
Support for execution : page 1.

SCHEDULING : WHO CAN DO WHAT, AND WHEN.

Once we have decided on our system configuration and have contrived to get it up and
running, we must take further decisions which will, we hope, ensure that it runs
efficiently. Just what these decisions are depends on the sort of system you have; the
decisions for a timesharing mainframe are quite different from the decisions for a
collection of isolated microcomputers. In addition to those decisions, the system itself has
to take decisions, especially when dealing with time scales too short for people to
manage.

A SUMMARY OF AIMS.

If we're proposing to achieve aims, we had better know what they are. "Providing
computer services to people" is a great slogan, but we have to go into more detail if we
want a set of criteria with which we can evaluate a computer system. Here is a set of
aims, which reflect our stated goals by falling into two groups : a traditional group,
concerned with the machinery, and a rather less traditional group, concerned with people.

Maximise the work done :

• Keep going as much as possible.
• Keep going as fast as possible.
• Avoid unnecessary waiting.

Keep the people happy :

• Be fair.
• Keep everything moving, even if slowly.
• Be reliable, even if slow.
• Avoid sudden changes in behaviour.

The topics are by no means independent – indeed, they affect each other in many ways,
and much of detailed system management is a matter of balancing them against each other.

The result for the system is a spectrum of decisions covering a range of time scales
from years or more to microseconds or less – or, if you prefer it in frequencies, 30 nHz
to 1 MHz. All these decisions can be seen as part of the activity of scheduling. Perhaps
some indication of the significance of scheduling can be gained from this introduction to a
published paperMAN2 :

"In the last thirty years, since the introduction of large-scale
computer services, users have spent a disproportionate amount

of time waiting either for the return of batch output or for
terminal response. For most users, computing is immutably

linked with delays. This paper suggests that most of these delays
are unnecessary. Present scheduling algorithms that queue most
work are inefficient. Proper scheduling and charging mechanisms

would lead to almost all work processed during the day being
processed immediately. Work that is not processed immediately
can be reliably processed to meet a prespecified deadline. Such
systems also provide the management statistics necessary for

the efficient operation of an existing installation and for correct
decisions about investment in new equipment."

TOOLS FOR THE JOB.

While the global view of scheduling can be summarised as determining who can do what,
and when (see the title of the chapter), at the executive level it appears as the task of
responding to a sequence of specific questions from entities of various sorts, at all levels,
which all amount to "Can I do that, now ?". The possible answers are drawn from quite a

small set : yes, no, later, and wait here; they may be augmented by additional tests,
such as pay here, show me your credentials, and (in the case of interrupts) suit
yourself, but the first four are the scheduling decisions proper.

Different answers are appropriate in different contexts (we shall say more about
these later), but in all cases the answer should be that which is best for the present and
future performance of the system. Determining this answer is the essence of scheduling,
and it can be difficult to decide just what it should be. In all cases, the intention is to strike
a balance between accepting work as it is offered and controlling the load at a level which
continues to give acceptable service.

What are the "entities" which make the requests ? It will perhaps not come as a
surprise that they are all quite directly related to our aim of getting work done for people,
with the different levels defined by the way we organise the work. At the highest level we
have the people themselves (or, for that matter, ourselves – and if our assertion that
people take the highest place is regarded as discriminatory, we agree entirely : people are
more important than machines). People organise their work as jobs which have to be
done; they used to be embodied as collections of punched cards, but now are more likely
to be terminal sessions. The jobs, in turn, are commonly composed of tasks, each of
which might require different programmes or files. Each task is executed as a process, or
perhaps several processes. The processes, or services used by the processes, are likely to
generate interrupts, which are not quite as closely tied to the hierarchy of work units as
the others, but are still requests for service.

Because any or all of these entities can, and do,
require scheduling services from time to time, and in
many cases the essentially same system responses
are appropriate, it is convenient to define a term
which can mean any of them, according to context.
We shall use the word "activity" for this purpose
while discussing scheduling; notice, though, that (

like most of the other words for activities) it is used
less rigorously in other contexts.

We remark that this hierarchy is a direct consequence of the way we have chosen to
organise our work; a different sort of organisation would lead to a different structure. The
sorts of organisation which we have used so far seem to fit into this structure reasonably
well, perhaps with bits missed out (examples later), but that doesn't mean that there is
no significantly different organisation which could be handled in a different way. We
don't know of any.

The responses we listed are our only means of controlling the flow of work; they
are the "tools for the job" of the heading above. In constructing the operating system, the
clever trick is knowing which of the possible answers is appropriate as activities request
service. The choice of response always depends on the present or expected availability of
some sort of resource; recall that resource management has always been considered a
primary function of operating systems. Each of the responses is in principle possible at
each of the time scales, given appropriate interpretations of the actions in the case of
administration, though not all are equally sensible. In the table below, we've called all
units of work "requests" for convenience.

Answer Description

Colloquial Formal

No Reject Refuse to accept the request. This is the only
possible response if the required resources aren't

available, and won't be. The dearth of resource can
happen in two ways : either the system does not
have the resources required by the request, or the
requester can't provide the resources (typically

money) required by the system.

Support for execution : page 3.

Wait here Suspend Accept the request, but defer its execution. This
response is appropriate if the required resources
aren't available now, but will be "soon". Devices

might be out of service, operators might be
unavailable, unforeseen demands for memory
might have temporarily overloaded the system.

Later Queue Accept the request, but require it to wait its turn.
This is a possible response if the required resources

are available, but are currently in use.

Yes Run Accept the request, and execute it immediately.
Everything it needs is ready and available.

Of these possible actions, the suspend and queue operations are the tricky ones,
as they are "maybe" decisions; both offer service some time, but not just now, and both
therefore lead to collections of activities waiting for service. Obviously enough, if we
want to provide a functional system, the algorithms we use to provide service must
guarantee that each activity delayed must be served in a finite, and preferably short, time,
but we must still find a way to select the activity which in some sense most deserves a
resource when it becomes available. We shall say more about some of the technical
reasons for giving or withholding service as we discuss the various scheduling levels
further, but there are always criteria of deservingness which cannot be determined
mechanically by the system – urgency of work, special contract arrangements, company
politics, and others even less pleasant to contemplate. These are traditionally taken into
account by associating with each job a numerical value of priority. Priorities might be
associated with individuals or groups through information from the user data file, or they
might be associated with individual jobs entering the system.

PRIORITIES.

In practice, priorities might be initially set in the ways suggested in the previous
paragraph, but once a job is under way they are likely to be changed to reflect the current
state of the system and what the system can determine about the job's characteristics.
Generally, priorities might be determined by resources required, time of day, state of
bank balance, performance while running, or any other factor thought to be important in
deciding the urgency of the activity. The rules are established by the installation manager,
or they are built into the operating system software, or by both methods. The operating
system's contribution to the priority can be set to encourage desirable behaviour, where
the definition of desirable behaviour depends on the environment. Some examples :

• In a university interactive system, there are many interactive users who should all be
treated equally : encourage short interactive operations, discourage extensive
processing.

• In a batch system, priorities are implemented by allocating jobs to appropriate
queues. There are several different scheduler queues for jobs with different
characteristics : discourage lies about characteristics by penalising jobs in
inappropriate queues.

• In a process control system, all processes involved are known beforehand.
Priorities can be set rather precisely to reflect the various processes' urgencies.

• A print server in a network might determine the priorities of print jobs received from
the size of the file to be printed.

Perhaps it is appropriate to sum up that material by adding another "tool for the
job". While this is, at least in part, not directly related to the demands for and availability
of resources, it can make a significant contribution to the effectiveness of the scheduling
system. This response to circumstances is to determine the level of service which the
activity should have by setting or changing its priority. The priority can be set initially

from prior knowledge, and can be changed in the light of the job's behaviour when
running. This is clearly a useful tool with which we can organise the disciplined and
orderly use of the system's resources. That being so, it is unfortunate that, though it's
easy to define priorities, it is by no means as easy to implement them so that the priorities
really are reflected in the processes' shares of the system. We shall say more about this
question in the chapter on DISPATCHERS.

SCHEDULING AND PEOPLE.

While our immediate concern is to decide what operating system features are necessary to
supervise the orderly running of the system, it is appropriate to point out how the people
who use the system are involved. For one thing, of course, they are involved because the
computers are there to provide the people with service – that has been our theme
throughout the course.

In addition to such general considerations, though, people are particularly
significant in scheduling, for at least two reasons. First, the general question of "who can
do what, and when" is necessarily qualified by "who wants to do what, and when"; either
the supply must conform to the demand, or we must also take on the job of finding ways
of shifting the demand to fit the system. Peak usage times are important; and special
times – often hours and half-hours – commonly mark surges of specialised demand
because people change their activities according to the clock.

The second reason for the importance of people in scheduling has become
prominent as the orientation of computer systems has evolved through the stages we
investigated in the HISTORY section. In the early batch systems, people's only function
(apart from operators) was to provide a supply of work to do. With timesharing
systems, in contrast, people began to play a direct part in scheduling by determining
which programmes they wanted to run, and requiring instant service from the system.
Now with window interfaces people can switch from process to process, or thread to
thread within a process, simply by moving a mouse and clicking.

We have mentioned some of these interactions in our descriptions of scheduling
levels below, but it is always useful to bear in mind that scheduling is now very much a
cooperative venture between the operating system and whoever is (or are) using it, in
which it is the function of the system to support the decisions made by the people.

THE SCHEDULING LEVELS.

Here are some notes on five levels of scheduling found in operating systems. They are
not all found in all operating systems, but they are all found in some. This description is
biased towards a typical large shared system, because that shows most of the features in
the description, but the pattern applies, with some modification, over a much wider range
of systems. We comment on some examples after presenting the tables.

Support for execution : page 5.

Level : Administration

Question : Can I use your computer ?

Answer : Yes; No; Pay here; Credentials ?

Manages : People.

Timescale : Days to years.

Decisions : Who may use the machinery, and how much, what work to
support. Allocate resources accordingly.

The system
software
should :

Register new projects; distribute resources; maintain usage
and accounting records; let people query their current
balances.

Needs : Information about people : what sort of work;
creditworthiness; authorisation.

Information about the system : capacity.

System structures : the userdata file, and secure access
thereto.

Description : Essentially manual, with results which must be conveyed to
the operating system.

Nature : Politics.

If you are running your own personal computer, this level doesn't exist, but it has
to be handled somehow in any commercial or organisational system – even if that system
is composed of separate microcomputers. Without communication between the
components of the system, the automatic functions of the userdata system are not
possible, but they can be managed in a distributed system connected by a network.

Level : The high-level scheduler

Question : Can I use your computer now ?

Answer : Yes; No; Later; Wait here.

Manages : Jobs

Timescale : Minutes

Decisions : Which jobs to accept into the system, set priorities.

The system
software
should :

Select jobs from those waiting which are likely to make best
use of the resources currently available.

Needs : Information about policies : decisions from the administrative
level.

Information about the user : privileges, account state.

Information about the system : current state.

Information about the job : resource requirements, priority.

System structures : userdata file, job queues.

Description : Human decisions, implemented by machinery.

Nature : Administration.

Jobs are quite curious entities. So far as the organisation of the work goes, they are
real enough – the pile of punched cards, or the disc file defining a batch job or command
file, or the terminal session, is an identifiable and significant unit of work – but in
computing terms jobs are processes which just happen to be devoted to controlling other
processes instead of doing more obviously directly useful work. For a terminal session,
the job process is executed inside the head of whoever is using the terminal, which (as
we shall see) has its unfortunate side but at least imposes no load on the computer
system. For the punched cards, batch file, or command file (all essentially equivalent)
the position is different; the job process must be executed inside the computer, and it must
persist throughout the time during which the component tasks are active. That caused
problems for early systems without facilities for multiprogramming.

The problems were addressed by, in effect, ignoring the process-like properties of
the job. The (usually) monitor system would simply read one card at a time, or one line
from a command file, and deal with it independently of anything else that might be
happening. The job control languages which developed in this environment were
primitive. The need for some sort of coherence between job steps – for example, to check
that a programme had completed normally or a source programme had compiled without
syntax errors – was first handled by the growth of curious special-purpose flags in the
operating system, set by the event concerned, but liable to be destroyed by the next
system operation. (An example is the Unix shell status variable.)

Most oddly, the same sort of machinery was usually still used when
multiprogramming became common. It certainly wasn't necessary – we saw (in JOB-
CONTROL LANGUAGES) that Burroughs WFL was structured as a high-level
language, and compiled, and it was indeed run as a separate process just as our
description suggests.

Level : The low-level scheduler

Question : Can I run this specific task now ?

Answer : Yes; No; Later; Wait here.

Manages : Tasks.

Timescale : Seconds.

Decisions : Select which queued task to run next.

The system
software
should :

Consider what system resources aren't being used to capacity,
run a process that uses those resources (not very
practicable in an interactive system).

Needs : Information about the system : current state.

Information about the job : associated privileges, priority.

Information about the task : resource requirements.

System structures : the process table.

Description : Fairly automatic, little freedom for decisions : software.

Nature : Middle management ?

We remarked earlier that the levels were defined by the way we organise our work.
One could argue that interactive work is so organised that this level doesn't exist. We
prefer the view that the level does exist, but is executed on a different processor – that is,
the brain of whoever is controlling the job. After all, looking at events from the point of
view of the processor, there's no essential difference between interactive work and a
command file running on a different processor and sending its instruction through a
network. The only significant factor for the system is whether it is required to execute
tasks as soon as possible, or whether it can defer them until better resources are available.

Support for execution : page 7.

However it's done, the low-level scheduler's function is to start a new process. In
terms of the process state diagram (PROCESSES IN ACTION) , the low-level
scheduler manages the transition from Under construction to Runnable. That doesn't
mean that the low-level scheduler is the process construction operation, for processes can
be constructed in other ways. In a system which implements jobs as separate processes,
the high-level scheduler also starts processes, and we saw earlier that processes
themselves can (in some systems) start other processes. The distinguishing feature of
the low-level scheduler is that it institutes a new job step, which is the entity we have
called a task.

Level : Dispatcher

Question : Can I use your processor now ?

Answer : Yes; No; Later; Wait here.

Manages : Processes.

Timescale : Milliseconds.

Decisions : Which ready process should be given an available processor,
and for how long.

The system
software
should :

Maintain records of ready processes; whenever a processor is
available, select a process to run taking into account
order of appearance, priority, recent behaviour.

Needs : Information about the system : what processes are ready.

Information about the processes : priorities, performance.

System structures : the ready queue.

Description : Completely mechanical, soft-firm-hardware.

Nature : Engineering.

The dispatcher manages the runnable state of the process state diagram. We shall
say a lot more about it in the next chapter; for the moment, notice that, as it might have to
run every few milliseconds, it is quite important that it should run very quickly, which
means that it can't be very clever.

Level : Interrupt manager

Question : Can I use your processor now, or else ?

Answer : Suit yourself; No.

Manages : Interrupt requests.

Timescale : Microseconds.

Decisions : None, really. At this level, operation must be essentially
unconditional : the interrupt has to be accepted or
rejected, depending on whether or not interrupts are
inhibited at the moment. A limited amount of queueing is
possible, but long queues of urgent requests don't make
much sense. The action must be taken now, whatever
happens to be going on in the computer.

The system
software
should :

Execute an interrupt procedure in response to an interrupt
request.

Needs : Information about the system : interruptible or not, running
process.

System structures : interrupt vector, running state.

Description : Completely mechanical, hardware.

Nature : Engineering.

Interrupts also merit a chapter to themselves (called INTERRUPTS) . Under
ordinary circumstances, they must be accepted, for they belong to some process which
we have already permitted to run, and we must provide the services required if we are to
maintain a functional system. We saw in PROBLEMS OF CONCURRENT
PROCESSING that there were occasions when we wanted to disable interrupts, but we
must be careful to do so only for very short periods.

To show how it all (or at least some of it) fits together, here's the picture we saw
in the chapter on BATCH SYSTEMS with the middle three levels marked. The
administration level happens outside the computer, so isn't represented; and the interrupt
level isn't relevant, as the Burroughs MCP is a non-preemptive system. (In fact, all the
real interrupts happened on an auxiliary processor which handled all communication with
the outside world, leaving only some special interrupts for inter-processor
communication.)

Support for execution : page 9.

Dispatcher

Low-level
scheduler

High-level
scheduler

PROCESSING MODES AND SCHEDULING.

How much use today is that diagram of an ancient batch processing system ? If you're
interested in principles (which we are), it's as good as it ever was; it illustrates some
significant features of process management in a straightforward way. If you're interested
in practical system management today (which we are), it doesn't cover all the
possibilities, but it's a good base case with which we can compare other systems to see
where they differ in principle, and therefore where we might need changes in the
scheduling machinery.

Generally, what sort of scheduling system you use depends on many factors, and
we shall inspect some of these in our discussion. Here we comment briefly on a few
systems of different types to illustrate something of the range of possibilities. We shall
not attempt to cover current practice exhaustively, because the range is enormous and
continually changing. Instead, we shall try to understand something of how the different
techniques can be used, so that when yet more new ways of organising operating systems
come along we are in a position to choose a suitable set of scheduling techniques. We
shall say more on the significance of the different scheduling levels in the various cases
later (SCHEDULING IN ACTION).

A batch system is designed to maximise the efficient use of the machinery. It will
therefore use any of the available tools which help it to improve the performance.
To do so effectively, it needs a lot of information about what is going to happen at
every level, so it will require that information about jobs be presented in advance.

Typically : On acceptance into the system by the high-level scheduler, jobs are
put into queues according to their resource requirements as given in the job
attributes defined by their owners. At any moment, a certain number (defined by
the system manager) of jobs from each queue may be active. Each active job offers
its next task for consideration by the low-level scheduler. The low-level scheduler
accepts tasks for execution according to their task attributes (which may be taken
as identical with the job attributes, or separately specified) and the current state of
the system. On acceptance, a process is associated with the task, the process is
placed in the system's ready queue, and it comes under the control of the
dispatcher.

An interactive system is designed to give good immediate service to people who use
it. This limits the repertoire of tools which it can use. It can reasonably reject an
attempt to log in to start a new interactive session (the interactive equivalent of a
new job) if whoever is trying to log in isn't known to the system or has run out of
money, but apart from that must always try to run every session as requested. A
task should therefore only be suspended or queued for very short times – which is
to say, by the dispatcher – or after some sort of dialogue with the task's owner to
ensure that the interruption in execution is acceptable. It is possible to change a
task's priority if its performance is such that other tasks are seriously hindered. A
particular consequence of this requirement is that the low-level scheduler
disappears : we have no choice but to proceed with every request to start a new
task. Alternatively, we can say that low-level scheduling is now a distributed
manual function, performed by several independent human processors according to
whim and fancy.

Typically : Subject to proper identification and availability of resources, an
attempt to log in is accepted, and a new session is started. There is no queue at
anything but the lowest levels. Every active session generates requests that tasks be
executed, and it is expected that – unless it's impossible – all such requests will be
implemented forthwith. The only remaining control is through the priorities of the
active processes, and the way in which these are handled at the dispatcher level.

A GUI microcomputer system is a sort of interactive system. It poses rather special
scheduling problems because process switching, typically initiated by clicking on
different graphical objects displayed on the screen, is very easy; it requires only that
the GUI manager knows which window is active on the screen, and directs
interrupts from the terminal to that window's process. Such interrupts will normally
identify the destination process, the type of event, and the identity of the window.
(Notice that the main system does not need to know which process is represented
as active on the screen, and that simply making a new window active has no
repercussions on the scheduler.) Distinguishing between streams in processes is
almost as easy if the operating system can associate streams with threads rather than
processes; if it can't, then it is up to the process to sort out which window
corresponds to which thread, and to direct its operations accordingly. For a long
time, the common maximum number of active processes was one, apart from those
initiated by interrupts, but this restriction is becoming less severe with the more
ambitious microcomputer systems. More recently, it has become possible to run
several processes simultaneously by multiprogramming methods.

Typically : Low-level scheduling is strictly governed by the interface events, so it
happens at the interrupt level. In practice, as it is almost invariably the case that one
event to a particular process is followed by many more in order to complete the
operation required on that process, it is almost equivalent to regard this as a manual
implementation of the low-level scheduler. The person using the system can switch
at will between different processes or between different activities of the same
process, which is precisely the function of a low-level scheduler.

A collection of isolated machines has very little in the way of scheduling (apart
from that provided by the machines' own operating systems) unless some form of
access control (keys to the door, for example) or booking system is provided;
these are administrative and high-level scheduling techniques. Services (printing,
for example) are likely to be provided by setting aside a machine for the purpose,

Support for execution : page 11.

and requiring people who wish to use it to carry their material there on discs. The
physical queue of people can then, with a bit of imagination, be regarded as a low-
level scheduling device to control the global printing task.

A networked microcomputer system resembles a multiprocessor interactive system
in some respects, but providing each terminal with its own more or less powerful
processor, memory, and disc store reduces or eliminates the need for
communications between processors - which is just as well, because it isn't always
simple. The networked system is in other respects closer to the same system
without a network, with the main difference being the provision of services through
the network rather than by carrying discs to dedicated machines. The high-level
scheduler is absent (unless there's a booking system); low-level scheduling, as
with the interactive systems, is manual, and likely to be severely constrained by
restrictions on the number of concurrent processes permitted. In such cases,
though, dispatching has usually been a manual operation, initiated by some form of
explicit request to switch from one process to another. "True" multiprogramming,
with interrupt-based timesharing, is still comparatively uncommon.

Typically : At the highest level, scheduling is likely to be rudimentary; unless
some sort of booking system is in force (which requires significant
communications activity between the microcomputers and some central controller to
run properly), you can use a microcomputer if you can get one. Any lower levels
are handled by the microcomputer software itself.

COMPARE :

Lane and MooneyINT3 : Chapter 6; Silberschatz and GalvinINT4 : Part 2.

REFERENCES.

MAN2 : H. Wills : "Fundamentals of pricing and scheduling computer services and
investment in computer equipment", Computer Journal 3 3, 266
(1990)

–––

QUESTIONS.

How do the scheduling levels apply to different sorts of system ? Consider
isolated microcomputers; distributed microprocessor systems with
processors, servers, communications, and so on; anything else you can think
of.

How does the Macintosh event queue structure fit in with the description of
the GUI system ?

–––

