate of Q de
scribed by Drummond and Rodrigo (2000), the expected
evolutionary distance d(m, n,) between a pair of se-
quences m (of the ith sample; assume thisis the earlier
time point) and n, is equal to the expected pairwise
distance ©; for sequences from sample i plus the added
substitutions accruing between sequences from samplei
and sample j in the interval 7; — 7. If there exist times
Tis1 Tis2r - - - » T—1 IN thisinterval that correspond to
changes in substitution rate, then

dim;, n) = O + ;i1 (Tiv2 — ™)
+ 0igivo(Tive = Tiwg) + 00
+ o1 (T

®)

The parameter estimates P = {@, Q} are obtained by
the standard LS solution:

- Tj—l) + €min;:

P = (t')t'd, (6)
where d is the vector of the pairwise distances, and t is
the matrix of time intervals and [0, 1] values signifying
the absence or presence, respectively, of the ®’s asso-
ciated with each of the samples. Unlike the MLE, LS
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rate estimates obtained using equation (6) are not con-
strained to be nonnegative. Such a constraint can be add-
ed with appropriate linear programming strategies.

The standard error of the LS estimates of o cannot
be calculated easily because of the nonindependence of
the pairwise distances. Drummond and Rodrigo (2000)
advocate the use of the parametric bootstrap (Efron and
Tibshirani 1993; Goldman 1993) to generate confidence
intervals of the estimates. Parametric bootstrapping re-
quires specification of a model and subsequent simula-
tion of pseudoreplicate data sets with the same number
of sequences and sites as the original data, assuming that
the estimates recovered using the observed data are the
“true’” values of the parameters. With the SRDT model
and an assumption of a constant ® over time, it is easy
to generate pseudoreplicate data sets under a coal escent
model in which population size is held constant (Drum-
mond and Rodrigo 2000). However, under the MRDT
model, parametric bootstrapping is not simple, since any
resampling procedure must accommodate changing sub-
dtitution rates and ®’s. This is a drawback of the dis-
tance-based LS method—procedures for variance esti-
mation are often elusive.

Example

In this section, we illustrate the use of the MRDT
model on an HIV data set previously published by Rod-
rigo et a. (1999), where the onset of drug therapy is
shown to coincide with a significant reduction in sub-
stitution rate.

Before the advent of potent combination therapy
against HIV, drugs were less effective in lowering viral
load and hindering progression toward AIDS. To inves-
tigate the effect of a one-drug therapy regime on the
evolutionary progression of HIV, we analyzed previous-
ly published data consisting of serially sampled partial
HIV-1 envelope (env) sequences from an infected indi-
vidual who began Zidovudine treatment partway
through the sampling period (Rodrigo et al. 1999). Com-
plete details of the data set are given in Rodrigo et al.
(1999); briefly, the data set contains an initial sample
followed by additional samples after 7 (day 214), 22
(day 671), 23 (day 699), and 34 months (day 1005).
Monotherapy with Zidovudine was initiated after 13
months (day 409; J. Mullins, University of Washington,
personal communication) and continued during the re-
maining time of study. Therefore, the data set contains
two samples from before and three samples from after
treatment began.

It has been suggested that highly active combina-
tion antiretroviral therapy leads to a cessation of viral
replication (Finzi et al. 1997; Wong et al. 1997). A nat-
ural question is whether monotherapy with Zidovudine
had the effect of slowing or halting viral replication in
the particular individual from whom samples were avail -
able. If viral replication does, in fact, cease (or slow
down), this will be reflected in the rate at which substi-
tutions accumulate, sinceit is during the process of viral
replication that this occurs. This corresponds to testing
whether a, MRDT model, which allows for a change in
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Table 1

Maximum-Likelihood and Least-Squares (L S) Estimates of Substitution Rates Under the Single-Rate (SR), Single Rate
with Dated Tips (SRDT), and Multiple Rates with Dated Tips (MRDT) Models

MLE LS Estimates
Dataset Model —InL (substitutiong/site/day) Hypothesis Tests A df P (substitutiong/site/day)
Complete ..... SR 4,082.50
SRDT  4,080.83 1.36 X 10°° SRDT vs. SR 334 1 0.034 7.8 X 106
[7.14 X 1076, 2.09 X 1079 [—3.47 x 1076, 3.87 x 10-9°
MRDT 4,075.41 Opefore = 4.15 X 1075 MRDT vs. SRDT 1084 1 0.001 Wpefore = 3.87 X 10°°
[2.6 X 105, 5.8 X 10792
Oz = 0.0 Oz = —3.35 X 1076
[0.0, 0.8 X 10-%]2
Before therapy .. SR 2,441.16 —
SRDT  2,430.90 5.03 X 105 SRDT vs. SR 2052 1 3.0x 106 2.69 X 105
[2.81 x 1075, 7.49 X 1079 [-828 x 1076, 1.22 X 104
After therapy .. SR 2,542.34 —
SRDT  2,542.10 5.8 X 107 SRDT vs. SR 048 1 0.24 451 X 106

[0.0, 212 X 10°9]

[-251 X 10°5, 659 X 10-5]P

NoTe—MLE = maximum-likelihood estimate. Confidence intervals are presented in brackets.

aprofile likelihood confidence intervals.

b The 95% confidence intervals were obtained by a parametric bootstrap procedure using 1,000 replicates. Parameter ® was kept constant.

substitution rate after the onset of therapy, provides a
better fit to the data than an SRDT model and, if so,
whether the estimated substitution rate after drug ther-
apy is significantly different from zero.

The data set consisted of 60 sequences from five
time points. The length of the alignment was 660 nt.
Gapped columns were included in the analysis. To begin
with, the data set was first split into two subsets, one
containing all sequences before therapy (28 sequences),
and the other containing all sequences after therapy
commenced (32 sequences). For each of these data sets,
a neighbor-joining tree was built and an ML general
time-reversible (REV) model was estimated using
PAUP* 4.0b4 (Swofford 1999).

Each tree was used to estimate a uniform substi-
tution rate using the SRDT likelihood model as imple-
mented in the computer program TIPDATE (Rambaut
2000). TIPDATE was aso used to find the ML roots for
the two trees. This was done by rooting the tree at every
branch on the unrooted topology and optimizing the
branch lengths in accordance with the dated tips. The
rooted topology that maximizes the likelihood was used
to estimate the substitution rate. All estimated rates are
reported in table 1. A rate (wpeoe) Of 5.034 X 1075
substitutions per site per day (1.84% per year, 95% con-
fidence limit = [1.02%, 2.73%]) was obtained for the
sequences before therapy, and a rate (wge) Of 5.8 X
107 substitutions per site per day (0.021% per year,
95% confidence limit = [0.0%, 0.77%]) for the sequenc-
es after therapy. As w i has a confidence interval that
encloses 0, we cannot show that significant substitutions
have occurred since therapy commenced.

The complete data set, consisting of sequences ob-
tained before and after therapy, was then used to obtain
an unconstrained and unrooted neighbor-joining tree,
once again using the REV substitution model. Once
again, an SRDT model was fitted to the tree (after the
ML root was found), and a uniform substitution rate of
1.346 X 105 substitutions per site per day (0.49% per
year, 95% confidence limit = [0.26%, 0.76%)]) was es-

timated. An MRDT model was then fitted to the full
data set, alowing two substitution rates, the first up to
the time of therapy (i.e., 409 days from the first sample),
and the second after this time. Rates of 4.145 X 1075
substitutions per site per day (1.51%) and 0.0 substitu-
tions per site per day were estimated simultaneously for
Wpefore AN 041, FESPectively. Trees reconstructed using
MRDT and SRDT models are shown in figure 2. To
obtain the 95% confidence intervals for both substitution
rates, a grid search of the two parameters was undertak-
en. The rate wpgore Was alowed to vary from 0 to 10-4
substitutions per site per day, while w4 Was alowed
to vary from 0 to 5 X 105 substitutions per site per
day, both in steps of 10-6 substitutions per site per day.
The likelihood surface resulting from this search is
shown in figure 3 as a contour plot. The resulting 95%
profile confidence intervals were obtained by taking the
maximum and minimum values of wpggre aNA O 4o ON
the contour demarcating x3 005 (=1.92) log likelihood
units from the maximum log likelihood. For wpeore the
profile likelihood confidence interval is [2.6 X 1075,
5.8 X 1075, whereas for wu, it is [0, 0.8 X 10-9].

The bivariate confidence interva for Q =
{ Bperorer Daitert 1S @S0 outlined on the likelihood surface
contour plot by the contour demarcating

X3.0.05/2(=2.99) log likelihood units from the maximum
log likelihood. The upper and lower values of wpggre
and w4 ON this bivariate confidence interval contour
are [2.1 X 1075, 6.1 X 1075 for wpeere and [0, 1.1 X
1075] for wge. Of course, these intervals are larger
than the profile likelihood confidence intervals, but
only marginally so.

Table 1 gives the log likelihood scores obtained
using the different models described above. For the
complete data set with samples before and after therapy
included, the most general clocklike model isthe MRDT
model. As explained above, the SRDT model is con-
strained so that all w’s are equal. The SR model with
contemporaneous tips is a further constraint on the
SRDT with al o's equal and set to zero. In Table 1,
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Fic. 2—The maximum-likelihood SRDT tree (A) and the maximum-likelihood MRDT tree (B) for the full example data set. Open and
filled circles represent before- and after-therapy sequences, respectively. Sample numbers are given within the circles.
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Fic. 3.—The likelihood surface of the w parameters (substitution
rates before and after therapy) for the example data set. Both the 95%
profile confidence region and the 95% bivariate confidence region are
shown. A cross marks the maximum-likelihood equal rates point
(SRDT) on the surface, located outside both confidence regions. A
diamond marks the peak of the likelihood surface.

likelihood ratio test statistics have been computed for
MRDT versus SRDT and for SRDT versus SR models.
The SRDT model is significantly better than the SR
model (P < 0.05), and the MRDT model is significantly
better than the SRDT model (P < 0.01).

Similar analyses were performed for before- and
after-therapy samples, except that in these instances, the
only comparison made was between the SRDT and SR
models. For the before-therapy samples, the SRDT mod-
el has a statistically better fit to the data than the SR
model (P < 0.01). However, for the after-therapy se-
guence subset, the SRDT model cannot be distinguished
statistically from the SR model. Taken on its own, this
suggests that there is little or no accumulation of sub-
stitutions over this period. (Caution must be taken with
this interpretation: as we discuss in the next section, the
MRDT modé is significantly worse than a model that
assumes no consistent clocklike pattern of evolution
among the sequences).

Equivalent estimates were also derived with the LS
method. Table 1 summarizes the results. Both the like-
lihood and the least-squares procedures consistently es-
timated a higher rate of substitution before therapy,
about an order of magnitude greater than the estimated
rate after therapy.

Discussion

The framework presented allows for the modeling
of complex evolutionary scenarios such as the evolution
of HIV sequences undergoing drug therapy. Application
of the MRDT model to samples obtained from an in-
dividual treated with zidovudine appears to indicate a
reduction in substitution rate after the commencement
of therapy. Our results are consistent with those obtained
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elsewhere (Chun et al. 1997; Wong et al. 1997). Inde-
pendent rate estimates from samples before and after
therapy have nonoverlapping 95% confidence intervals
and are therefore significantly different at « = 0.05. This
poses a problem for any SRDT estimation procedure.
TIPDATE, for instance, returns a rate of 0.5% per year
for the entire genealogy. This rate is lower than previ-
ously published rates of HIV evolution (0.93% per year;
Shankarappa 1999). However, it is similar to other pub-
lished estimates for this data set that assume a single
rate (0.3% per year; Drummond and Rodrigo 2000). In
this paper, we outlined a likelihood framework that ad-
dresses this discrepancy, in addition to providing a pair-
wise distance least-squares estimation approach. There
are, nonetheless, severa features of these analyses that
bear mention and indicate that more work in this area
is required.

First, for any analysis that involves the inference
of some kind of clocklike behavior, whether it be a con-
stant clock or a changing clock, a first step should be a
test of whether such a model is significantly worse than
an unconstrained nonclock model (also called a differ-
ent-rate [DR] model). The DR model is the standard
used in phylogenetic tree reconstruction and effectively
allows every branch to have its own substitution rate.
Thus, the length of the ith branch is an estimate of the
composite parameter oit;. If an SRDT model or an
MRDT modél is significantly worse than the DR model,
it means that at least some lineages are not evolving in
a clocklike manner. In fact, where appropriate, we rec-
ommend a hierarchy of nested likelihood ratio tests: DR
versus MRDT, MRDT versus SRDT, and SRDT versus
SR. For our example data set, the DR model was always
significantly better than the SRDT and MRDT models
(data not shown). Our primary intention with the use of
the data set was simply to illustrate the methods de-
scribed in this paper, rather than to make substantive
statements about the effects of monotherapy on substi-
tution rates. It is important, however, to note this here
for compl eteness.

Also, the likelihood estimation procedures present-
ed here (and by Rambaut [2000]) assumes that the evo-
lutionary history of the sequences, i.e., the topology of
the geneaogy, is known or can be reconstructed cor-
rectly. The bias introduced into parameter estimation
and hypothesis-testing procedures by using incorrect ge-
nealogies is largely unknown. On the other hand, the
|east-squares estimation procedure is not based on are-
constructed topology and therefore may not suffer from
this possible source of bias. For example, for a single-
rate model, the least-squares estimator has been shown
to be an unbiased estimator (Drummond and Rodrigo
2000). However, distance-based LS methods do not take
into account the correlations induced by shared history,
thus making variance estimation difficult.

Ultimately, the best approach would be to incor-
porate the uncertainty of the genealogy explicitly into a
probabilistic framework. One way of taking the uncer-
tainty of the topology into consideration in the likeli-
hood model is to integrate over a number of topologies.
A natural way to do thisisto use a Markov chain Monte

Carlo (MCMC) sampling procedure to sample tree space
in proportion to the likelihood of the data (Kuhner, Ya
mato, and Felsenstein 1995). This approach has been
used, for example, to incorporate the uncertainty in the
tree topology into estimates of population size and
growth rates (Kuhner, Yamato, and Felsenstein 1995,
1998). This method has a natural extension to the esti-
mation of substitution rates and can also be used to find
confidence intervals in topology space under the SRDT
and MRDT models of evolution.

One of the interesting observations of this study is
that different models (SR, SRDT, MRDT) can have dif-
ferent ML tree topologies. This may turn out to be a
common occurrence. For example, for a 45-sequence
subset of the data, 729 strictly bifurcating ML tree to-
pologies were found. Although these trees had identical
likelihoods under an unconstrained (nonclock) model,
they had a range of likelihoods under the SR, SRDT,
and MRDT models. Furthermore, no single strictly bi-
furcating topology represented the ML topology under
al three models. If one chooses to use different topol-
ogies for each model, then the asymptotic approximation
to the likelihood ratio test cannot be used. Instead, some
aternative procedure (say, a parametric simulation pro-
cedure [Goldman and Whelan 2000]) should be used. A
sampling method such as MCMC would also be useful
in this case, as the sampling procedure integrates over
tree space in proportion to the likelihood of the data.
Thus, for two competing models, a null and alternative
distribution can be compared.

In the previous section, we also alluded to the fact
that different rootings of an unrooted tree can have dif-
ferent likelihoods under a given model of substitution.
By extension, this also means that different models may
require the tree to be rooted differently. This does not
change the mechanics of any likelihood ratio test, since
no new free parameters are added to the model. How-
ever, if the root of the tree is not known, an extra step
needs to be added to any analysis to find the appropriate
root.

Serial molecular samples add a new dimension to
population genetics studies. Since it is possible to esti-
mate substitution (or mutation) rate independently of
other parameters, it is also possible to decouple com-
posite population parameters like ® = 2N (where N,
is the effective population size) into their component
parts. The models we introduce here go one step further
and allow these parameters to be expressed as functions
of time. Although we have only spoken of stepwise
changes in substitution rates, these models can be gen-
eralized to allow substitution rate to vary as any pre-
defined function of time. With viral populations such as
HIV, this becomes especidly interesting, since it allows
us to study changes in average generation time and sub-
stitution rate during disease progression or under differ-
ent therapeutic regimes. In conjunction with the esti-
mation of demographic functions of time (Pybus, Ram-
baut, and Harvey 2000), it also means that we can de-
compose 6(t) = 2N(t).(t) into the component functions
of Ng(t) and p(t), where w(t) is a stepwise function of
time.



In this paper, we have assumed that the times cor-
responding to changes in substitution rates are fixed ei-
ther to the sampling times or to some time point known
a priori. Similarly, we have also assumed that the phy-
logeny is known. However, since these times and the
phylogeny are parameters embedded in the model, they
can aso be jointly estimated within the likelihood
framework.

The models we have described in this paper apply
to any set of molecular sequences of sufficient length,
or obtained sufficiently far apart in time, that an appre-
ciable amount of substitutions has accumulated. These
include ancient DNA sequences, as well as rapidly
evolving viral sequences. In conjunction with efforts to
model lineage-specific rates (Thorne, Kishino, and
Painter 1998; Huelsenbeck, Larget, and Swofford 2000)
and other time- or lineage- dependent processes, the
models presented here go some way toward a more re-
alistic description of the evolution of molecular
sequences.

MLE and LS estimates under the SR, SRDT, and
MRDT models can be obtained using the computer pro-
gram PEBBLE, available from the website http://
www.cebl.auckland.ac.nz or from the authors.
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