
Support for execution : page 1.

THE SYSTEM CLOCK

This is a very short chapter. There are several reasons for the brevity, but perhaps the
most significant is that the clock is not a part of the operating system at all. We include it
here because we have already mentioned the clock twice, and because we shall want to
say more about it in the next chapter. The clock is an essential component of a system
which must meet any form of time constraint, but if it is to work properly it must be quite
independent of the rest of the system – another, this time symbolic, reason for the
separate chapter.

Most processors with any pretensions to greatness incorporate a system clock. This
is an electronic circuit which counts signals from the processor clock, an independent
oscillator, or some other reliable source, and, among other things, causes a processor
interrupt every now and then. Its most important feature is that it keeps running no matter
what the processor is doing. Indeed, it is not unreasonable to think of it as a second
processor, with the unusual characteristic of not being able to execute any process except
measuring the elapsed time. Its importance comes from the principle we have emphasised
from time to time right from the beginning : that a processor, once running, can either
execute code or break down. If it's broken down, we've lost control anyway; if it's
executing code, it will go on executing its current code stream until it has to stop, which,
in a (deliberate or accidental) tight loop, could be for ever. If we want to ensure that
this won't happen, we must provide an independent entity in the system which can take
action to divert the processor to some other code from time to time.

This is the function of the clock, and it is (necessarily ?) implemented by
providing a clock interrupt. This is emitted by the clock from time to time, and, in the
usual way of interrupts, redirects the processor to some interrupt-handling code belonging
to the system. This gives the system an opportunity to decide what to do next; if all is
well, it can return to the interrupted code and carry on, or there might be reasons for
suspending that activity for a while and attending to some other code. It therefore solves
the problem mentioned in the DISPATCHERS chapter of ejecting a process from the
processor; it gives an opportunity to attend to any tasks which must be performed
periodically; and – particularly important for process management – it is the basis of a
method for giving different processes a fair share of the processor. When a process is
dispatched, it can now expect only a limited clear run on the processor; this is commonly
called the process's time-slice.

There is only one more thing to say about the clock. We have said that the clock
emits an interrupt "from time to time"; what determines the time ? The answer is that
either the time interval between interrupts is fixed by the hardware, or that the interval can
be set from the processor. In practice it makes little difference; if you want a fixed
interrupt frequency with a variable clock, you don't vary it, while if you want a variable
interrupt frequency with a fixed clock you write your interrupt-handling software to count
interrupts before passing them on to the system. That's a little more overhead from the
system point of view, so the variable clock is to be preferred in principle, but the
difference is small.

COMPARE :

Silberschatz and GalvinINT4 : Section 2.5.4.

–––

