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DEADLOCK

In a deadlocked system, two or more processes cannot proceed because each wants some
resource held by another. If this happens, there is no question of resources being poorly
allocated when they become available, as in cases of starvation; they just don't become
available. ( There used to be another name for deadlock – the "deadly embrace". We may
be thankful that it appears to have fallen into disuse. ) To break a deadlock, at least one
process must be forced to surrender a physical resource, or to provide an abstract
resource. In either case, a process must be forced to do something which it would not do
if it followed its programme, so some sort of damage is inevitable.

Because deadlock is a phenomenon of competing processes, it did not become
significant for computing until multiprogramming methods began to develop. Once
observed, though, it was soon recognised as something to be avoided if possible. As
compared with other examples from the material world, deadlock in computer systems is
insidious; just as in the case of livelock ( which wasn't really recognised as a significant
problem until much later than deadlock ), a deadlocked process is doing nothing
remarkable to distinguish it from any other process, resources might be abstract entities
like locks or semaphores so they might be invisible too, and other processes might
continue to function giving the impression that all is well. Generally, it was left to
operators to notice deadlock and to try to get out of it as best they could.

It is fair to remark that, despite the material to be discussed in this chapter, not much
has changed. Or, perhaps better, only one factor has changed a lot : we are now so much
better endowed with resources that deadlock is much less likely to happen. As we have
seen, the decreasing cost of hardware made it possible to run interactive systems in which
it is essential to maintain a surplus of machinery to guarantee that peak demands can be
met, and systems are therefore rarely run at anywhere near the limits of their capacities.

As well as this happy circumstance, our understanding of deadlock has developed
considerably, and a few methods are known which can help to stave off deadlock even if
they can't necessarily abolish it completely. These ideas are based in one way or another
on the conditions which lead to deadlock, so that is where we'll start.

DEADLOCK AND RESOURCES.

Any sort, or sorts, of resource which is, or are, in limited supply can contribute to
deadlock. In this context, a resource is anything which a process must acquire before it
can continue. Resources come in two main varieties :

• Reusable resources, generally including material objects such as hardware, but
also including data when access is limited. They usually fixed in number. Some
examples :

Memory, processors, devices.
Semaphores, locks, critical sections.
Things in files ( depending on access restrictions ).
Eating utensils ( if you happen to be philosophers ).

• Consumable resources, usually data of one sort or another, which can be
constructed and destroyed. Examples :

Messages, interrupts, data input.
Things in streams.

CONDITIONS FOR DEADLOCK OF SEVERAL PROCESSES.

These conditions were presented by J.W. Havender in 1968. All these conditions are
necessarily satisfied simultaneously in a deadlock. There are four conditions, and we'll
illustrate them by inspecting the traffic analogy.



Resources cannot be shared.

If two vehicles could simultaneously occupy
the same piece of road, the traffic deadlock
could be resolved; the diagram illustrates one
way. Notice that it's enough for one of the
junctions to be sharable – we don't require
that all the road should be miraculous, nor
even all the junctions.

This is only possible if one resource can in
some sense serve two processes at once.

Only the owner of a resource can
release it.

If there were some way to take away the
resource used by one vehicle for a while, and
give it to another, we could resolve the traffic
deadlock.

This is only possible if a process is not in
some sense using the resource it owns while
it is waiting.

☞

Processes hold resource A while
requesting resource B.

If the vehicle didn't need road space while it
was waiting, our traffic problems would be
solved.

This is quite similar to the previous case; the
difference is that here we consider the
possibility of the process voluntarily
relinquishing its hold on the resource,
whereas formerly we wanted some external
agency to force it to yield the resource.

There is a circular list of process
waiting for resource owned by
process  . . . .

This is almost a definition of deadlock rather
than a condition, but it's certainly a condition
to the extent that if we can make it false we've
eliminated the deadlock.

PREVENTING DEADLOCK.

If each of the conditions above is necessarily satisfied in a deadlock, then any procedure,
rule, device, stratagem, or what have you which guarantees that any one of them cannot
be satisfied has prevented deadlock in the area to which it applies. This leads us to four
groups of deadlock prevention techniques, one group corresponding to each rule.

• Make resources sharable. Substitute "virtual" devices for real physical ones.
Strictly, of course, the usual implementation of virtual devices doesn't really share
an existing device – it replaces one or a few physical devices with a much larger
number of imaginary devices which work just as well. There are very few devices
which can really be shared. One reason is that most devices have some sort of
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internal state which must be preserved if the device is to work. The state of a
printer, for example, includes the position of the paper and the marks on it; you
can't share a printer unless you can remove the paper and put it back in exactly the
same position. Sharing is usually impossible if the device concerned is required to
operate in real time, while the process is running, for then it might be required to do
different things for different processes simultaneously – so it won't work for a
terminal ( unless you think of windows as virtual terminals ). It does work well
for a number of other physical devices, and has been used for a long time in
spooling systems. The traditional virtual devices are card readers and line printers,
but the same approach works for other devices of the same general type. Virtual
memory falls under this heading, too. Packet switching, as used in data
communications, is a way of getting virtual telephone lines. Virtual discs, at least as
used in the IBM VM operating systems, are different; they are partitions of the real
disc, and are intended to prevent contention for the real disc space by restricting
each process to its own disc area.

• Give processes all their resources at once. You can only manage this if you
know upper limits to what resources a process will require before it starts. You
have to include anything that just might be required, and allow for the most
extravagant possible use of resources like memory and disc space. It doesn't
usually work at all for resources like messages, which might not exist when the
process starts, and it cannot possibly work for resources which must be passed
back and forth between processes as part of their execution – such as locks,
semaphores, and critical sections.

• Make waiting processes surrender their resources. This is feasible only
with resources which do not have any significant internal state, or for which the
state can be saved and restored again. The prime example is the processor; another
is memory, as used in virtual memory systems.

• Impose a standard order on requests for resources. This is good when
you can do it, and is one of the few techniques that do have some utility in dealing
with the more abstract resources. You allocate numbers to the resources – in
principle, arbitrarily, but the order affects the efficiency of the algorithm – and
require that processes ask for resources in strictly increasing numerical order. Its
major defect is that you might be forced to acquire some resource with a low
number just in case you want it, even though you might know that you will often
only require a resource with a higher number. Notice that all devices allocated the
same number must be effectively identical. ( PROOF : The resources owned by a
process must always have numbers less than a resource which it is trying to
acquire. Therefore, if a process P requires resource N , it is certain that no process
owning resource N  is waiting for anything owned by P. Q.E.D. )

These methods ensure that the system can never get into a state where deadlock is a
possibility. Provided that you stick to the rules, you can start as many processes as you
like, and the combination is guaranteed to be free of deadlock. The methods work where
they're feasible, but none of them works for all resources, and they tend to be excessively
cautious about resource allocation.

AVOIDING DEADLOCK.

If we want a less restrictive system, we must relax some conditions. One possibility is to
accept that we shall have to watch what processes do as they operate, and guard against
deadlock situations developing. If we follow this path, we can start rather more
processes, but pay the cost of continuous monitoring. Most of the time, it pays off. In
order to construct the watchdog procedure, we must find a way to detect the potential for
deadlock well before it happens, so that we can prevent any action which might move the
system into a state from which it could be forced into deadlock.

We define the system state ( or, better, part of it, but it's the part we're interested
in here ) as a list of active processes and the resources which they hold. The state will



change from time to time as the processes start and stop, and acquire or release resources.
Each state change is initiated by a request from a process, but only completed when the
system responds to the request, so we can control the movement of the system among its
possible states by deciding whether or not to grant a request for a resource. Requests to
release resources are always safe, so we'll always accept them, but requests for resource
allocation must be handled with more care.

What we're trying to do is avoid states in which requests for resources can fall into
the pattern of deadlock. To do so, we must first identify the states in question, then devise
a strategy which ensures that the system won't get into them. As we don't know what the
sequence of requests will be, we have to play safe, and only permit allocations which
result in transitions to states which must be safe under all possible circumstances. ( The
"give-all-the-resources-at-once" strategy does the same thing by ensuring that, once a
process has started, there won't be any requests; now we're trying to be rather more
flexible. )

In fact, as it's stated above, the problem is impossible to solve. If we know nothing
about the processes beforehand, it could be that every process we start will immediately
request twice as much of every resource as we have, so that deadlock is inevitable. We
must therefore have some prior information; when giving each process all the resources it
required right at the start, we had to know the upper limits to the demands, so perhaps
that's a reasonable constraint here too. We can still not know the really critical
information – that's the sequence of requests at all times – but if we know the maxima
then we also know that in some circumstances ( when it already has its maximum
demand for resource X ) a process won't ask for any more X. That's the trick which
makes the method work.

Coming back to the problem, then, we want to make sure that a request for a
resource is only granted if we are certain that the state of the system after granting the
request will be safe. What does that mean ? We identify unsafe states as states from
which there is any possible sequence of requests that would lead to deadlock, and we
make sure that the new state is not one of those.

AN EXAMPLE.

Think of a model of the system in which each action which allocates or releases a resource
marks a transition from one state to another. Then we can identify the state of a system by
listing the amount of resource of each type held by each process. For example, suppose
we have two processes, P and Q, and two resources, R and S. Then we could describe a
system state as a combination of the states of the two processes by writing something like

P has ( 3R, 2S ); Q has ( 0R, 1S ) .

That notation can obviously be extended to describe systems with any number of
processes and resources.

Suppose the system owns three R resources and four S resources; then we can
enumerate all imaginable states of a process from ( 0R,  0S ) to ( 3R,  4S ). It might be
that for some process we know that the maximum demand is ( 2R,  1S ), so that not all
the states are relevant for that process; that doesn't matter for the moment, but we'll come
back to maximum demands later.

We can also enumerate all conceivable states of a system by combining all the
imaginable states of all the processes in all possible ways. Some of these conceivable
states are obviously absurd, as they allocate more of some resource than the system owns;
but it's convenient to keep them there for the time being.

What sorts of state transition are possible in this system ? One can imagine all
manner of elaborate changes, but any change can always be thought of as a sequence of
single allocations and releases concerning individual processes and individual resources,
so we can reasonably suppose that the state described above can change in exactly seven
ways so far as the conceivable system states are concerned – though there might in reality
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be fewer possibilities because some of the conceivable states aren't attainable in practice,
or the actual requirement of a process for some resource might be less than that allocated
to it in some of the configurations.

Now, that representation of the system state turns out to be rather inconvenient for
our purposes, because to draw the state transitions conveniently we would need four
dimensions. Alternatively, and more conveniently for our immediate purposes, we can
write a description which emphasises the resources :

R belongs to [ P 3 ,  Q 0 ]; S belongs to [ P 2 ,  Q 1 ].

The two descriptions are obviously precisely equivalent. ( These notations, like the
vocabulary we are using, are in no sense standard; we've made them up. ) This
description is more convenient because it collects into one place all resources of one type,
so we can see them all together. The state transitions now look like a sequence of
changes, each affecting exactly one of the resources; in the discussion which follows, we
shall consider only a single resource, so remember that in reality the same arguments
should be applied to all resources in the system. It should be clear, though, that the
separate arguments are independent, so we won't be cheating in any way.

Consider, then, the resource R. We are supposing that there are just three R
resources in the system, so this table describes all conceivable R allocations and
transitions :

[ P3, Q0 ]           [ P3, Q1 ]           [ P3, Q2 ]           [ P3, Q3 ]

[ P2, Q0 ]           [ P2, Q1 ]           [ P2, Q2 ]           [ P2, Q3 ]

[ P1, Q0 ]           [ P1, Q1 ]           [ P1, Q2 ]           [ P1, Q3 ]

[ P0, Q0 ]           [ P0, Q1 ]           [ P0, Q2 ]           [ P0, Q3 ]

We have seen that there are two reasons why some of these states might be
inaccessible. First, all the states [ Pn,  Qm ] with n + m > 3 are unattainable , because
there is insufficient resource to satisfy both process's demands. For the second reason,
we need more information : we shall assume that the maximum demands of P and Q for
the R resource are 3 and 2 units respectively. Now the states [ Pn,  Q3 ] are irrelevant,
because they will never be needed; further, we can forget about any transitions involving
these states, because they will never be attempted. Here's the diagram with unattainable
and irrelevant states marked, and forgettable transitions forgotten :

[ P3, Q0 ]           [ P3, Q1 ]           [ P3, Q2 ]           [ P3, Q3 ]

[ P2, Q0 ]           [ P2, Q1 ]           [ P2, Q2 ]           [ P2, Q3 ]

[ P1, Q0 ]           [ P1, Q1 ]           [ P1, Q2 ]           [ P1, Q3 ]

[ P0, Q0 ]           [ P0, Q1 ]           [ P0, Q2 ]           [ P0, Q3 ]

Irrelevant :

Unattainable :

P can finish

Q can finish



Our deadlock problems occur because the processes don't know that some states are
unattainable, and they try to make transitions into these states. Examples of such
impossible transitions are from [ P2 ,  Q1 ] and [  P1 ,  Q2 ] to [  P2 ,  Q2 ].  In either
case, the process requesting the transition would have to be suspended. Because these
transitions could be requested, both [ P2 ,  Q1 ] and [ P1 ,  Q2 ] are potentially in some
sense perilous; but in fact only one of them is necessarily dangerous. Consider what
happens next in the two cases.

From [  P1 ,  Q2  ] , P has requested another unit of R, and is therefore suspended. The
next move must therefore come from Q; but as Q already has its maximum
requirement for R, the next transition must be to [ P1 ,  Q1 ], which is necessarily
possible. This position is safe, at least so far as resource R is concerned – though
that demonstration alone doesn't prove it. The condition for safety is that there
should be a way to finish off all the processes, one by one. Here, we can give Q its
full requirement of resource ( as it happens, Q already has its maximum
requirement ), so if we just stop P altogether for a while we can finish Q
( assuming that there is no complication from any other resource ). Then all Q' s
resource becomes available for P, which will then be able to finish. In fact, the
diagram shows us that we are bound to do something rather like that, for the only
attainable system state in which P can have 3 units of R is [ P3 ,  Q0 ]. In a more
complicated situation with several processes, being able to finish one process is not
a guarantee that the others are not deadlocked – so there has to be an identifiable
sequence in which all the processes are demonstrably finishable.

From [  P2 ,  Q1  ] , P has requested another unit of R, and is therefore suspended. The
next move must therefore come from Q; but now Q has less than its maximum
requirement for R, so we don't know whether the next request will be to release R,
leading to [ P2 ,  Q0 ], and at least possible safety, or to allocate more R, leading to
the unattainable state [ P2 ,  Q2 ], suspension of Q, and deadlock. [ P2 ,  Q1 ] is
therefore an unsafe state. Notice that we cannot assert that [ P2 ,  Q0 ] is absolutely
safe : we have no information on what's happening with the S resource. If the
"safe" strategy from [ P2 ,  Q0 ] is to finish off P first, and P's next request is for
an S resource, and Q is holding all the S resource, then the overall state is unsafe.
The system as a whole is only in a safe state if the safety condition is satisfied for
every resource and all possible sequences of resource requests by all processes.

The point of the argument is that, although we don't know what the actual sequence of
requests for R will be, it is possible that from [ P2 ,  Q1 ] both processes' next requests
will be for more R. More generally, a state is certainly unsafe if it is both attainable and
relevant, but there is an adjacent unattainable and relevant state for every process
concerned.

That's about as far as we can show the argument in terms of diagrams.
Unfortunately, the true situation is rather worse than that. Consider a similar system in
which both P and Q may require up to three units of R.  Now [  P1 ,  Q1 ] is unsafe –
because the next two requests of both P and Q might all be for more R. The general rule is
that

a state is unsafe if there is any possible sequence of
requests for some resource which will drive it into an

unattainable state, and these requests cannot be
reordered to avoid the unattainable state by

suspending processes.

There is no easy way to tell whether a state is safe or not – and the problem is not
made any easier if we have to take account of several resources, when we have to be able
to satisfy the same process's requirements simultaneously for each. It's no good saying
that resource R is safe because Q can finish, followed by P, and that resource S is safe
because P can finish, followed by Q. The only known technique is to search for a
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possible completion sequence, and that is an expensive operation. Nothing can be done
beforehand, as the computation depends on knowing all the current processes' maximum
demands for resources, and therefore changes every time a new process is started.

THE BANKER'S ALGORITHM.

This algorithm, introduced by E.W. Dijkstra in 1965, uses the method just described as
the basis of a technique for avoiding deadlock. The principle is simple : on receiving a
process's request for a resource, suppose that the request is granted, then check the
resulting state for safety, and refuse the request if the state would be unsafe. To perform
the check :

repeat until no more processes can be finished :
first search for a process which can be given all its

resources and can therefore finish;
return all that process's resources to the system, and

suppose it has gone away.

If all the processes have gone, that was a safe state; otherwise, it was unsafe.

The algorithm is reliable, but it's expensive. You have to run it every time you
allocate any of the resources it controls; and it has to cover all the processes in the system.
It's less pessimistic than the deadlock prevention methods, but, being based on a
process's maximum demand, is still unrealistically cautious. It gains over the more
conservative methods in that, even though processes' maximum demands are taken into
account, they need not all be satisfied simultaneously.

It's worth asking, too, for what resources it can sensibly be used. It was designed
for systems in which a process's requirements could be summed up in a list such as "two
card readers, four tape drives, and two printers"; it works best ( or least badly ) when
there are a few processes and a few discrete resources, typically hardware units of some
sort. There are very few, if any, computer systems nowadays which conform to that
pattern. The Banker's Algorithm remains instructive and interesting, but it might no
longer be very useful.

– so far as computing alone is concerned. But many computers nowadays are not
alone. We remarked at the beginning of the chapter that the phenomenon of deadlock was
also found in traffic engineering – and computers are now used to control traffic light
systems. Deadlock happens in materials transport operations in manufacturing
processes – also controlled by computers. We must therefore still be aware of deadlock
in designing computer systems which deal with such areas of application. Deadlock is a
possibility in any system in which several entities compete for a finite resource ( as cars
compete for space on the road ), and for these cases the Banker's Algorithm might still be
useful.

COPING WITH DEADLOCK.

We have seen that there are ways to prevent or to avoid deadlock, but that these are
expensive to run, and typically very cautious in allocating resources. If we want an
absolute guarantee that an operating system will never deadlock, we will be forced to use
something of the sort – but most operating systems don't, and most of the time they get
away with it. This is at least partly because of the change in pattern of computing
generally, which we noticed when discussing the Banker's Algorithm : internal and
external memory is comparatively cheap; no one nowadays expects to monopolise a disc
drive, except for the little hard and floppy disc drives which are so cheap that we can have
one or more each; everybody has a screen and keyboard, so there's no contention for
input and output devices – and so on.

Of course, a system which doesn't take any measures against deadlock is likely to
be stricken with it from time to time, so should provide means to deal with it when it
happens. This cannot be done painlessly – if it could, it wouldn't be deadlock – and at



the very least some process requesting a resource must suffer. On the other hand, except
for the victim, the pain need not always be great. Consider this ( quite imaginary )
baroque deadlock of seven processes and five resources, each considered to be a device
type :

PROCESS TABLE DEVICE TABLE

Process Owns Awaiting Device How
many

Owned
by

A 1 4 1 2 A, D
B 2 1 2 4 B, C, E,

F
C 2, 3 5 3 3 C, D, G
D 1, 3, 5 2 4 1 E
E 2, 4 5 5 3 D, F, G
F 2, 5 1
G 3, 5 2

( The device table is provided for convenience; it contains no information not available
from the process table and the assertion of deadlock, but it's a lot easier to see in that
form. )

You can use this information to draw a process-resource graph, which shows
which processes require which resources, and how the resources are distributed between
the processes. The system is deadlocked if there is a closed cycle in the graph – so, in
this example, D requires 2, which is owned by C, which requires 5, which is owned by
D ( and there are many other cycles as well ). That's easy to do on this little example, but
with a large processor, many processes, and many resources, it can take quite a long
time. Even then, "easy" is relative. Suppose that one of the type 5 devices were owned by
another process, say H. The difference to the table is tiny, but provided that H will
eventually finish the deadlock is broken. How easy is it to tell the difference ? Some large
systems do look for deadlocks every so often, but not too frequently. Others don't; they
trust to luck, or hope that operators will notice deadlocks, or that people using the system
interactively will get fed up of waiting and stop their programmes.

1

2

3

4

5

Devices

A

B

C

D

E

F

G

Processes

1

2

3

4

5

Devices
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An interesting feature of the diagram is that no process is waiting
for device 3, so in fact it contributes nothing to the deadlock. We
leave it there for old time's sake; we had been using this example
of deadlock for several years but never noticed that device 3 was
unnecessary until we drew the diagram. In fact and hindsight, it's
obvious enough ( just check the "Awaiting" column in the process
table ), but it does make the point that it's hard to see what's going
on without some sort of systematic search.

DETECTING DEADLOCK.

The process-resource graph – or a more abstract representation thereof – is the basis of
deadlock detection methods. Here's a simple example of a deadlocked state :

Resource 1

Resource 2Process B

Process A

Request

Request

Allocation
Allocation



Making an allocation reverses the direction of the arrow, so if there had been a cycle the
operation destroys it. Here's a sequence of requests and allocations which doesn't lead to
a deadlock to illustrate :

It works for abstract ( consumable ) resources too :

Resource 1

Resource 2Process B

Process A

Request

Request

Allocation
Producer

Once you find a deadlock, then what ? An interesting property of this deadlock,
and of most others, is its fragility. If by some means any one of the deadlocked
processes can be completed – or, equivalently, stopped – so that its resources become
available, then the whole deadlock is broken. That's obviously true for a deadlock
described by a single closed loop in the graph, but it's also often true of much more
complicated patterns of dependence. There is therefore a good chance that by killing off
one process, all will be made well. Which process shall we choose ? None of them is at
fault; all are trying to complete perfectly legitimate requests for resources. There is rarely
sufficient information available to make a sensible choice, unless all the processes are
your own. One simple answer has the merit of equal treatment : restart all the processes,
and hope that the deadlock – which might only happen with a small proportion of the
possible sequences of resource requests – doesn't happen this time. Unfortunately, not
all processes can sensibly be restarted from scratch; any process which significantly
changes the state of the system in a way which survives the restart might behave
differently next time round, and there is no way to identify the unrestartable processes.
An equally democratic approach is to kill off a process chosen at random, and to keep
doing so until the deadlock is clear.

AN UNRESTARTABLE PROCESS : In the days before disc space
was cheap and plentiful, the university used a Cobol system called

StubolM A N 6 to provide service to a Cobol course offered by the
Accountancy Department. Stubol included its own simplified file
system, held on tape and brought onto the disc student by student

as required. To make this work, the files were stored on the tape in
order of student number, and the jobs – submitted as batches of

punched cards – were sorted ( on the disc ) before the Cobol
execution began. In any Stubol run, two tape files were open, one
being read to retrieve the stored files, and one being written with

the files to be carried on. To make sure that the tapes were
properly identified, each had a header containing a serial number,
and Stubol's first job was to read the two tapes, identify that with
the higher serial number as the input tape, and write a new header

with the next serial number onto the other ready for use as an
output tape. The run could then start. But if something went wrong
( with the operating system – Stubol itself was quite reliable ) part

way through, an attempt to restart the run would read the new
serial numbers, choose what was the new partly written tape as the
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input, and proceed to overwrite the other tape, thus destroying the
real input. The result was that people with low student numbers
had their jobs executed twice, which probably made nonsense of

their files, while those with higher numbers lost any files they used
to have. We finally fixed it by threatening the operators with public

torture and slow execution if they forgot their instructions and
restarted Stubol just once more .....

PROVING NO DEADLOCK.

In special cases, it might be possible to prove that deadlock cannot occur in a system. To
do so, as should be clear from the preceding discussion, we must know a great deal about
what's going on in the system – and, in particular, we need information about the precise
sequence of resource requests made by each process. In a general-purpose system, this
information is simply not available; but in some special systems where only a few known
processes are ever executed, it might be possible. Real-time control systems are prime
examples. The sequence of operations is also affected by the nature of the interactions
between processes, and particularly any synchronisation requirements. Here, highly
structured synchronising primitives, such as the Ada rendezvous, give more information
than simple mechanisms like semaphores.

ERADICATING DEADLOCK.

If you can't guarantee no deadlock, at least you can try to find the sources of deadlock
individually, and deal with them one by one : so any way to make sure they're identified
and reported when the system is developed is at least potentially useful. One interesting
approachMAN4, particularly effective for the abstract resources like locks, is based on the
deadlock prevention idea of imposing a standard order on resources. Each resource to be
investigated is given a priority number which determines the desired order. Any departure
from the strict stack-like order of acquisition and release of resources is reported, and
investigated as an error. The priorities are not explicitly used during execution; the aim is
to develop a programme in which the conflicts will not occur.

COMPARE :

Lane and MooneyINT3 : Sections 7.4, 21.4 ( on virtual devices ); Silberschatz and
GalvinINT4 : Chapter 7.
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–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

QUESTIONS.

How would you classify preemption as a technique for preventing
deadlock ?

Experiment with some resource demand patterns and the Banker's
Algorithm. Find a case where you can complete some processes but not all.
Experiment with multiple resources.

Work through the Banker's Algorithm for two different resources, A and B.



Look at some unsafe states, and try to guess the probability of deadlock
actually happening. ( You have no chance of getting a sensible answer
without some idea of the behaviour of the running processes, but you can
explore possibilities. )

Is it ever possible to give "an absolute guarantee that an operating system
will never deadlock" ? Consider all sorts of resource that can lead to
deadlock.

Deadlock is infectious. Suggest how the deadlocked example described by the
tables given could have developed.

A true story : Once upon a time ( July, 1991 ) someone brought one of us a
file on a Macintosh disc. We looked at it on a Macintosh ( running system 6 )
using Microsoft Word, discussed it for a while, and finally printed it. Then
the visitor went away, taking his disc with him – but leaving the file still
open in Word. Trouble started on trying to close it. "Insert disc Whatever",
said the Macintosh. The disc had gone. Never mind – Apple have thought

of that, and you can cancel the request using the  and . keys, they say. Can
you ? No, you can't. "Serious problem with file Thingummy", said Word, in
an alert box. Click the "OK" button. "Insert disc Whatever", said the
Macintosh. It was eventually necessary to restart the system. Questions : Is
that deadlock ? How did it happen ? How could it have been avoided ?
What should have happened ?
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