
Support for execution : page 1.

SCHEDULING – IMPLICATIONS.

We defined scheduling as determining who can do what, and when. The simplest solution
is anarchy : anyone can do anything at any time. Whatever the merits of anarchy as a
political philosophy, it has flaws if considered as the basis for an operating system
scheduler. On the other hand, if we go back further to our description of the aims of an
operating system as to provide computing services to people who want them, anarchy
looks like the perfect solution.

As is common, then, we are seeking a compromise. We would like to achieve the
closest approach to anarchy which is compatible with running an effective computer
system. This directs our attention to the factors which hinder anarchy – which is to say,
finite resources. To demonstrate the correctness of that conclusion, put yourself in the
position of a process running in a computer for the moment, and ask yourself why you
wouldn't be able to do anything that a process might want to do. The only answer is that
you can't get the resources you need to do it.

Assume that there is no reason in principle why you shouldn't be able to proceed
with your task. Then either the resources exist, or they don't. If the resources don't exist
(perhaps they are messages or signals of some sort), then you have to wait until some
other process produces them for you. If they do exist, then some other process is using
them, and you have to wait for it to finish. We've been through this sort of argument
before (in WHEN SCHEDULING FAILS) , and won't repeat it, but the general
conclusion is that the delay is either because of competition between processes for
physical resources, or because of the need for communication between processes.

Well, then, we can solve all our problems by giving everybody enough resources
(whatever that means) and not trying to write programmes which need communicating
processes. That's called giving everybody a computer, and it is indeed a complete
solution – for the people for whom "enough resources" isn't prohibitively expensive, and
who never want to write programmes which need communicating processes. That's why
our laboratory works so much better than the various sorts of batch and timesharing
systems we used to use to provide services to students. (And, yes, some of you would
doubtless like a 100 GHz processor each, with 128-bit data paths, and a few A0 screens
with 1000 pixels per millimetre and infinite colour palettes, but the machinery in the
laboratory is about the right size for the tasks we expect you to accomplish on it.)

That sort of solution is becoming more practicable as the cost of hardware drops,
and microcomputers become more and more powerful. But they are already
multiprogramming, which necessarily gives us competing processes, and moves us closer
to communicating processes. The arrival of multiprocessor microcomputers will further
complicate the systems (which is why we didn't offer you a lot of 100 GHz processors
each); so it looks as though the solution to the problem simply brings the problem back
again ! What else can we do ?

If we can't get rid of the competition and communication, we shall have to be rather
more subtle in our approach. We might be stuck with scheduling at all the various levels
we've mentioned for ever, but perhaps we can be clever about it. To do so, we consider
the nature of scheduling itself : it is wholly a matter of making decisions. Given a fairly
free interpretation, we can say that the purpose of every sort of scheduler is continuously
to answer the question "What should happen next ?". A primitive scheduler can answer
the question by organising all requests into queues and always answering the next one in
turn; but we have seen that we can do better than that provided that we have more
information on which we can base decisions.

We can make use of an astonishingly wide range of information at different levels
of the scheduling system. Here's a list, which is certainly incomplete, but illustrates the
point : system configuration; characteristics of parts of the system; historical
performance; overall workload patterns; current system performance; expected resource
requirements; current behaviour of individual processes. It's an extensive list, but it is
completely useless unless the operating system has access to all the information

whenever it is needed. This is perhaps the major implication of scheduling : a good
scheduler must be supported by a lot of information, which must be correct and up-to-
date.

How do we get the information ? There are three sources, corresponding to rather
different ways in which the information is used in the system.

Configuration information is supplied when the system is started. It includes details
of what devices are available, how the disc areas are allocated, and other general
information about the system. It is quite possible for information of this sort to be
used when the system is being set up, but then lost when its initial purpose is
over – so the system might set up its devices satisfactorily, but then forget what
devices it has unless the information is saved in something like a device table.

Running information is used while the system is in operation; most of the system
tables come into this category. This material at least has to be present and current,
but that doesn't necessarily make it easily available outside the parts of the system
which normally use it. Most of the time, that doesn't matter, but it's a nuisance if
you need it and can't find it.

Performance information might not be used by the system at all, but is very
important in planning for developments. If this sort of information is not collected
and stored, it will be lost. Notice that this can reasonably include at least some of
the information of the other two categories, much of which is important in
identifying the resources available and the system's behaviour.

The newer systems are much better at collecting information and making it available than
older implementations, but performance is still scrappy in the smaller systems.

–––

QUESTIONS

Consider our laboratory. It isn't designed to let you do everything you want
to do just when the fancy takes you. Why not ? How does it fit into the
scheduling pattern ?

How can each of the sorts of information in the list above be used for
scheduling ? (Some can be used in several ways.) Can you extend the list ?

One effective scheduling technique with batch systems was to record
statistics on the behaviour of jobs, all of which had names, and then to
assume that the requirements of a job would be the same as they were when
it was run last time. Why did that work ? Would it work with a timesharing
system ?

–––

