
Implementation : page 1.

DEVICE CONTROL HARDWARE

One way to reduce the demands on the central processor is to provide special-purpose
hardware to look after the specific needs of various devices. In this pattern of operation,
the device itself is connected to the computer through an interface box, which looks after
the character-by-character (or whatever) management of the device, but only
communicates with the computer comparatively infrequently to transmit or receive a
whole record (or whatever) of data. Such boxes are called device controllers or
input-output processors or channels, and we have already mentioned them in the
specific context of discs in the chapter DISCS – THE HARDWARE VIEW. You can
think of these interfacing devices as hardware implementations of doio – or, at least, of
what happens once doio has decided which device to use. We are concerned only with
the operating system end of the controllers – which illustrates, of course, the whole point
of having them.

Simple controllers might be little more than hardware buffers which collect input
from the device until a record is full, then send it to the computer, or accept a record from
the computer and manage the communication with the device. Obvious interlocks and
status flags are provided – typically buffer full, buffer empty, device fault, and similar
indicators. (Compare the software implementation in DEVICE CONTROL
SOFTWARE.) Such simple interface devices can be very useful if they do what you
want them to do – but they can cause serious problems if they don't.

A device controller is attached to the computer in just the same way as any other
device so far as the control operations are concerned, though it's common to provide
some form of direct memory access if large quantities of data have to be communicated
quickly. The combined system can be thought of like this :

More elaborate controllers are themselves programmable, so the operating system
can determine the controller's behaviour to suit each transaction. In the example given
below, the programme executed by the controller lives in the computer's memory, so the
computer is clearly in control.

EXAMPLES.

The first exampleINT5 which follows shows how the idea of a programmable device
controller can be implemented in practice. The fine detail isn't particularly important for
this course; but you should be aware of the general principles involved. The description is
fairly old, but much the same techniques are still in use. The second example is of a quite
different, and much more recent, hardware system which nevertheless uses the same
channel interface, ensuring complete device independence.

2-3 .3 .4 INSTRUCTIONS

What classes of commands does the
processor interpret? There are three basic
groupings of I/O commands:

1 Data transfers: read; read backwards;
write; sense (read device status)

2 Device control: control (page eject,
tape rewind, etc.)

3 Branching: transfers of control within
the channel program

The channel fetches the channel
commands [Channel Command Words
(CCW)] from memory and decodes them
according to the following format.

Opcode Data addresses Flags Count

0 7 8 31 32 3637 4748 63

unused

The opcode (bits 0-7) indicates the
command to be performed; it actually
consists of two parts: 2 to 4 operation
bits and 4 to 6 modifier bits. The
operation bits are standard while the
modifier bits vary for each type of
device.

The data address (bits 8-31)
specifies the beginning location of the
data field referenced by the command.
The count field specifies the byte length
of the data field. The data address and
count are used primarily for the data
transfer-type commands.

The flag bits further specialize the
command. The principal flags are:

1 The command chain flag (bit 33)
denotes that the next sequential CCW
is to be executed on normal
completion of the current command.
(Note: under default conditions, i.e.,
all flags = 0, the channel stops at
completion of current command.)

2 The data chain flag (bit 32) denotes
that the storage area designated by the
next CCW is to be used with the
current command, once the current
data area count is exhausted.

3 The suppress length indication flag
(bit 34) suppresses the indication to
the program of an incorrect length (see
Figure 2-12).

4 The skip flag (bit 35) species
suppression of transfer of information
to storage .

5 The programmed controlled
interruption flag (bit 36) causes the
channel to generate an interruption
condition when this CCW takes
control of the channel.

A group of multiple CCWs linked
together by command chains, data
chains, or transfers is called a channel
program. The CPU starts the channel
executing a channel program.

2-3 .3 .5 SPECIAL FEATURES

Status The channel has an internal
register that acts as the instruction
address register. (A multiplexor or block
multiplexor actually has several such
registers, one per device.) In addition,
three specific words of memory are used
for status information. The Channel
Address Word (CAW), which starts at
location 7210 in core, contains the address
of the first instruction to be executed by
the channel. The channel refers to the
CAW only during the execution of the
Start I/O (SlO) instruction by the CPU.
The Channel Status Word (CSW),
actually a doubleword, contains coded
information indicating the status of the
channel. The format of the CSW, located
at location 64, is as follows:

0 7 8 31 32 4748 63

Protection
key

Next CCW
address

Status Residual
count

Key – protection key being used by
channel

Address – address of next channel
command

Status – e.g., building on fire, I/O
completed, I/O error occurred, etc.

Count – how many bytes of the last
CCW were not processed? (usually
zero unless the channel abnormally
terminated an I/O operation)

2-3.4 Examples of I/O Programs

Let us write a program to skip to the top
of a new page, print two lines, and eject
to the next page. Figure 2-12 contains
four I/O commands coded in hexadecimal
to perform our task.

Implementation : page 3.

Appendix A presents the I/O
command opcodes for various devices;
the I/O program above is intended for a
model 3211 printer device. The first
command (opcode 8B) causes the printer
to advance the paper to the top of the next
page. In Appendix A this opcode can be
found under the 3211 description Skip to
Channel N Immediately (opcode
1NNNN001). Thus 8B16 = 10001011
means Skip to Channel 1 Immediately.

LOCA DATA
TION OPCD ADDR FLAG UNUS CNT
400 8B ? 40 00 XXXX SKIP TO NEW

PAGE
408 01 010008 60 00 0008 PRINT LINE
410 OB ? 40 00 XXXX ADVANCE 1 LINE
418 89 010010 00 00 0014 PRINT 20-

CHARACTER
LINE: EJECT TO
NEXT PAGE AND
STOP

010008 'GOOD DAY'
010010 'YOU ARE NOW ON A 370'

Figure 2-12 Example of an I/O
channel program

The channel referred to is not an
I/O channel. There is a control tape or
chain that is internal to the printer and has
holes or marks in several columns
(channels). By convention, channel 1 has
a mark that corresponds to the top of the
page. This is necessary since various
sizes of paper may be used in the printer
(regular size 11-inch long paper, 13-inch
legal-length paper, etc.). The second
command, opcode = 0116 , prints the
eight characters stored at location 010008
(GOOD DAY). The next command,
opcode = 0B16 , advances the paper by
one line. This command is necessary
because the 01 opcode above does not
cause the paper to move, and without the
command three 01's in a row would all
print to be on the same line — this would
save a lot of paper but would generally
be a bit difficult to read. The second and
third commands could have been
combined into the single Write, Space 1
after Print command, opcode = 0916 . The
final command, opcode = 8916 , prints the
20 characters that are stored at location
0100l016 (YOU ARE NOW ON A 370)
and then skips to the top of the next
page.

In Figure 2-12 all of the I/O
commands except the last have the
command chain flag set (4016). In
addition, the Suppress Length Indication
(SLI) flag (2016) is required in the second
CCW (flag 60 = 40 + 20) since the data
count of 8 bytes is different from the
standard data count of 132 bytes used by
a 3211 printer. If the SLI flag were not
set, the I/O program would stop after
executing the second command. The SLI
should also be used in the last CCW, but
since the I/O program is going to stop
then anyway, it is not really needed. The
data address field and count fields are not
used in control commands such as Skip 1
Line and Eject to New Page.

2-3.5 Communications between
the CPU and the Channel

Now that we have seen how the channel
itself works, we will examine how it
communicates with the CPU. The
purpose of having a channel is to free the
CPU from having to control detailed I/O
operations. The CPU and the channel are
usually in a master/slave relationship.
This means that the CPU tells the channel
when to start and commands it to stop or
change what it is doing. On the other
hand, the channel cannot usually start
any operation unless instructed by the
CPU.

There are two types of
communications between the CPU and
the channel: (1) CPU to channel I/O
instructions initiated by the CPU and (2)
channel to CPU interrupt initiated by the
channel.

This section will describe the first
of these types, the relationship between
I/O instructions and the channel. The
second type of communication,
description of the I/O interrupts, will be
left for Section 2-4.

All CPU I/O instructions have the
following format:

0 7 8 15 16 20 3119

Opcode B D11

The channel and device number are
specified by the sum of the contents of
register B1 and the contents of the D1

field. Bits 16-23 of the sum contain the

channel address, while bits 24-31 contain
the device on the channel.

0 15 16 24 3123

Channel
address

Device
address

11C(B)+D

We are mainly concerned with three CPU
I/O instructions:

1 START I/O (SIO): Two items are
needed to start I/O: (1) the channel and
device number and (2) the beginning
address of the channel program. A
START I/O instruction, such as SIO
X'00E', specifies the channel number
0 and device number 0E. Locations
72-75 in memory contain the CAW,
which specifies the start of the channel
program.

2 TEST I/O (TIO): The CPU indicates
the state of the addressed channel and
device by setting the Condition Code
(busy or not). The CC can then be
tested by the standard branch
conditional instruction.

3 HALT I/O (HIO): Execution of the
current I/O operation at the addressed
I/O device and channel is abruptly
terminated.

After executing an SIO or a TIO,
the CPU gets a Condition Code of either:

8 ~ OK (not busy)
2 ~ busy
1 ~ not operational
4 ~ indicates that there is a lot more to
tell us in the CSW, which was just
stored at location 64.

The Channel Status Word provides
the detail status of an I/O device or the
conditions under which an I/O operation
has been terminated. The CSW may be
set in the process of I/O interrupts and
sometimes during execution of START
I/O, HALT I/O, and TEST I/O. The
format of the CSW is:

0 7 8 31 32 4748 63

Protection Command
address

Status Count
key 0000

3 4
An SIO causes I/O to start only if

the channel returns a Condition Code of
8. If any other CC is returned; the
channel has rejected the I/O request. The
reason for the rejection can be found in
the CC or CSW.

Although the I/O interrupt
mechanism has some powerful
capabilities, as explained in Section 24, it
is not needed to perform simple I/O
processing. For example, assuming that
I/O interrupts are disabled, the following
sequence will start up an I/O program
and check that it completes correctly:

•
•
•
LA 1,CCWADOR SET I/O PROGRAM
ST 1,72 ADDRESS INTO CAW
SIO X'OOE' START I/O ON

DEVICE X'OOE'
BC 4+2+1,ERROR IF NOT CC=8, THEN

ERROR
TESTIO TIO X'OOE' TEST IF I/O

COMPLETED YET
BC 4+2,TESTIO IF STILL BUSY, TEST

AGAIN
•
•
•

If we monitored the Condition Code of
each Test I/O, the sequence would be:

TIO CONDITION CODE

2 ~ busy
2 ~ busy
••••• I/O in progress
2 ~ busy
4 ~ CSW storedI/O completed
8 ~ OK (not busy)
loop completed, CC ≠ 4 or 2.

}I/O in progress

2-4.2 Interrupt Mechanism

Now we must consider how CPU status
can be saved and control transferred to an
interrupt handling routine. The "state" or
current condition of the CPU is stored in
a doubleword register called the Program
Status Word. This corresponds to the
CSW of the I/O processor. The PSW is
used to control instruction sequencing
and to hold and indicate the status of the
system in relation to the program
currently being executed. The active or
controlling PSW is the "current" PSW.
By storing the PSW during an
interruption, the status of the CPU can be
preserved for inspection or reloading. By
loading a new PSW, or part of one, the
state of the CPU can be changed.

The format of the PSW is as
follows:

Implementation : page 5.

Opcode Flags

0 7 8 1516 3111 12

Protection
key

Interrupt code

32 3334 1516 313536

Instruction addressILC
Program

mask
CC

Each of the five classes of
interrupts – I/O, program, supervisor
call, external, and machine-check – has
associated with it two doublewords,
called "old" and "new" PSWs, stored in
the main memory at predetermined
storage locations. When an interrupt
occurs, the interrupt hardware
mechanism (1) stores the current PSW in
the old position and (2) loads the current
PSW from the new position.

2-4.3 Interrupt Handler
Processing

The interrupt routine can access the
appropriate old PSW to ascertain the
condition that caused the interrupt. The
old PSW contains an interrupt code and
the location of the program being
executed when the interrupt occurred.

Each of the program interrupt and
external interrupt causes has a unique
interrupt code: invalid operation = 01;
privileged operation = 02; fixed point
overflow = 08, etc., for program
interrupts. When an I/O interrupt occurs,
the PSW interrupt code indicates the
channel and device causing the interrupt.
The CSW status field, which is
automatically set at the same time,
contains information that indicates the
cause of the interrupt.

A big advantage of using special hardware for device control is that it fits in well with
ideas of device independence – the principle that it should be possible to write a
programme without knowing any details of the devices which it will eventually use. A
device controller effectively provides its device with a standard interface which is much
easier for the operating system to handle than a collection of quite different devices.

Here is a description of a deviceIMP34 which is interchangeable with a disc pack. A
lot of the details are not particularly relevant to this course, but we've left some in for
interest. It's worth looking at the rest of the material for the light it throws on other parts
of the course.

The economics of semiconductor storage
were revolutionised earlier this decade by
the wide availability of 256-Kbit dynamic
random access memory, and the
competitive position has been assured by
the price/performance advantages and
favourable environmental characteristics
of 1-Mbit dram. Currently, most plug
compatible manufacturers offer
semiconductor storage. This article is
based upon the Hitachi SC-12-1/SU-16-
1 which is marketed and supported in
Europe as the Comparex 6086-S1/6580-
1.

Semiconductor storage subsystems
typically comprise a controller, which
presents a standard IBM 370 or 370/XA
channel interface, and a semiconductor
storage device, which supplants the
head-disk assembly of a conventional
disk. The subsystem emulates standard
devices such as 3880/3380, though not
all cylinders may be present. All CCWs
applicable to the emulated devices are
accepted, and appropriate CSWs are
returned.

A semiconductor storage
subsystem can comprise between one
and four storage directors connected to
between one and four semiconductor
storage devices each of between 1 6-Mb
and 256-Mb capacity. A storage director
may be connected to as many as four
channels on four separate cpus. A typical
maximal configuration is illustrated in
figure 1.

Data is stored electronically and so
access is not subject to the electro-
mechanical delays of latency due to disk
platter rotation, and seek/settle due to
head movement. This results in a data
access time of 0.3 milliseconds, and a
device service time of little more than
data transfer time for all read and write
i/o activity.

Conventional rotating disks usually
disconnect from the channel while
performing relatively slow mechanical
movements, and may fail to reconnect for
data transfer if the selected path is in use

(370 SCP) or all available paths are in
use (XA SCP with DPS/DPR devices).

This is known as a rotation
position sensing miss, and involves a
penalty of one complete disk revolution
each time it occurs, with consequent
deterioration of device response time.

CPU

SD 1 SD 2 SD 3 SD 4

256
MB

256
MB

256
MB

256
MB

Figure 1: Maximal configuration
of 1 GB with 4-path support

Semiconductor storage subsystems
do not disconnect from the channel
between command sequences, and so
maintain excellent performance
characteristics under conditions of very
heavy loading. Semiconductor storage
therefore eliminates disconnect time
(latency + seek + rps miss) and offers a
device service time of only connect time
(protocol time plus transfer time) plus
0.3 milliseconds. This is illustrated with
some typical device performance
statistics in figure 2.

Clearly, it is feasible to reduce
conventional device service time, and
hence device utilisation, by a factor of
10. This means that at conventional i/o
rates, device response times of around 2
milliseconds are achievable, and even at
the very high i/o rate of 300 i/o/second
device response times of around 6
milliseconds can be supported.

The implication for online
applications is that transaction rates can
be increased while simultaneously
offering reduced response time.
Similarly, for batch applications,
throughput volume may be increased
while simultaneously reducing
turnaround time.

Data transfer time is dependent on
datablock size and channel speed. With

small blocks and standard 3 Mb/second
channels, data transfer time will be low.
With large blocks, however, transfer
time becomes more significant and 4.5
Mb/second channels should be
considered.

RPS MISS

SEEK

LATENCY

PROTOCOL
TRANSFER

3380J

23.8 milliseconds

PROTOCOL
TRANSFER

ACCESS

SSD

2.3 milliseconds

0.3
0.7
1.31.3

0.7

8.3

12.0

1.5

Figure 2: Device service time
components (Not drawn to scale)

The first generation of
semiconductor storage devices were
volatile in that power loss resulted in data
loss. This ensured that the device was
suitable only for data which could be re-
created easily.

Present generation devices
incorporate battery back-up in
conjunction with integral Winchester disk
storage. This circumvents volatility in all
circumstances of scheduled or
unscheduled power-off, and ensures
suitability for all performance-critical
data.

It is worth observing that
scheduled power-off data is written to the
integral Winchester disk storage before
the power-off process is allowed to
complete. In circumstances of
unscheduled power-off or power loss,
the battery back-up powers the
semiconductor memory and the
Winchester disks and so data is written to
the stable medium as soon as practicable
and does not have to wait for power
restitution. On power-up the data is read

Implementation : page 7.

from Winchester disk into semiconductor
memory. Unload time is 8 minutes
maximum, load time is 4 minutes
maximum.

Note that data is written to the
Winchester disks only during power-off
processing. In normal operation data is
stored only in semiconductor storage and
so performance is truly at semiconductor
speed. The Winchester disks are not
defined to the operating system and
cannot be accessed directly.

Many workloads feature high
activity data files which are a serious
constraint for online response/transaction
rates or batch throughput/volume.
Semiconductor storage can be a cost-
effective solution to critical application
performance.

Many DB/DC systems, particularly
when used with 4GLs, can make very
heavy usage of scratch pad areas. For
various performance reasons concerning
virtual and real storage these areas are
usually on disk, but conventional devices
often cannot support adequate transaction
rates. Bottlenecks such as these are
eliminated easily by semiconductor
storage.

Database indexes of all types,
including the Adabas associator, are ideal
candidates for semiconductor storage
because storage requirements tend to be
low and access rates high.

Semiconductor storage always has
had a role as a high performance paging
device. In the past, esoteric fixed-head
devices were simulated in order to
optimise behaviour of the auxiliary
storage manager. However, modern
paging algorithms automatically prefer
the devices offering the best performance
so elaborate configuration of the paging
subsystem is unnecessary.

Semiconductor storage can have a
dramatic impact upon a virtual storage
system which is constrained on real
storage and hence paging heavily. As a
result of the very fast device response
time offered by semiconductor storage
page, delay time can be reduced. This in
turn will improve application response
time and so transaction residency in real
storage will reduce. This means that real
storage contention will decline and
paging rates may even fall.

NOTE : We don't suppose he really wants to reduce device utilisation, but that's what he
said.

COMPARE :

Lane and MooneyINT3 : Sections 8.3, 9.4; Silberschatz and GalvinINT4 : Sections 2.1 and
2.2.

REFERENCE.

INT5 : S.E. Madnick, J.J. Donovan : Operating systems (McGraw-Hill, 1974).

IMP34 : M. Donnelly : "Making I/O go faster", Computing, 5 January 1989,
page 14.

–––

