
Management : page 1.

A GENUINE BOOTSTRAP

We began our course with an account of how to start up a computer from scratch. Now,
at the end, it is very satisfying to find that the wheel has come full circle, and we are once
again discussing the same topic. Perhaps the ideal way to conclude would be with an
example of instructions for stopping a computer, but we haven't found any interesting
examples. Instead, here's another exampleMAN5 of a bootstrap process, taken from an
even earlier system than the IBM 1620 with which we started.

The old Deuce computer was brought to
mind by David Leigh's reminiscences
(March l986 issue), and in my own case
it was already there as I had just agreed
to send my Deuce manual to the
Computer Museum in Boston, Mass. A
feature I have found particularly
intriguing is the means provided for
reading-in a user program and starting it
running. It was arranged that this was
done from a totally-cleared delay-line
memory. The only thing that could be
termed an 'operating system' was an
initiating key on the panel, with the effect
of clearing the delay-line storage and
starting a card reader. The means of
achieving operation on this basis is so
ingenious it deserves to be recorded in
some accessible place.

The main storage was in delay lines
in which 32 words of 32 bits each
followed each other round in a 'major
cycle' of about a millisecond. There were
also a number of shorter delay lines,
including five temporary stores holding
one word each, one of them, called TS
COUNT, holding the current instruction
word. The program was held in the
twelve 32-word long delay lines.

Two fields of the 32-bit instruction
word indicated a source and a
destination, and the effect of the
instruction was to transfer one or more
words between the two. Each of the
delay lines (except TS COUNT) could be
a source or a destination, and there were
also functional sources and destinations
which introduced the main computing
operations. For example, single-length
addition was achieved by sending one of
the operands to destination 25, where it
was added to the existing contents of the
temporary store TS13. For delay lines
holding more than one word, the word
for which the instruction was effective
(or the first word of a block on which it
acted) depended on the time at which it
was obeyed; the instruction word
contained in one field a wait number W,
and the number of minor cycles between

the selection of the instruction word and
commencement of its execution was
W+2. Also there was a timing number T
and the number of minor cycles till the
next instruction was selected was T+2.

Another field of the instruction
word indicated the delay line from which
the next instruction would be taken, and
yet another indicated whether the transfer
would be of a single word, or a pair of
words, or a block beginning at the minor
cycle W+2 ahead and ending at that at
T+2. Another one-bit field indicated
whether the instruction would be obeyed
as soon as its appropriate minor cycle
came round or whether it would act as a
'stopper' and wait for operation of the
single-shot key, or alternatively for a
ready signal from the card reader or card
punch if one of these was active.

Standard punch cards were used
for input, with each of the 12 lines
representing a 32-bit word in its binary
form (so only 32 of the 80 columns were
utilised). A triad of cards (36 rows) held
the contents of a long delay line, with the
first four rows providing a header. The
initiating key cleared the location (termed
TS COUNT) holding the current
instruction, except that the W and T
values were not necessarily cleared. This
meant that the contents of TS COUNT
corresponded to a transfer from source 0
to destination 0, with uncertain W and T
values, and the instruction constituted a
stopper since the relevant one-bit field
was blank.

There was no delay line numbered
zero, and source zero referred either to
the card reader or to delay line 8, the
choice depending in a rather complicated
way on the values of W and T.
Destination zero had the effect that
anything sent to it became contents of TS
COUNT. The instruction initially in TS
COUNT, therefore, was one that would
read from the first row of the first card,
or from one of the words in the (initially
cleared) DL8, after receiving the ready

signal from the card reader. The first row
was in fact left blank, so either way the
effect was to place the same instruction
again in TS COUNT, except that this
time the W and T values were safely set
to zeros. The effect of obeying this as an
instruction was to read into TS COUNT
the second line in the heading.

The four-line heading is
represented as follows, in terms of the
conventions for writing down instruction
words. This is for the case where the
subsequent 32 lines are to be read into
delay line 2, with DLI still blank
(because it was always the last to be
filled), and the triad of cards is followed
by another similar triad referring to
another delay line:

blank
2, 0-2, 1, 26, 25 X
2, 0-2, 30, 31 X
1, 0-2, 30, 31 X

The first field in the instruction
word shows the number of the delay line
from which the following instruction will
be taken. The next two, conventionally
separated by a dash, indicate the source
and destination respectively. The next
number, usually omitted if it is zero, is a
modifier indicating the duration of the
transfer, being zero for a single-word
transfer and one for a transfer lasting
from the minor cycle W+2 ahead to that
T+2 ahead. The next two numbers are
the values of W and T already
mentioned, and the final X appears if the
last field is blank to make the instruction
a stopper.

As already mentioned, obeying the
blank line as a 0-0 transfer reads into TS
COUNT the second line of the header.
When this is obeyed in turn it produces a
transfer from the card reader to delay line
2, starting in the minor cycle which is
26+2 ahead, and ending with that 25+2
ahead (but in fact 25+2+32 ahead, since
W>T). The effect of this is to fill DL2
with copies of the third line of the
header, and to take one of these as the
next instruction. Obeying this copies the
fourth line of the header into a location in
DL2, which is thereby defined as minor
cycle 31 if this is the first delay line to be
filled. The next instruction is taken from
the position in DL2 which is 31+2 minor
cycles ahead, or effectively one ahead
and hence cycle zero, and its effect is to
overwrite itself with a word coming from
the card reader and to select the next
instruction in sequence in DL2. Finally
the instruction in minor cycle 31 is
reached and after overwriting itself it
causes the next instruction to come from
DLI. The effect has been to read the 32
rows following the header into the
locations numbered 0 to 31 in DL2.

If DLI is still clear, the selection of
the next instruction from it resets TS
COUNT to the blank state, ready to
begin again on another triad of cards
filling another delay line. If DLI is filled,
running of the user program begins with
the instruction in its minor cycle zero. I
have no idea whether this arrangement
has any possible relevance to modern
practice, but it seems sufficiently
ingenious to be worth adding to one's
mental kit of parts!

REFERENCE.

MAN5 : A.M. Andrew : "The smallest operating system", Computer Bulletin Series 3,
2#4, 40 (December 1986).

