
Support for execution : page 1.

SCHEDULING IN ACTION

So far in this section we have mentioned seven aims of scheduling, five levels, and at
least four operating modes. Here we try to point out how policies and actions
implemented at four of the different levels can assist in attaining the overall aims. We've
omitted the interrupt level, because it allows us very little room for manœuvre. The single
relevant principle at this level is : KEEP ALL INTERRUPT PROCEDURES AS SHORT
AS POSSIBLE. Generally, if an interrupt signals that a lot of work is to be done, the
interrupt handler should delegate the work to a conventional process, and spend as little
time as possible setting up the process before returning from the interrupt.

There is a fundamental problem with scheduling which in principle makes the whole
idea impossible : every action we take to improve the system's performance is based on
the assumption that we can foretell the future, so we know what the consequences of the
action will be. In practice, it is only in rather specialised cases that we know what a
programme is supposed to do, let alone what it actually will do. Fortunately, we can often
make a reasonably good guess at what will happen; we can guess what resources a
programme will need when executed from our knowledge of what it's supposed to do this
time and its previous performance, and on a smaller time scale we can assume that a
process will do much the same thing next time slice as it did in the previous one, but there
is always a degree of uncertainty.

In many of the cases we discuss below, there are several answers, depending on
just how the computer is – or the computers are – being used. The requirements of batch
and interactive work are different, and the performance of systems operating these
different regimes is optimised in different ways. Further, it is not necessarily the case that
everything happens inside one computer. What if instead you have lots of computers ?
You could, for example, have a laboratory full of isolated microcomputers, or a
distributed system with a lot of computers connected by a network. What sort of
scheduling do you need then ? This question is important in several cases, some of which
we shall mention in the short review which follows. If the answers don't always sound
much like scheduling, recall that we defined it as deciding who can do what when.

Here are some remarks on some points of interest in some of the possible
combinations of circumstances found in practice. We have attempted to classify the
comments according to three sorts of system characteristic which we have already
mentioned in the chapter SCHEDULING : WHO CAN DO WHAT, AND WHEN : we
called them the system's aims, levels, and modes. Despite this attempt at breadth, we
should warn that our treatment is not intended as an exhaustive discussion. Consider it
rather as an indication of the variety of techniques which can be used to improve
performance, and also as a reminder of the complexity of the system to be improved.
Notice as you read that many of the policies are double-edged; while they help to achieve
one of the aims, they might hinder others. Perhaps the best known example is the conflict
between keeping machinery in use and providing instant service in an interactive system.
Because of these complex interactions, any large operating system is a collection of
compromises which we hope will result in acceptable performance under all relevant
headings.

AIM : KEEP THE MACHINERY GOING.

If something isn't being used, try to use it. With the current comparatively low hardware
costs, this aim is much less important than it used to be, but it is still sensible to do work
when you can.

Administration : Aim for a balanced configuration – make sure that you have enough
memory, disc channels, etc. to serve the processing load you want. Statistics of the
numbers and types of job which have been run in the past are valuable in
determining good values for the various system parameters. (Batch) Set
characteristics of job queues to facilitate the actions of the long and low-level
schedulers. (Interactive) Make sure that you have enough memory, disc
channels, network capacity, etc. to serve the peak load reasonably well; look for

ways to persuade people to move their work from peak to off-peak times.
(Isolated) Select booking and usage policies to ensure that idle machines can
always be used if there is work which they could do.

High-level : (Batch) Choose jobs to match the demand to the load. All the automatic
decisions depend on knowing what's coming; there's no reliable way of finding that
out by inspecting the submitted jobs, so we have to rely on the jobs' owners telling
us. That's accepted for batch systems, but deemed impracticable for interactive
systems – reasonably enough, for you always know what's involved in a batch job
while an interactive session can develop in ways you didn't really expect when you
began. (Distributed) Move work onto devices which are not being used; optimise
file and processing sites to reduce comparatively slow inter-computer operation
depending on network traffic.

Low-level : (Batch) Schedule processes to match the demand to the load.
(Distributed) Use the network facilities to balance the load over all available
processors.

Dispatcher : Can't do very much directly.

In some cases, it might be impossible to achieve this aim in practice. Even if some facility
of a system isn't being used much, it could nevertheless be necessary to keep it if it is
essential to those who do use it. An administrative stratagem which can help to maintain
the principle of keeping things going, and incidentally increase the cash flow, in such
circumstances is to make it available to a wider community through networking. By this
means, facilities such as databases or specialised hardware (such as supercomputers)
are generally available through the internet to anyone who needs them and can pay
whatever fees might be required.

It is also possible that attempts to make use of idle equipment can turn out to be
counterproductive. A classic example is the attempt to combine batch and interactive
systems. A major difference between batch and interactive systems follows from the lack
of urgency in the batch system. Unlike the interactive system, it can plan ahead and
attempt to optimise the flow of work through the system by carefully scheduling jobs,
taking into account their different characteristics. An interactive system, in contrast, must
respond instantly to instructions from those using it, so cannot plan ahead; in
consequence, it must underuse its resources most of the time if it is to be able to cope with
sudden changes in demand without serious degradation. In a mixed system, these
strategies conflict. Unless measures to the contrary are taken, the system cannot benefit
from the characteristics of the batch stream because its careful scheduling might at any
time be upset by unexpected demands from the interactive work; while the resources
available to the interactive stream are limited by the demands of the batch work.

AIM : KEEP THE SPEED UP.

Administration : Don't overload the system. Set limits on the number of things going
on at once, by (batch) setting parameters in the high-level scheduler or
(interactive) not trying to run too many terminals. (That doesn't work as well as
it used to, now that many operating systems are quite happy for people to run
multiple processes in one way or another, but in practice most people stick to fairly
straightforward computation so acute problems rarely arise.) (Network) Cut
down time delays for network services; many devices (such as printers), network
spooling, faster network.

High-level : (Batch) The high-level scheduler controls the overall traffic flow
through the system. It must monitor parameters of jobs as they are presented, and
only accept work which can reasonably be run soon. Minor errors of judgment are
rarely very significant, as processes are still under fine control of the low-level
scheduler, but a job once accepted begins to take up space in the system queues and
time for the low-level scheduler.

Low-level : (Batch) Suspend, or don't reschedule, processes if there are signs of
overloading.

Support for execution : page 3.

Dispatcher : The dispatcher might run many times in every second, so the most useful
thing it can do is very little. When designing an operating system, it's possible to
think of all sorts of useful and interesting things that could be put into the
dispatcher, but on analysis very few of them return enough benefit to justify the
time spent on the computation.

The major technique is to attempt less so that you can do more; the aim is to avoid
congestion and interference between different processes and the system. Of course, if too
little is going on, we aren't keeping the machine going, and resources are wasted. There
is evidently an optimum workload, but it is very hard to determine.

In a multiprocessor system, you have an additional degree of freedom : if you have
spare processors, you can give anyone more than one if it's useful to do so. This works
both with tightly and loosely coupled systems, though the programme organisations
appropriate are different in the two cases.

AIM : AVOID UNNECESSARY WAITING.

Administration : Tell people what's going on, so that they can schedule their own
work sensibly. (For example, give long lead times for students' assignments so
that they can schedule their work to avoid congested periods.) Publicise
maintenance times and breakdowns, and the system load throughout the day. (No,
we know you don't schedule breakdowns, but if anything serious does go wrong
you can try to inform people as soon as possible.) Keep track of performance,
acquire more, or better, machinery when loads become heavy. If your system is
very heavily laden, you can use differential charging to encourage, or some sort of
privilege structure to force, people to work at unpopular times. Priority structures
associated with different classes of work can control who has to wait when there's a
conflict; just whose waiting is more unnecessary than whose is a management
decision.

High-level : (Batch) Try not to accept jobs known to rely on heavily laden
resources – not always easy, because many systems run a lot of jobs which are
automatically scheduled, where it doesn't make much sense to say "Not now, come
back later". (Interactive) Make sure that the system gives sensible responses to
requests for unavailable resources – ask whether the process should be stopped or
queued. (Isolated) The booking system again. (Well, it's all we have.)
Discourage "just in case" bookings which might never be taken up, but which force
other people to make later bookings than they had wanted.

Low-level : There are ways to ensure that tasks of low priority don't wait for too long.
A common method is to increase the priority of every waiting process from time to
time, so that even a low priority process will eventually gain enough priority to be
executed.

Dispatcher : Use a policy which guarantees to avoid starvation; policies which take a
process from every queue once every N cycles, where N might be different for
different queues but is always finite, are better than policies which only inspect
certain queues when other queues are empty. (But recall our earlier remarks on
clever dispatchers.)

In a single-processor multiprogrammed system, a lot of work is always waiting. The trick
is to identify unnecessary waiting, and do something about it. Unnecessary waiting is
hard to define; we've identified it here as any waiting for a resource which either the
operating system or the person using the system knows, or could know, to be
unavailable, or as waiting longer than necessary because of misleading information, or as
starvation.

There might in addition be degrees of necessity, as suggested in the note on
Administration. Some of this is inevitably associated with the idea of job classes – if you

have a class intended for short, fast jobs, it is reasonable enough to give jobs in this class
priority.

AIM : BE SEEN TO BE FAIR.

Administration : Be open. Provide information on how the system runs, who can do
what, and when, and so on. Explain any temporary changes, and what their effects
will be. Do not impose policies which you can't enforce, or which can be
circumvented by people with intimate knowledge of the system, or low cunning.
(Everything but batch) If you have too few terminals or computers for the people
who want to use them, then you have to institute some scheme for rationing and
booking. This is what we do in our laboratories. What we want to do is make sure
that everyone who needs computer services for our courses has access to whatever
is required, and we try to do it by providing a booking system. It's far from perfect.
What we should also try to do is make sure that people can't use too much time,
thereby keeping others away, and that they only do work connected with their
courses in the Computer Science department – but that's harder.

High-level, Low-level : Nothing very specific. Queues should be ordinary queues
throughout, not bypassed except in justifiable and well defined circumstances. The
important thing is to implement the rules as publicised – so if you claim that, say,
intensive processing jobs will be penalised, make sure that it happens, and that there
is no loophole. Priorities, if any, should be seen to be observed – but note the
earlier remarks on making sure that even low priority processes will be run
sometime.

Dispatcher : Implement a priority mechanism (for example, using a multiple-queue
dispatcher) which can penalise processes which don't fit in with the system's
aims. For example, a process which is slowing down interactive response by using
the processor intensively can be slowed – or, in a batch system, encouraged !

Fairness is a system-wide principle, much of which has to be implemented outside the
schedulers. It starts with administrative decisions about how the system will be run, but
these have to be reflected in the software. Experience suggests that most people will
accept reasonable policies, given reasonable explanations, but that – sadly – some won't
let that cramp their style if they can find ways of getting round restrictions. It is therefore
unwise to promulgate rules which you can't enforce in the system hardware or software.

Two examples, from the history of this university :

With the reasonable enough intention of keeping as
many people happy as possible, and of clearing as

many bodies as possible out of the immediate
vicinity of the computer system, the Tops-10

operating system printer software would choose the
shortest file from its queue to print first. This was
very pleasant if your file was short. If, on the other

hand, your file was 100 lines long (normally
considered a short file) but you tried to print it on
the day before the deadline for a large programming
class's assignment requiring a programme listing of

about 50 lines, a simple first-come, first-served
queueing discipline suddenly became very attractive.
(Or, of course, you could spend a little time splitting
up your long file into several short ones, which made
nonsense of the intention of the queueing discipline

and in fact created yet more congestion.)

When terminals for the IBM4341 machine first began
to appear around the university in buildings other

than the Computer Centre, they were typically
collected in clusters of several terminals and a

Support for execution : page 5.

printer. Early experience showed that the printers
associated with the clusters, which were reliable but

rather slow, could very easily build up queues of
work which would take hours to print. It was

therefore decided that file of more than 1000 lines
were not to be printed on the remote printers, a rule

to that effect was promulgated, and the locally
written command file used for printing files amended
to check the file length and take appropriate action.

Unfortunately, it was impossible to hide the
operating system's own printing software, so anyone
willing to put in the additional effort needed to use
that could circumvent the regulation quite easily.

AIM : KEEP EVERYTHING MOVING.

Administration, High-level, Low-level, Dispatcher : Nothing special – covered by earlier
requirements.

An important extension of this principle is to make sure that people using the system can
tell that things are happening; a batch system can display the current system state, and an
interactive system can provide ways to find out what each currently active programme is
doing. (Batch) Keep the system going; it doesn't matter if individual processes are
suspended for a minute or two. (Interactive) Keep every process going – that's much
harder. (Systems involving people) Pay special attention to popular times for moving
about – particularly hours and half-hours, and ends of bookable periods. At these times
there is a sudden increase in demand for whatever facilities are used for logging in and
out, booking, and printing.

AIM : BE RELIABLE.

Administration, High-level, Low-level, Dispatcher : Nothing special – everything must
be designed to cope satisfactorily with overload, and as well as possible with
breakdown.

Again, not restricted to the schedulers. It is essential that people know that if they submit
a job to the system then either it will be completed as expected, or that they will be told
what happened. (Silly jokey boxes showing pictures of bombs or beetles and messages
saying "System error" are symptoms of incompetence; when accompanied by buttons
labelled "Resume" which you can rarely, if ever, use, they indicate a degree of arrogance
and contempt for "users" which should be actionable.) If people don't have confidence
in the system, they are likely to try again if it doesn't respond as they think it should –
which, in an interactive system which is merely running slowly rather than faultily, might
make congestion even worse. Notice that this brings us back to the "system genie" again;
if people have a clear model of the system, and it always works, then they're more likely
to be patient if it sometimes runs slowly. (Distributed) Make sure that the network is as
reliable as the computers which it connects. (Or, in some cases, vice versa.) (Systems
involving people) Don't forget that the booking system has to be reliable too.

AIM : AVOID SUDDEN CHANGES.

Administration, High-level, Low-level, Dispatcher : Nothing special.

Again, not restricted to the schedulers. Typically, the sudden changes happen when a
process suddenly begins to make large demands for resources. (Batch) If you know
that the process might need a lot of resource, then make sure there's plenty available
before you schedule it. More commonly, though, you can't predict the request, and when
it happens the process is (obviously) already running.

SCHEDULING AND PEOPLE.

If you look back at our classification of the seven scheduling aims (in KEEPING THE
SYSTEM RUNNING SMOOTHLY) and compare it with the remarks above, you will
observe that we have given fairly plausible suggestions for the three aims concerned with
maximising the work done, but have done much less well in recommending how to keep
the people happy. All we can say to that is that no one else knows how to do it either. It is
not too hard to satisfy both requirements reasonably well with a batch system, where
people do not expect instant service, but with any sort of interactive system it seems to be
impossible. The best approach seems to be to spend a very large amount of money so that
everyone can have a very big, very fast machine. This policy runs counter to the unstated,
but understood, aim of not going bankrupt.

There are two reasons for this difficulty, both firmly rooted in the people side.
First, many people seem always to want just a little more than they have, so live in a
chronic state of dissatisfaction. Short of prescribing a course in basic philosophy, we
can't do much about that. Second, although we said that in interactive systems there was
no equivalent to a low-level scheduler, in practice there is indeed a low-level scheduler,
but it lives in the person rather than the computer, and is therefore unfortunately outside
our control. It is this scheduler which can severely reduce the work done by a computer
system by scheduling thinking time or coffee time or chatting time or dreaming time or
(in extreme cases) sleeping time. Such activities are a nuisance in a shared system; they
can be a serious drain on a system's resources, and are not uncommon when people have
to book time in fixed slots but run out of things to do before the end of the booked period.
Thinking time is fair enough if the broader system including the person as well is doing
something productive, but it's impossible to distinguish from the others automatically, so
we can't compensate for bad scheduling at this level elsewhere in the system.

–––

QUESTIONS.

We remarked on the clash between batch and interactive operation when
the two are combined. In designing such a combined system, it is proposed
to reserve a certain area of memory for the sole use of interactive processes,
and allow them access on request to the disc and processor, with all other
equipment in the system – other than terminals – accessible only from batch
processes. Would that help ? Why (not) ?

How would you expect the performance of a single combined (batch and
interactive) system to compare with that of two identical computers,
together equivalent in computing power to the single computer, with one
computer reserved wholly for batch work and one for interactive work. ?

How could you improve our laboratory booking system to make it easier for
everyone to get a fair share of the facilities ?

In a university computing laboratory, students are allocated a certain
amount of time for each course which they are taking. It is observed that
there are occasions when students who would like to use the computer for
legitimate educational purposes, but have used up all their time, have to
remain idle while there are terminals (or microprocessors, or whatever)
also lying idle. What sort of scheduling system can you devise which would
allow the impoverished students to use the computer in slack periods ?

–––

